Plant Science Bulletin Fall 2020 Volume 66 Number 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE EVOLUTION of SEED MORPHOLOGY in DOMESTICATED Chenopodium: an ARCHAEOLOGICAL CASE STUDY
]. Ethnobiol. 13(2):149-169 Winter 1993 THE EVOLUTION OF SEED MORPHOLOGY IN DOMESTICATED Chenopodium: AN ARCHAEOLOGICAL CASE STUDY KRISTEN }. GREMILLION Department of Anthropology The Ohio Stute University Columbus, OH 43210-1364 ABSTRACf.-A large body of data on several key morphological characters has been compiled through examination of collections of archaeological Chenopodium from eastern North America. Contrary to expectations based on change in certain other seed crops, the patterns of variation observed in Chenopodium do not reflect a gradual evolution of seed morphology away from the wild type. Evidence for decreasing levels of morphological variability in the evolving domesticate is like wise minimal. These findings demonstrate that the rate and character of crop evolution as revealed in the archaeological record can be expected to vary consid erably among taxa. RESUMEN.-Se ha compilado un extenso ouerpo de datos sobre varios carac teres morfol6gicos clave mediante el examen de colecciones de Chenopodium arqueol6gico del este de Norteamerica. Contrariamente a las expectativas basadas en el cambio en ciertos otms cultivos de semilla, los patrones de variaci6n obser vados en Chenopodium no reflejan una evoluci6n gradual de la morfologia de las semillas en credente distancia del tipo silvestre. La evidencia de niveles decre cientes de variabilidad morfol6gica en la especie domesticada en evoluci6n es asimismo minima. Estos resultados demuestran que puede esperarse que la 13sa y el caracter de la evoluci6n de los cultivos, tal y como se revela en el registro arqueol6gico, varien considerablemente entre taxa distintos. REsUME.-Un large ensemble de donnees concernant plusieurs characteres mor phologiques importants a ete recueilli en examinant des collections de Cheno podium de I'est de I' Amerique. -
Beyond Plant Blindness: Seeing the Importance of Plants for a Sustainable World
Sanders, Dawn, Nyberg, Eva, Snaebjornsdottir, Bryndis, Wilson, Mark, Eriksen, Bente and Brkovic, Irma (2017) Beyond plant blindness: seeing the importance of plants for a sustainable world. In: State of the World’s Plants Symposium, 25-26 May 2017, Royal Botanic Gardens Kew, London, UK. (Unpublished) Downloaded from: http://insight.cumbria.ac.uk/id/eprint/4247/ Usage of any items from the University of Cumbria’s institutional repository ‘Insight’ must conform to the following fair usage guidelines. Any item and its associated metadata held in the University of Cumbria’s institutional repository Insight (unless stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC fair dealing guidelines (available here) for educational and not-for-profit activities provided that • the authors, title and full bibliographic details of the item are cited clearly when any part of the work is referred to verbally or in the written form • a hyperlink/URL to the original Insight record of that item is included in any citations of the work • the content is not changed in any way • all files required for usage of the item are kept together with the main item file. You may not • sell any part of an item • refer to any part of an item without citation • amend any item or contextualise it in a way that will impugn the creator’s reputation • remove or alter the copyright statement on an item. The full policy can be found here. Alternatively contact the University of Cumbria Repository Editor by emailing [email protected]. -
Phylogenetic Relationships of Discyphus Scopulariae
Phytotaxa 173 (2): 127–139 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.173.2.3 Phylogenetic relationships of Discyphus scopulariae (Orchidaceae, Cranichideae) inferred from plastid and nuclear DNA sequences: evidence supporting recognition of a new subtribe, Discyphinae GERARDO A. SALAZAR1, CÁSSIO VAN DEN BERG2 & ALEX POPOVKIN3 1Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, 04510 México, Distrito Federal, México; E-mail: [email protected] 2Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s.n., 44036-900, Feira de Santana, Bahia, Brazil 3Fazenda Rio do Negro, Entre Rios, Bahia, Brazil Abstract The monospecific genus Discyphus, previously considered a member of Spiranthinae (Orchidoideae: Cranichideae), displays both vegetative and floral morphological peculiarities that are out of place in that subtribe. These include a single, sessile, cordate leaf that clasps the base of the inflorescence and lies flat on the substrate, petals that are long-decurrent on the column, labellum margins free from sides of the column and a column provided with two separate, cup-shaped stigmatic areas. Because of its morphological uniqueness, the phylogenetic relationships of Discyphus have been considered obscure. In this study, we analyse nucleotide sequences of plastid and nuclear DNA under maximum parsimony -
