Electrical Resistance Corrosion Monitors for the Conservation of Heritage Iron
Total Page:16
File Type:pdf, Size:1020Kb
Piezoelectric printing and pre-corrosion: Electrical Resistance Corrosion Monitors for the conservation of heritage iron A Thesis submitted to the University of Manchester for the degree of Doctor of Philosophy (PhD) in the Faculty of Engineering and Physical Sciences 2014 James P. Dracott School of Materials, Corrosion and Protection centre 1 Contents Contents 2 List of Figures 10 List of Tables 21 List of Abbreviations 25 Abstract 26 Declaration 27 Copyright Statement 28 Acknowledgements 29 Dedication 30 Chapter 1: Introduction 31 1.1 Evidence based corrosion monitoring of archaeological iron............................................33 1.2 Research aims and objectives..........................................................................................34 1.3 Thesis layout.................................................................................................................35 Chapter 2: Iron Corrosion: Mechanisms and Products 37 2.1 Metallic Corrosion..........................................................................................................37 2.1.1 Corrosion Thermodynamics 38 2.2.1 Corrosion types and solid products 40 2.2 Iron Corrosion...........................................................................................................41..... 2.3 Corrosion Products of Iron..............................................................................................43 2.3.1 Goethite ( ) 43 2.3.2 Lepidocrocite ( ) 45 2 2.3.3 Akaganeite ( ) 46 2.3.4 Magnetite ( ) 48 2.3.5 Hematite ( ) 49 2.3.6 Maghemite ( ) 50 2.3.7 Ferrous hydroxychloride ( ) 50 2.3.8 Other Products 51 Chapter 3 Archaeological Iron: Metallurgy and Corrosion 53 3.1 Archaeological Iron......................................................................................................53 .. 3.1.1 Naturally occurring and accidental iron 54 3.1.2 Early iron extraction 55 3.1.3 Crucible steels: ironworking in India 57 3.1.4 Cast iron 57 3.1.5 Effects of impurities and technology on corrosive characteristics 58 3.2 Describing the corrosive lifetime of an iron object.........................................................60... 3.3 Atmospheric corrosion...................................................................................................61 3.3.1 Initial exposure to air 61 3.3.2 The formation of an electrolyte 61 3.3.3 The ‘Wet and Dry’ corrosion model. 62 3.3.3a Wetting phase 63 3.3.3b Wet phase 64 3.3.3c Drying phase 66 3.3.4 Corrosion products of the ‘wet-dry’ corrosion model 66 3.3.5 Pollutants within the Wet/Dry model and their products 68 3.3.5a Chlorides 68 3.3.5b Other pollutants 69 3 3.4 Corrosion of iron in the abandonment environment.........................................................70 3.4.1 Subterranean corrosion. 70 3.4.1a Corrosion products of subterranean corrosion 75 3.4.1b Corrosion rates in sediments 75 3.4.2 Marine corrosion processes 76 3.4.2a Corrosion rate in a marine environment 79 3.5 Post excavation corrosion...............................................................................................81 3.6 Summary of the corroded assemblage of archaeological iron............................................83 Chapter 4: Treatment and storage of archaeological iron 85 4.1 Iron conservation........................................................................................................85.... 4.1.1 Temporary post excavation methods of archaeologists 85 4.1.2 Active conservation: Past methods 86 4.1.3 Alkaline sulphate treatment 86 4.1.4 Plasma treatments 88 4.1.5 Electrolytic reduction 88 4.2 Passive conservation: Storage and display of iron artefacts...............................................89 4.2.1 Closed container storage 90 4.2.2 Mixed collections and pollutants 91 4.2.3 The ambient museum environment 92 4.3 Corrosion Monitoring of Archaeological metals...............................................................93 4.3.1 Visual techniques 94 4.3.1a Digital Image comparison 94 4.3.1b X-Radiography imaging 95 4.3.1c Thermal imaging 96 4.3.2 Gravimetric techniques 97 4 4.3.2a Coupons 97 4.3.2b Quartz crystal microbalances 98 4.3.3 Electrochemical methods 99 4.3.3a Polarisation resistance techniques 102 4.3.3b Electrochemical Impedance Spectroscopy 103 4.3.3c Zero resistance Ammetry and Electrochemical Noise analysis 103 4.3.3d Electrochemical corrosion monitoring of Archaeological metal 104 4.3.4 Sonic methods 107 4.3.4a Ultrasonic corrosion monitoring 107 4.3.4b Acoustic emissions 108 4.3.5 Respirometry 109 4.3.6 Monitoring methods not used for archaeological metal corrosion 110 Chapter 5: Electrical Resistance Corrosion Monitors 112 5.1 ERCM theory.................................................................................................... 