The Mercury Minerals from Terlingua, Texas

Total Page:16

File Type:pdf, Size:1020Kb

The Mercury Minerals from Terlingua, Texas DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR 4:05 THE MERCURY MINERALS FROM TERLINGUA, TEXAS BY W. F. HILLEBRAND AND W. T. SCHALLER WASHINGTON GOVERNMENT PRINTING OFFICE 1909 CONTENTS. Page. Introduction.............................................................. 7 Occurrence and associations of the minerals.................................. 8 Geologic occurrence .................................................... 8 The matrix............................................................ 9 Associations............................................................ 10 Kleinite........................................................... 10 Montroydite...................................................... 10 Terlinguaite. ..................................... ^............... 11 Eglestonite....................................................... 11 Calomel........................................................... 11 Mercury........................................................... 12 Summary.......................................................... 12 Introduction to crystallography.............................................. 12 Nonmercury minerals ..................................................... 15 Calcite............................................................... 15 Gypsum...................... '. ........................................ 16 Barite................................................................. 17 Jarosite................................................................ 17 Mercury minerals..........................'................................ 18 Kleinite............ 1.................................................. 18 History............................................................ 18 Modes of occurrence................................................ 20 Physical properties................................................ 20 Cohesion, etc.......................'........................... 20 Density....................................................... 21 Luster, color, etc.............................................. 21 Optical properties.............................................. 23 Chemistry......................................................... 27 General characteristics......................................... 27 Quality of the material.................................... 27 Fyrognostic characters..................................... 27 Qualitative behavior toward reagents........................ 28 Additional data............................................... 28 Data relating chiefly to. oxygen, nitrogen, and chlorine....... 28 Data relating to water and hydrogen........................ 32 Aiialytical methods employed and the results..................... 33 Nitrogen.. ................................................ 33 Mercury................................................... 37 Chlorine and sulphur....................................... 38 Gangue, water (hydrogen?).................................. 39 Analysis.................................................. 40 Discussion of analyses..................................... 42 Crystallography................................................... 43 Forms and value of c axis.. ...'................................. 43 Habit........................................................ 45 Summary.......................................................... 46 3 4' CONTENTS. Mercury minerals Continued. Page. Montroydite.........................................:................ 47 Forms............................................................. 47 Physical properties. ................................................. 52 Cohesion, etc.................................................. 52 Flexibility..................................................... 53 Density....................................................... 54 Luster, color, etc.............................................. 54 Optical properties.............................................. 55 Chemistry......................................................... 55 Crystallography................................................... 56 General description........ 1.................................... 56 Calculation of elements................................ 4 ........ 57 Forms and angles............................................. 59 Description of common forms.................................... 61 Description of less common forms...................... '......... 65 Description of rare forms........................................ 68 Summary of forms.............................................. 68 Discussion of forms.............................................. 69 Combinations................................................. 73 Zonal relations, striatious, and gnomonic projection of forms ...... 74 Habit........................................................ 75 Description oi crystals.....................................:.... 78 Terlinguaite.......................................................... 83 Forms............................................................. 83 Physical properties................................................ 83 Cohesion, etc................................................... 83 Density....................................................... 84 Luster, color, etc.............................................. 84 Optical properties.....................'......................... 85 Chemistry......................................................... 86 Pyrognostic behavior.......................................... 86' Behavior toward reagents...................................... 86 Quantitative composition...................................... 87 Crystallography..................'................................. 88 General description.....:....................................... 88 Calculation of elements......................................... 89 Forms and angles............................................... 93 Description of common forms.................................... 96 Description of less common forms............................... 98 Description of rare forms........................................ 107 Doubtful and vicinal forms..................................... 108 Discussion of forms............................................ 110 Combinations................................................. 121 Zonal relations and gnomonic projection.......................... 124 Habit........................................................ 125 Description of crystals.......................................... 126 Different orientations and transformation symbols................ 132 Coordinate angles arranged in order of increasing (f> value......... 