Ailanthus Excelsa Roxb
Ailanthus excelsa Roxb. Simaroubaceae maharukh LOCAL NAMES Arabic (ailanthus,neem hindi); English (ailanthus,coramandel ailanto,tree- of-heaven); Gujarati (aduso,ardusi,bhutrakho); Hindi (maharuk,ardu,ardusi,arua,horanim maruk,aduso,mahanim,mahrukh,maruf,pedu,Pee vepachettu,pir nim); Nepali (maharukh); Sanskrit (madala); Tamil (periamaram,peru,perumaran,pimaram,pinari); Trade name (maharukh) BOTANIC DESCRIPTION Ailanthus excelsa is a large deciduous tree, 18-25 m tall; trunk straight, 60-80 cm in diameter; bark light grey and smooth, becoming grey-brown and rough on large trees, aromatic, slightly bitter. Leaves alternate, pinnately compound, large, 30-60 cm or more in length; leaflets 8-14 or more pairs, long stalked, ovate or broadly lance shaped from very unequal base, 6-10 cm long, 3-5 cm wide, often curved, long pointed, hairy gland; edges coarsely toothed and often lobed. Flower clusters droop at leaf bases, shorter than leaves, much branched; flowers many, mostly male and female on different trees, short stalked, greenish-yellow; calyx 5 lobed; 5 narrow petals spreading 6 mm across; stamens 10; on other flowers, 2-5 separate pistils, each with elliptical ovary, 1 ovule, and slender style. Fruit a 1-seeded samara, lance shaped, flat, pointed at ends, 5 cm long, 1 cm wide, copper red, strongly veined, twisted at the base The generic name ‘Ailanthus’ comes from ‘ailanthos’ (tree of heaven), the Indonesian name for Ailanthus moluccana. BIOLOGY The flowers appear in large open clusters among the leaves towards the end of the cold season. Male, female and bisexual flowers are intermingled on the same tree. The fruits ripen just before the onset of the monsoon. -
Plant Conservation Alliance®S Alien Plant Working Group Tree of Heaven Ailanthus Altissima (Mill.) Swingle Quassia Family (Sima
FACT SHEET: TREE OF HEAVEN Tree of Heaven Ailanthus altissima (Mill.) Swingle Quassia family (Simaroubaceae) NATIVE RANGE Central China DESCRIPTION Tree-of-heaven, also known as ailanthus, Chinese sumac, and stinking shumac, is a rapidly growing, deciduous tree in the mostly tropical quassia family (Simaroubaceae). Mature trees can reach 80 feet or more in height. Ailanthus has smooth stems with pale gray bark, and twigs which are light chestnut brown, especially in the dormant season. Its large compound leaves, 1-4 feet in length, are composed of 11-25 smaller leaflets and alternate along the stems. Each leaflet has one to several glandular teeth near the base. In late spring, clusters of small, yellow-green flowers appear near the tips of branches. Seeds are produced on female trees in late summer to early fall, in flat, twisted, papery structures called samaras, which may remain on the trees for long periods of time. The wood of ailanthus is soft, weak, coarse-grained, and creamy white to light brown in color. All parts of the tree, especially the flowers, have a strong, offensive odor, which some have likened to peanuts or cashews. NOTE: Correct identification of ailanthus is essential. Several native shrubs, like sumacs, and trees, like ash, black walnut and pecan, can be confused with ailanthus. Staghorn sumac (Rhus typhina), native to the eastern U.S., is distinguished from ailanthus by its fuzzy, reddish-brown branches and leaf stems, erect, red, fuzzy fruits, and leaflets with toothed margins. ECOLOGICAL THREAT Tree-of-heaven is a prolific seed producer, grows rapidly, and can overrun native vegetation. -
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
Plant Biology '99