112 5.2 ERCM in industry and research.......................................................................... 116 5.3 Heritage applied and pre-corroded ERCM........................................................... 119 5.3.1 MUSECORR project 119 5.3.2 Precorroded sensors 122 5.3.2a Methods for pre-corrosion 123 Chapter 6: Experimental materials and methodology 127 6.1 Creation of ERCM.........................................................................................................127 6.1.1 Discussion of alternative designs and methods 127 6.1.1a Alternative sensor design 128 5 6.1.1b Initial manufacture methodology and alternative methodologies 129 6.1.1c Development of photochemical milling methodology 131 6.1.1d Development of mounting and protection of ERCM 133 6.1.2 Design of ERCM 134 6.1.3 Photochemical machining of iron foil 136 6.1.4 Mounting of foil pattern and protection of reference electrode 137 6.1.5 Resistance of produced ERCM 139 6.2 Deposition of chloride by inkjet printer..........................................................................139 6.2.1 Choice of materials 140 6.2.2 Development of printer methodology 142 6.2.3 Calibration of salt concentration by chloride analysis 144 6.2.4 Printing to alternative substrates 146 6.2.5 Optical microscopy of printed salt crystals 147 6.2.6 Final printer deposition methodology 148 6.3 Atmospheric corrosion of contaminated iron.................................................................149 6.3.1 Creation of iron foil samples 149 6.3.2 Atmospheric corrosion test chambers 149 6.3.3 Visual observation of corrosion 151 6.3.3a Visual recording 151 6.3.3b Scanning electron microscopy 151 6.3.4 Compositional analysis 152 6.3.4a X-ray diffraction 152 6.3.4b Raman spectroscopy 153 6. 4 ERCM pre-corrosion, testing and calibration...............................................................154 6.4.1 Final ERCM creation methodology. 154 6 6.4.2 ERCM testing in a climate chamber 155 6.4.2a Operational setup 155 6.4.2b Climate chamber test environments 157 6.4.3 Calibration with archaeological iron 158 6.5 ERCM in heritage type environments.............................................................................160 Chapter 7: Experimental results 161 7.1 ERCM creation and inkjet deposition of NaCl crystals.....................................................161 7.1.1 Fabrication parameters and error 161 7.1.1a Temperature error and calculated metal properties 164 7.1.1b ERCM fabrication error and reliability of method 166 7.1.2 Chloride analysis of inkjet printer deposition of NaCl 168 7.1.2a Chloride analysis inherent error 168 7.1.2b Analysis of methodology by argentometric titration 170 7.1.2c Changing chloride levels: Repeat printing and alternate levels of 171 greyscale 7.1.2d Image analysis of deposited chloride salts 174 7.2 Results of Pre-corrosion Methodology............................................................................180 7.2.1 Microscope photographs of salt deliquescence and initial corrosion 182 7.2.2 Optical records of corrosion 182 7.2.2a Set relative humidity environments 184 7.2.2b Alternating environments 185 7.2.2c Corrosion of greyscale and repeat printing inkjet deposition 189 7.2.3 Examination of corroded foil cross sections by SEM 189 7.2.3a Control: Uncontaminated iron foil after 4 repetitions 190 7.2.3b Multiple repetition corrosion of contaminated foil 195 7 7.2.3c Comparison of observed thickness loss with resistance measurements 7.2.4 Compositional analysis of corrosion layers 197 7.2.4a X-Ray diffraction 197 7.2.4b Raman spectroscopy 199 7.3 ERCM thickness loss in atmospheric environments........................................................205 7.3.1 ERCM result processing, noise and accuracy 205 7.3.2 Sensor corrosion in stable state environments. 206 7.3.2a Corrosion data and calculated rates 206 7.3.3 Corrosion sensors in changing environmental conditions 213 7.3.3a Program 1: Sudden large changes in relative humidity 213 7.3.3b Program 2: Stepped increase and decrease in relative humidity 218 7.3.3c Program 3: Progressive rising and falling relative humidity 222 7.3.4 Non-corroded ERCM in altering environments. 226 7.3.5 Sensors in heritage type environments. 228 7.3.5a Desiccated heritage box exposed in room conditions 231 7.3.5b Desiccated storage box in a storage cupboard 231 7.3.5c Desiccated storage box exposed in room environment with lid removed. 232 Chapter 8: Discussion 234 8.1 Salt deposition by inkjet printing for corrosion testing......................................................234 8.1.1 Comparison with previous printings and deposition methods. 235 8.1.2 Method adaptability 238 8.1.3 Future applicability of inkjet printer salt deposition 241 8.2 ERCM manufacturing error and corrosion products......................................................243