Australian Mouse Study Confirms Crgwarning

Total Page:16

File Type:pdf, Size:1020Kb

Australian Mouse Study Confirms Crgwarning Special Section: Disability, Reproduction & Biotechnology MONITORING THE SOCIAL IMPACT OF BIOTECHNOLOGY A BULLETIN OF THE COUNCIL FOR RESPONSIBLE GENETICS Australian Mouse Study Confirms CRG Warning BY STUART A. NEWMAN eRG has been issuing a 1977 forum at the National Academy of Sciences, "In the broadest sense we recent news item ("Aus· warnings on all troublesome are here, through the creation of tralians Create a Deadly wholly new gene combinations, inter- Mouse Virus," New JOrk aspects of biotechnology vening profoundly in the evolutionary Times, January 23,2001) process ...we should take every possible provides an apt occasion during the more than two precaution to keep these creations out to reflect on the origin of the Council of our biosphere." for Responsible Genetics (CRG) and decades of its existence. Although a version of the Asilomar to note the lag that may occur between guidelines was adopted in 1976 by the judicious warnings about adverse con- National Institutes of Health (NIH), sequences of biotechnology and their Asilomar, California, in 1975, where the major U.S. public funder of bio- eventual realization. a set of guidelines for the conduct of medical research, by 1978 a new view During the late 1970s the specter recombinant DNA research was pro- had taken hold in the scientific estab- of novel pathogens arising by accident mulgated under a precautionary lishment under the leadership of sev- or on purpose through use of the re- framework. Robert Sinsheimer, a mi- eral of the signers of the 1974 Science cently developed gene splicing tech- crobial geneticist at Caltech, charac- letter and their allies. This view en- nologies led to what has been termed terized the precautionary principle in tirely abandoned the precautionary the "recombinant DNA debate." Rob- approach. In a 1977 New Republic ar- ert Pollack, a virologist at the Cold ticle, for example, James Watson as- Spring Harbor Laboratory, was the serted that the Asilomar conference first to bring these concerns to his col- was "an exercise in the theater of the Still Eating GE Food? 2 leagues, and this led to a letter of absurd" and that the effort to assess FDA Policy Revisions 3 warning in Science magazine from a and control genetic engineering was "a group of scientists central to the field Frankentrees 4 massive miscalculation in which we in 1974. This group included the Nobel CRG InternshipProgram 4 cried wolf without having seen or even laureate James Watson, the future SPECIAL SECTION heard one." This shift led to the weak- Nobelists Paul Berg, David Baltimore AdrienneAsch 5 ening of the NIH Guidelines and to and Daniel Nathans, and the bacterial BonnieSteinbock 8 attempts to dismantle them entirely. geneticist Stanley N. Cohen. This let- Marsha Saxton 10 A detailed history of this policy rever- ter was followed by a conference in continued on page 15 tion to weakening the Guidelines and Maybe it's easier to do these things Australian to the fortunately unsuccessful move than we think." to make them completely voluntary. The accidental creation of a novel Whereas the failure of an unfore- pathogen occurred as the result of al- MouseStudy seen pathogen to emerge from recom- tered biological properties that binant DNA research during the emerged with new combinations of from page one following two decades provided ammu- genes, as anticipated by those who sal, which occurred under the impe- nit ion for the Watson anti-regulatory raised concerns in the 1970s. This tus of increased federal funding and position, the Australian study shows unpredictability is a hazard that also avid commercial interest, but in the this confidence was premature. In the exists with newer applications of these absence of any new scientific findings new article (R. J. Jackson et al., (2001). technologies such as genetically engi- that might have dispelled the original "Expression of Mouse Interleukin-4 neered crops (see M. Teitel and K. A. concerns, can be found in Molecular by a Recombinant Ectromelia Virus Wilson, Genetically Engineered Food' Politics (Univ. Chicago Press, 1994) by Suppresses Cyto-lytic Lymphocyte Re- Changing the Nature 0/Nature, Park Susan Wright of the University of sponses and Over-comes Genetic Resis- Street Press) and prospective geneti- Michigan, a founding member of CRG. tance to Mousepox." J Virol 2001, 75, cally engineered humans (see S. A. The 1976-78 period was also when 1205-1210) the investigators report Newman, "The Hazards of Human CRG began to take form (originally as transforming a Developmental the Coalition for Responsible Genetic smallpox-like virus, If there's a lesson in Gene Modification," Research), through the organizational to which the strain Gene Watch vol. 13, efforts of Francine Simring of Friends of mice