THE NEWSLETTER OF THE AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS Volume 26, Number 1 January/February 1999 Plant Biology '99 III Plant lobs Grab Crabs: Chesapeake Boy Crabs Await You 01 Plant Biology '99! Photo courtesy of Baltimore Areo Convention &Visitors Association. Join your colleagues in celebrating ASPP's SYMPOSIA 75th Anniversary at Plant Biology '99 in Baltimore, Maryland, on July 24-28! Auxin Biology Organizers: Mark Estelle and Ottaline Leyser ASPP's 75th Anniversary Meeting Events: Cell Cycle Regulation Organizer: Tom Jacobs Special President's Symposium functional Plant Genomics Banquet Honoring Past Officers, Award Winners, & Organizer: JeffBennetzen ASPP Traditions Biochemical Genetics Organizer: Dean Della Penna Chesapeake Bay Crab & Chicken Feast President's Symposium: Global Issues in Plant Biology ASPP Family Tree Organizer: Brian Larkins Speakers: Peter Raven, Lester Brown, and Extended Poster Sessions Robert Fraley INSIDE ... i T ASPP-Sponsored Workshop in Greece . ' '~. I' T Novartis, UC-Berkeley Plant Scientists Reach $25 Million Research Collaboration T Call for Nominations for Officers and Awards ASPP Future ASPP Annual Meetings OFFICERS & STAFF .CONTENTS flresident Brian A. Larkins .".""""""" """.. 520·621·9958 1 flresident·Elect .·Plant Biology '99 Deborah Delmer """"""" .."""""""""""""""",,, 530·752·7561 1999 Immediate flost flresident ·3 '" . Ken Keegstra .."""""""""""" ..""""""""""""",517·353·2770 Saturday, July 24, through Secretory . ASPP-Sponsored Workshop in Greece Daniel R. Bush ""......,.."""""""""", ..,..""""""", 217·333·6109 Wednesday, July 28 Treasurer ;MbnagingEditor of Plant Physiology Terri Lomax ."""" .."........."""""""""""."""""", 541·737·5278 .Resigns ' Baltimore, Maryland Choir, Boord of Trustees Douglas D. Randall .........".""""""....."..."""""" 573·882·4847 ASPP's 75th anniversary Choir, flublications Committee 4 . Rebella Chasan .."""""""..."......."""""""""""" 202·628·1500 Public Affairs .' '. meeting Choir, Committee on the -NSF's $85 Millibn in Awards Status of Women in fllont flhysio/ogy Ann M. -
Climate Change and Cultural Response in the Prehistoric American Southwest
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey Fall 2009 Climate Change and Cultural Response In The Prehistoric American Southwest Larry Benson U.S. Geological Survey, [email protected] Michael S. Berry Bureau of Reclamation Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Benson, Larry and Berry, Michael S., "Climate Change and Cultural Response In The Prehistoric American Southwest" (2009). USGS Staff -- Published Research. 725. https://digitalcommons.unl.edu/usgsstaffpub/725 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. CLIMATE CHANGE AND CULTURAL RESPONSE IN THE PREHISTORIC AMERICAN SOUTHWEST Larry V. Benson and Michael S. Berry ABSTRACT Comparison of regional tree-ring cutting-date distributions from the southern Col- orado Plateau and the Rio Grande region with tree-ring-based reconstructions of the Palmer Drought Severity Index (PDSI) and with the timing of archaeological stage transitions indicates that Southwestern Native American cultures were peri- odically impacted by major climatic oscillations between A.D. 860 and 1600. Site- specifi c information indicates that aggregation, abandonment, and out-migration from many archaeological regions occurred during several widespread mega- droughts, including the well-documented middle-twelfth- and late-thirteenth- century droughts. We suggest that the demographic response of southwestern Native Americans to climate variability primarily refl ects their dependence on an inordinately maize-based subsistence regimen within a region in which agricul- ture was highly sensitive to climate change. -
Brisbane Native Plants by Suburb
INDEX - BRISBANE SUBURBS SPECIES LIST Acacia Ridge. ...........15 Chelmer ...................14 Hamilton. .................10 Mayne. .................25 Pullenvale............... 22 Toowong ....................46 Albion .......................25 Chermside West .11 Hawthorne................. 7 McDowall. ..............6 Torwood .....................47 Alderley ....................45 Clayfield ..................14 Heathwood.... 34. Meeandah.............. 2 Queensport ............32 Trinder Park ...............32 Algester.................... 15 Coopers Plains........32 Hemmant. .................32 Merthyr .................7 Annerley ...................32 Coorparoo ................3 Hendra. .................10 Middle Park .........19 Rainworth. ..............47 Underwood. ................41 Anstead ....................17 Corinda. ..................14 Herston ....................5 Milton ...................46 Ransome. ................32 Upper Brookfield .......23 Archerfield ...............32 Highgate Hill. ........43 Mitchelton ...........45 Red Hill.................... 43 Upper Mt gravatt. .......15 Ascot. .......................36 Darra .......................33 Hill End ..................45 Moggill. .................20 Richlands ................34 Ashgrove. ................26 Deagon ....................2 Holland Park........... 3 Moorooka. ............32 River Hills................ 19 Virginia ........................31 Aspley ......................31 Doboy ......................2 Morningside. .........3 Robertson ................42 Auchenflower -