they were this, it's that you can o. 3). But it is clear of the Earth. The founding members working with was that this research of the Coalition were natural and so- resistant, into a vi- create a more virulent also enables the in- cial scientists who saw no basis for rus that is fatal for tentional production abandoning the original concerns that strain. They pathogen. of new germ warfare about the biological novelties certain did this by arming agents (see S. to arise from gene splicing methodolo- the mousepox virus with a gene for a Wright, Preventing a Biological Arms gies, and who therefore helped orga- protein (interleukin-4), normally Race, MIT Press, 1990). According to nize a widening public discourse on made by the mouse itself, but in dif- Bob Seamark, director of the Coopera- this issue. For example, Liebe ferent tissues and different amounts. tive Research Center for Pest Animal Cavalieri of the Sloan-Kettering Insti- Even mice that had been vaccinated Control, a governmental group in Aus- tute, in a 1976 article in the New iOrk against mousepox died after being in- tralia that coordinated the mouse vi- Times Magazine, was the first scien- fected with the genetically-engineered rus research, "The best protection tist to raise concerns about the pro- VIrUS. against any misuse of this technique duction of novel pathogens by gene The scientists told Times reporter was to issue a worldwide warning." splicing technology before a national William J. Broad that their goal had CRG has been issuing such warnings audience. Sheldon Krimsky of Tufts been to render the mice infertile and on the various problematic aspects of University, Jonathan King of MIT, that the lethality ofthe new virus took biotechnology during the more than Ruth Hubbard of Harvard University, them by surprise. Broad quotes two decades of its existence .• and Nobel laureate George Wald, also Ronald M. Atlas, a microbiologist at of Harvard, participated in various the University of Louisville and presi- Stuart Newman, PhD, is a CRG Board hearings and public forums in Cam- dent elect of the American Society for Member. He is Professor of Cell Biol- bridge, Massachusetts in 1976 as ad- Microbiology, as saying "If there's a ogy and Anatomy at New York Medi- vocates of the public's right to control lesson in this, it's that you can create cal College, where he directs a research the implementation of a new and un- a more virulent pathogen," he said. program in vertebrate developmental certain technology (discussed in S. "In 99 percent of the cases you would biology. Krimsky, "Genetic Alchemy" MIT not, but in the others you can, and Press, 1982). Krimsky was also a here's an example." Another scientist member of the NIH Recombinant working for the U.S. Defense Depart- DNA Advisory Committee, where he ment on germ defenses said, "It dem- was among the few voices in opposi- onstrates a frightening message. March 2001 . Vol. 14, No.2 GENEWATCH • 15.
Recommended publications
  • Discovery of DNA Structure and Function: Watson and Crick By: Leslie A
    01/08/2018 Discovery of DNA Double Helix: Watson and Crick | Learn Science at Scitable NUCLEIC ACID STRUCTURE AND FUNCTION | Lead Editor: Bob Moss Discovery of DNA Structure and Function: Watson and Crick By: Leslie A. Pray, Ph.D. © 2008 Nature Education Citation: Pray, L. (2008) Discovery of DNA structure and function: Watson and Crick. Nature Education 1(1):100 The landmark ideas of Watson and Crick relied heavily on the work of other scientists. What did the duo actually discover? Aa Aa Aa Many people believe that American biologist James Watson and English physicist Francis Crick discovered DNA in the 1950s. In reality, this is not the case. Rather, DNA was first identified in the late 1860s by Swiss chemist Friedrich Miescher. Then, in the decades following Miescher's discovery, other scientists--notably, Phoebus Levene and Erwin Chargaff--carried out a series of research efforts that revealed additional details about the DNA molecule, including its primary chemical components and the ways in which they joined with one another. Without the scientific foundation provided by these pioneers, Watson and Crick may never have reached their groundbreaking conclusion of 1953: that the DNA molecule exists in the form of a three-dimensional double helix. The First Piece of the Puzzle: Miescher Discovers DNA Although few people realize it, 1869 was a landmark year in genetic research, because it was the year in which Swiss physiological chemist Friedrich Miescher first identified what he called "nuclein" inside the nuclei of human white blood cells. (The term "nuclein" was later changed to "nucleic acid" and eventually to "deoxyribonucleic acid," or "DNA.") Miescher's plan was to isolate and characterize not the nuclein (which nobody at that time realized existed) but instead the protein components of leukocytes (white blood cells).
    [Show full text]
  • Jewels in the Crown
    Jewels in the crown CSHL’s 8 Nobel laureates Eight scientists who have worked at Cold Max Delbrück and Salvador Luria Spring Harbor Laboratory over its first 125 years have earned the ultimate Beginning in 1941, two scientists, both refugees of European honor, the Nobel Prize for Physiology fascism, began spending their summers doing research at Cold or Medicine. Some have been full- Spring Harbor. In this idyllic setting, the pair—who had full-time time faculty members; others came appointments elsewhere—explored the deep mystery of genetics to the Lab to do summer research by exploiting the simplicity of tiny viruses called bacteriophages, or a postdoctoral fellowship. Two, or phages, which infect bacteria. Max Delbrück and Salvador who performed experiments at Luria, original protagonists in what came to be called the Phage the Lab as part of the historic Group, were at the center of a movement whose members made Phage Group, later served as seminal discoveries that launched the revolutionary field of mo- Directors. lecular genetics. Their distinctive math- and physics-oriented ap- Peter Tarr proach to biology, partly a reflection of Delbrück’s physics train- ing, was propagated far and wide via the famous Phage Course that Delbrück first taught in 1945. The famous Luria-Delbrück experiment of 1943 showed that genetic mutations occur ran- domly in bacteria, not necessarily in response to selection. The pair also showed that resistance was a heritable trait in the tiny organisms. Delbrück and Luria, along with Alfred Hershey, were awarded a Nobel Prize in 1969 “for their discoveries concerning the replication mechanism and the genetic structure of viruses.” Barbara McClintock Alfred Hershey Today we know that “jumping genes”—transposable elements (TEs)—are littered everywhere, like so much Alfred Hershey first came to Cold Spring Harbor to participate in Phage Group wreckage, in the chromosomes of every organism.
    [Show full text]
  • MCDB 5220 Methods and Logics April 21 2015 Marcelo Bassalo
    Cracking the Genetic Code MCDB 5220 Methods and Logics April 21 2015 Marcelo Bassalo The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) Frederick Griffith The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) Oswald Avery Alfred Hershey Martha Chase The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) Linus Carl Pauling The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) • The structure of DNA (1953) James Watson and Francis Crick The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) • The structure of DNA (1953) How is DNA (4 nucleotides) the genetic material while proteins (20 amino acids) are the building blocks? ? DNA Protein ? The Coding Craze ? DNA Protein What was already known? • DNA resides inside the nucleus - DNA is not the carrier • Protein synthesis occur in the cytoplasm through ribosomes {• Only RNA is associated with ribosomes (no DNA) - rRNA is not the carrier { • Ribosomal RNA (rRNA) was a homogeneous population The “messenger RNA” hypothesis François Jacob Jacques Monod The Coding Craze ? DNA RNA Protein RNA Tie Club Table from Wikipedia The Coding Craze Who won the race Marshall Nirenberg J.