Week 1 Topic: Plant Anatomy Reading: Chapter 42, Sections 1-3 I Have A
Biology 103, Spring 2008 Dr. Karen Bledsoe Notes http://www.wou.edu/~bledsoek/ Week 1 Reading: Chapter 42, sections 1-3 Topic: Plant anatomy I have a friend who’s an artist, and he sometimes takes a view which I don’t agree with. He’ll hold up a flower and say, “Look how beautiful it is,” and I’ll agree. But then he’ll say, “I, as an artist, can see who beautiful a flower is. But you, as a scientist, take it all apart and it becomes quite dull.” I think he’s kind of nutty... There are all kinds of interesting questions that come from a knowledge of science, which only adds to the excitement and mystery of a flower. It only adds. Richard Feynman, What Do You Care What Other People Think? (1989, p. 11) Main concepts: • The cell is the basic unit of all living things. Tissues are made up of one or more types of cells, organs are made up of tissues, and systems are made up of organs. Most groups of multicellular organisms, including plants, are made up of multiple organ systems. • The organs and organ systems of a plant include roots (root system), stems, leaves, and flowers (shoot system) • Plants are divided into two broad groups, the monocots (single cotyledon in the seed) and dicots (two cotyledons in the seed). A number of structural differences make these two groups fairly easy to tell apart: • monocots: 3 petals and 3 sepals (though the sepals may look like the petals), parallel veins in the leaves, fibrous root system. -
Sieving Methodology for Recovery of Large Cultigen Pollen
An improved methodology for the recovery of Zea mays and other large crop pollen, with implications for environmental archaeology in the Neotropics Article Accepted Version Whitney, B. S., Rushton, E. A. C., Carson, J. F., Iriarte, J. and Mayle, F. E. (2012) An improved methodology for the recovery of Zea mays and other large crop pollen, with implications for environmental archaeology in the Neotropics. The Holocene, 22 (10). pp. 1087-1096. ISSN 0959-6836 doi: https://doi.org/10.1177/0959683612441842 Available at http://centaur.reading.ac.uk/32925/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1177/0959683612441842 Publisher: Sage Publications All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online An improved methodology for the recovery of Zea mays and other large crop pollen, with implications for environmental archaeology in the Neotropics Bronwen S. Whitney1*, Elizabeth A. C. Rushton2, John F. Carson3,1, Jose Iriarte4, and Francis E. Mayle3 1School of Geosciences, The University of Edinburgh, Drummond St., Edinburgh EH8 9XP, UK 2School of Geography, The University of Nottingham, University Park, Nottingham NG7 2RD, UK 3School of Archaeology, Geography and Environmental Science, The University of Reading, Whiteknights, Reading RG6 6AB, UK 4Department of Archaeology, College of Humanities, University of Exeter, Exeter EX4 4QE, UK *Corresponding author, email: [email protected] tel: +44(0)131 650 9140 fax: +44(0)131 650 2524 A. -
The Orchid Flora of the Colombian Department of Valle Del Cauca Revista Mexicana De Biodiversidad, Vol
Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Kolanowska, Marta The orchid flora of the Colombian Department of Valle del Cauca Revista Mexicana de Biodiversidad, vol. 85, núm. 2, 2014, pp. 445-462 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42531364003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 85: 445-462, 2014 Revista Mexicana de Biodiversidad 85: 445-462, 2014 DOI: 10.7550/rmb.32511 DOI: 10.7550/rmb.32511445 The orchid flora of the Colombian Department of Valle del Cauca La orquideoflora del departamento colombiano de Valle del Cauca Marta Kolanowska Department of Plant Taxonomy and Nature Conservation, University of Gdańsk. Wita Stwosza 59, 80-308 Gdańsk, Poland. [email protected] Abstract. The floristic, geographical and ecological analysis of the orchid flora of the department of Valle del Cauca are presented. The study area is located in the southwestern Colombia and it covers about 22 140 km2 of land across 4 physiographic units. All analysis are based on the fieldwork and on the revision of the herbarium material. A list of 572 orchid species occurring in the department of Valle del Cauca is presented. Two species, Arundina graminifolia and Vanilla planifolia, are non-native elements of the studied orchid flora. The greatest species diversity is observed in the montane regions of the study area, especially in wet montane forest.