    [Show full text]
  • Download Ps Nobel Prizes for Site BEE 11.18.16 Revised 11.30.17.Pdf
    Nobel Laureates at the College of Physicians and Surgeons For years, College of Physicians and Surgeons alumni, faculty, and researchers have led groundbreaking clinical and basic scientific studies that have transformed our understanding of human biology and advanced the practice of medicine. On many occasions, this work has been honored with the Nobel Prize. The scope of research led by P&S Nobel laureates is tremendous. Although most of our prizewinners were honored for work in physiology or medicine, a few also received the prize for chemistry. Their research has fundamentally shaped the course of numerous fields, including cardiology, neuroscience, genetics, pharmaceutical development, and more. Our Nobel laureates include: André Cournand and Dickinson Richards (P&S’23), whose work at P&S on cardiac catheterization—a method of inserting a tiny tube into the heart—provided the basis for open-heart surgery and interventional cardiology Baruch Blumberg (P&S’51), who discovered the hepatitis B virus and helped develop a test and a vaccine for the virus Joshua Lederberg, a Columbia College and P&S graduate student who showed that bacteria can exchange genes when they reproduce, creating a way to model and study genetics in higher organisms Harold Varmus (P&S’66), who demonstrated how genes in normal human and animal cells can mutate to cause cancer, leading to a new generation of research on the genetic origins of cancer Eric Kandel, current University Professor, who showed how memories are stored in nerve cells, greatly enhancing
    [Show full text]
  • February 5, 2010, NIH Record, Vol. LXII, No. 3
    FEBRUARY 5, 2010 The Second Best Thing About Payday VOL. LXII, NO. 3 The Revolution Continues Green Offers Tour of Genomic Landscape, Circa 2010 By Rich McManus ABOVE · NIAID’s Alonda LeCounte sacrificed a kidney to benefit her stepfather. See story here is a good reason that Lipsett on p. 7. TAmphitheater was jammed with at- features tendees as NHGRI began its modestly titled Current Topics in Genome Analysis 1 course—an institute staple since 1995— Green Presents Challenges of Genomic Medicine on Jan. 12. The 11-lecture series that ends Mar. 23 was launched by NHGRI di- 3 rector Dr. Eric Green, who in 90 minutes Greider Explains Science Behind Her Nobel Prize surveyed highlights of what mankind has learned of its genetic heritage start- 5 ing before Mendel (1865) to the present. Harvard’s Frenk Lectures on Global Health A postdoctoral fellow at the outset of the Human Genome Project in 1990, NHGRI director Dr. Eric Green 7 Green offered a robust primer of a field NIAID Employee’s Generosity Offers that literally exploded during the “genomic revolution” of the 1990s. Having a front- Stepfather New Life row seat at what is arguably the most significant scientific endeavor of the past century 12 gives Green both authority and a rich fund of metaphor: the 3 billion base pairs NHGRI Fellow Plays with ‘Rock Stars see genome, page 6 Of Science’ Anything Is Possible Nobelist Nirenberg, MIT’s Herr Works to Discoverer of the Make Physical Genetic Code, departments Disabilities a Thing Mourned Of the Past By Alan Schechter Briefs 2 By Valerie Lambros Milestones 9 Dr.
    [Show full text]
  • In 1953 in England James Watson and Francis Crick Discovered the Structure of DNA in the Now-Famous Scientific Narrative Known As the “Race Towards the Double Helix”
    THE NARRATIVES OF SCIENCE: LITERARY THEORY AND DISCOVERY IN MOLECULAR BIOLOGY PRIYA VENKATESAN In 1953 in England James Watson and Francis Crick discovered the structure of DNA in the now-famous scientific narrative known as the “race towards the double helix”. Meanwhile in France, Roland Barthes published his first book, Writing Degree Zero, on literary theory, which became the intellectual precursor for the new human sciences that were developing based on Saussurean linguistics. The discovery by Watson and Crick of the double helix marked a definitive turning point in the development of the life sciences, paving the way for the articulation of the genetic code and the emergence of molecular biology. The publication by Barthes was no less significant, since it served as an exemplar for elucidating how literary narratives are structured and for formulating how textual material is constructed. As Françoise Dosse notes, Writing Degree Zero “received unanimous acclaim and quickly became a symptom of new literary demands, a break with tradition”.1 Both the work of Roland Barthes and Watson and Crick served as paradigms in their respective fields. Semiotics, the field of textual analysis as developed by Barthes in Writing Degree Zero, offered a new direction in the structuring of narrative whereby each distinct unit in a story formed a “code” or “isotopy” that categorizes the formal elements of the story. The historical concurrence of the discovery of the double helix and the publication of Writing Degree Zero may be mere coincidence, but this essay is an exploration of the intellectual influence that both events may have had on each other, since both the discovery of the double helix and Barthes’ publication gave expression to the new forms of knowledge 1 Françoise Dosse, History of Structuralism: The Rising Sign, 1945-1966, trans.
    [Show full text]
  • James Watson and Francis Crick
    James Watson and Francis Crick https://www.ducksters.com/biography/scientists/watson_and_crick.php biographyjameswatsonandfranciscrick.mp3 Occupation: Molecular biologists Born: Crick: June 8, 1916 Watson: April 6, 1928 Died: Crick: July 28, 2004 Watson: Still alive Best known for: Discovering the structure of DNA Biography: James Watson James Watson was born on April 6, 1928 in Chicago, Illinois. He was a very intelligent child. He graduated high school early and attended the University of Chicago at the age of fifteen. James loved birds and initially studied ornithology (the study of birds) at college. He later changed his specialty to genetics. In 1950, at the age of 22, Watson received his PhD in zoology from the University of Indiana. James Watson and Francis Crick https://www.ducksters.com/biography/scientists/watson_and_crick.php James D. Watson. Source: National Institutes of Health In 1951, Watson went to Cambridge, England to work in the Cavendish Laboratory in order to study the structure of DNA. There he met another scientist named Francis Crick. Watson and Crick found they had the same interests. They began working together. In 1953 they published the structure of the DNA molecule. This discovery became one of the most important scientific discoveries of the 20th century. Watson (along with Francis Crick, Rosalind Franklin, and Maurice Wilkins) was awarded the Nobel Prize in Physiology or Medicine in 1962 for the discovery of the DNA structure. He continued his research into genetics writing several textbooks as well as the bestselling book The Double Helix which chronicled the famous discovery. Watson later served as director of the Cold Spring Harbor Lab in New York where he led groundbreaking research into cancer.
    [Show full text]
  • From Controlling Elements to Transposons: Barbara Mcclintock and the Nobel Prize Nathaniel C
    454 Forum TRENDS in Biochemical Sciences Vol.26 No.7 July 2001 Historical Perspective From controlling elements to transposons: Barbara McClintock and the Nobel Prize Nathaniel C. Comfort Why did it take so long for Barbara correspondence. From these and other to prevent her controlling elements from McClintock (Fig. 1) to win the Nobel Prize? materials, we can reconstruct the events moving because their effects were difficult In the mid-1940s, McClintock discovered leading up to the 1983 prize*. to study when they jumped around. She genetic transposition in maize. She What today are known as transposable never had any inclination to pursue the published her results over several years elements, McClintock called ‘controlling biochemistry of transposition. and, in 1951, gave a famous presentation elements’. During the years 1945–1946, at Current understanding of how gene at the Cold Spring Harbor Symposium, the Carnegie Dept of Genetics, Cold activity is regulated, of course, springs yet it took until 1983 for her to win a Nobel Spring Harbor, McClintock discovered a from the operon, François Jacob and Prize. The delay is widely attributed to a pair of genetic loci in maize that seemed to Jacques Monod’s 1960 model of a block of combination of gender bias and gendered trigger spontaneous and reversible structural genes under the control of an science. McClintock’s results were not mutations in what had been ordinary, adjacent set of regulatory genes (Fig. 2). accepted, the story goes, because women stable alleles. In the term of the day, they Though subsequent studies revealed in science are marginalized, because the made stable alleles into ‘mutable’ ones.
    [Show full text]
  • Cover June 2011
    z NOBEL LAUREATES IN Qui DNA RESEARCH n u SANGRAM KESHARI LENKA & CHINMOYEE MAHARANA F 1. Who got the Nobel Prize in Physiology or Medicine 1933) for discovering the famous concept that says chromosomes carry genes? a. Gregor Johann Mendel b. Thomas Hunt Morgan c. Aristotle d. Charles Darwin 5. Name the Nobel laureate (1959) for his discovery of the mechanisms in the biological 2. The concept of Mutations synthesis of ribonucleic acid and are changes in genetic deoxyribonucleic acid? information” awarded him a. Arthur Kornberg b. Har Gobind Khorana the Nobel Prize in 1946: c. Roger D. Kornberg d. James D. Watson a. Hermann Muller b. M.F. Perutz c. James D. Watson 6. Discovery of the DNA double helix fetched them d. Har Gobind Khorana the Nobel Prize in Physiology or Medicine (1962). a. Francis Crick, James Watson, Rosalind Elsie Franklin b. Francis Crick, James Watson and Maurice Willkins c. James Watson, Maurice Willkins, Rosalind Elsie Franklin 3. Identify the discoverer and d. Maurice Willkins, Rosalind Elsie Franklin and Francis Crick Nobel laureate of 1958 who found DNA in bacteria and viruses. a. Louis Pasteur b. Alexander Fleming c. Joshua Lederberg d. Roger D. Kornberg 4. A direct link between genes and enzymatic reactions, known as the famous “one gene, one enzyme” hypothesis, was put forth by these 7. They developed the theory of genetic regulatory scientists who shared the Nobel Prize in mechanisms, showing how, on a molecular level, Physiology or Medicine, 1958. certain genes are activated and suppressed. Name a. George Wells Beadle and Edward Lawrie Tatum these famous Nobel laureates of 1965.
    [Show full text]
  • Biographical Notes on Scientists Involved in the Asilomar Process M.J
    International Dimensions of Ethics Education in Science and Engineering Case Study Series: Asilomar Conference on Laboratory Precautions Appendix D: Biographical Notes on Scientists involved in the Asilomar Process M.J. Peterson Version 1, June 2010 Edward A. Adelberg (1920-2009). PhD Yale 1949. Chair of Yale Department of Microbiology 1961-64 and 1970-72; a founding member of Yale Department of Genetics. Deputy Provost for the Biomedical Sciences, 1983-91. Specialist in plasmid biochemistry of E. coli. Ephraim Anderson (1911-2006). M.D., Durham University. Served in the Royal Army Medical Corps during World War II where he developed interests in Epidemiology. Researcher in Enteric Laboratory of the British Public Health Laboratory Service 1947, Deputy Director 1952, Director 1954-1978. Came to public notice for tracing sources of typhoid outbreaks in Zermatt (1963) and Aberdeen (1964). Built on earlier work by Japanese researchers to demonstrate the plasmid-based pathways by which bacteria could spread antibiotic resistance to others and became the world’s leading expert on antibiotic resistance. Also prominent in efforts to limit use of antibiotics in raising animals. Fellow of the Royal Society 1968; Companion of the Order of the British Empire 1976. Eric Ashby, Baron Ashby (1904-1992). Lecturer in Botany, Imperial College London 1931-35; Reader in Botany Bristol University 1935-37; Professor of Botany University of Sydney 1938-1946; Chair of Botany, University of Manchester 1947-50. Turned to administration as President and Vice-Chancellor of Queen's University, Belfast 1950-59; Master of Clare College in Cambridge University 1959-67 and Vice-Chancellor of Cambridge University 1967-1969.
    [Show full text]
  • Balcomk41251.Pdf (558.9Kb)
    Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr.
    [Show full text]
  • Members of Groups Central to the Scientists' Debates About Rdna
    International Dimensions of Ethics Education in Science and Engineering Case Study Series: Asilomar Conference on Laboratory Precautions Appendix C: Members of Groups Central to the Scientists’ Debates about rDNA Research 1973-76 M.J. Peterson Version 1, June 2010 Signers of Singer-Söll Letter 1973 Maxine Singer Dieter Söll Signers of Berg Letter 1974 Paul Berg David Baltimore Herbert Boyer Stanley Cohen Ronald Davis David S. Hogness Daniel Nathans Richard O. Roblin III James Watson Sherman Weissman Norton D. Zinder Organizing Committee for the Asilomar Conference David Baltimore Paul Berg Sydney Brenner Richard O. Roblin III Maxine Singer This case was created by the International Dimensions of Ethics Education in Science and Engineering (IDEESE) Project at the University of Massachusetts Amherst with support from the National Science Foundation under grant number 0734887. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. More information about the IDEESE and copies of its modules can be found at http://www.umass.edu/sts/ethics. This case should be cited as: M.J. Peterson. 2010. “Asilomar Conference on Laboratory Precautions When Conducting Recombinant DNA Research.” International Dimensions of Ethics Education in Science and Engineering. Available www.umass.edu/sts/ethics. © 2010 IDEESE Project Appendix C Working Groups for the Asilomar Conference Plasmids Richard Novick (Chair) Royston C. Clowes (Institute for Molecular Biology, University of Texas at Dallas) Stanley N. Cohen Roy Curtiss III Stanley Falkow Eukaryotes Donald Brown (Chair) Sydney Brenner Robert H. Burris (Department of Biochemistry, University of Wisconsin) Dana Carroll (Department of Embryology, Carnegie Institution, Baltimore) Ronald W.
    [Show full text]