137 Forms and corresponding angles with (010) as pole............... 140 Eglestonite........................................................... 143 Forms............................................................. 143 Physical properties................................................ 144 Cohesion, etc.................................................. 144 CONTENTS. 5 Mercury minerals Continued. Eglestonite Con tin ued. Physical properties Continued. Page. Density....................................................... 144 Luster, color, etc.............................................. 144 Optical properties..........................................:... 144 Chemistry......................................................... 145 Pyrognostic behavior.......................................... 145 Behavior toward reagents...................................... 145 Quantitative composition....................................... 145 Crystallography................................................... 147 General description............................................. 147 Forms and angles............................................... 147 Description of common forms.................................... 149 Description of less common forms............................... 149 Description of rare forms........................................ 151 Discussion of forms............................................. 151 Combinations.................................................. 152 Zonal relations and gnomonic projection........................ 154 Habit........................................................ 155 Description of crystals.......................................... 156 Calomel.............................................................. 157 Forms............................................................. 157 Physical properties................................................ 158 Cohesion, etc................................................... 158 Density....................................................... 158 Crystallography................................................... 158 Previous publication.......................................... 158 General description............................................. 158 Calculation of elements......................................... 159 Forms and angles............................................... 160 Description of forms........'.................................... 161 Discussion of forms. ................. ^........................... 165 Combinations................................................... 166 Habit........................................................ 167 Twin crystals..............."................................... 167 Description of crystals.......................................... 168 Form system.............'.....................................
Recommended publications
  • New Mineral Names
    -------- American Mineralogist, Volume 81, pages 1282-1286, 1996 NEW MINERAL NAMES. JOHN L. JAMBOR,l VLADIMIR A. KOVALENKER,2 JACEK PuZIEWICZ,3 ANDANDREW C. ROBERTS4 lDepartment of Earth Sciences, University of Waterloo, Waterloo, Ontario N2L 3Gl, Canada 21GREM RAN, Russian Academy of Sciences, Moscow 10917, Staromonetnii 35, Russia 'Institute of Geological Sciences, University of Wroc1aw, Cybulskiego 30, 50-205 Wroc1aw, Poland 4Geological Survey of Canada, 601 Booth Street, Ottawa KIA OE8, Canada Clinoatacamite* mineral from the Clear Creek claim, San Benito Coun- ty, California: Description and crystal structure. Pow- J.L. Jambor, J.E. Dutrizac, AC. Roberts, J.D. Grice, J.T. Szymanski (1996) Clinoatacamite, a new polymorph of der Diffraction, 11(1), 45-50. Cu2(OH)3C1,and its relationship to paratacamite and The mineral occurs sparingly with calomel, native mer- "anarakite." Can. Mineral., 34, 61-72. cury, cinnabar, montroydite, and quartz in a single spec- J.D. Grice, J.T. Szymanski, J.L. Jambor (1996) The crys- imen of float near a prospect pit at the former Clear Creek tal structure of clinoatacamite, a new polymorph of mercury mine in the new Idria district of California. The Cu2(OH)3Cl. Can. Mineral., 34, 73-78. specimen contains subhedral to anhedral crystals, typi- Electron microprobe analysis gave CuO 74.7 (73.4- cally bladed to platy, maximum size 0.3 x 0.3 mm, stri- 76.0), C1l6.5 (15.7-17.2), H20 (calc.) 13.5, sum 104.7, ated [001], black to dark brown-black color, dark red- less 0 == Cl 3.7, total 101.0 wt%, corresponding to brown to black streak, opaque to translucent on thin CU1.9603.o3H3.l1Clo.97, ideally Cu2(OH)3C1.
    [Show full text]
  • Bromide from Terlingua, Texas
    Canadian Mineralogist Vol. 19, pp. 393-396 (1981) COMANCHEITE,A NEW MEBGURYOXVCHLORIDE - BROMIDE FROMTERLINGUA, TEXAS A.C. ROBERTS eNn H.G. ANSELL Geologicalsurvey of Canada,60l Booth street, ottawa, ontario KlA 088 P.J. DUNN Depdrtmentol Mineral Sciences,Sntithsonian Instittttion, Washington, D.C. 20560, US'A' ABSTRACT en lumibre ultraviolette.Extinction paralldle.allon- gementpositif. Les indicesde r6fraction se situent '1..79. Comancheite is a new mercurv oxychloride- entre 1.78 et Densit6 mesur6e7.7G). cal- bromide mineral from the Mariposa mine. Terlingua cul6e 8.0. A la microsonde6lectronique' on trouve district, Texas. Associated minerals are calcite, la formule Hg,r(Clr.o,Brs.on)t".nrOo.n".d'oi la for- goethite, hematite and quartz. Comancheite occurs mule id6alisdeHgrs(Cl,Br)nOo. La comanch€iteest as anhedral crystalline massesand as stellate groups orthorhombique.groupe spatialPnnm ou Pnn2. a of acicilar crystals, elongate parallel to c. a\reraging 18.4t(l), b 21.64(l),c 6.677(21A', z = 4' Les 80 um lons and 3 to 4 um wide. Masses are red seot raies les plus intensesdu clich6 de poudre (d with an orange-yellow streak and have a resinous (A), / sur 6chellede l0) sont: 5.68(7).5.42(6), lustre; crystals are orange-red to vellow. vitreous 2.878(8). 2.71I(il, 2.669(10). 2.4s7(5\ et and nanslucent to transparent. Comancheite is 1.415(5). brittle with fair cleavase parallel to {001} and (Traduit Par la R6daction) not {ll0}, has a Mohs hardness of 2 and does de lieht. Opticallv. coman- Mots-clds: comanch6ite,oxychlorure-bromure fluoiesce in ultraviolet mine Mari- exhibits parallel extinction and is length- mercure.
    [Show full text]
  • Theoretical Studies on As and Sb Sulfide Molecules
    Mineral Spectroscopy: A Tribute to Roger G. Bums © The Geochemical Society, Special Publication No.5, 1996 Editors: M. D. Dyar, C. McCammon and M. W. Schaefer Theoretical studies on As and Sb sulfide molecules J. A. TOSSELL Department of Chemistry and Biochemistry University of Maryland, College Park, MD 20742, U.S.A. Abstract-Dimorphite (As4S3) and realgar and pararealgar (As4S4) occur as crystalline solids con- taining As4S3 and As4S4 molecules, respectively. Crystalline As2S3 (orpiment) has a layered structure composed of rings of AsS3 triangles, rather than one composed of discrete As4S6 molecules. When orpiment dissolves in concentrated sulfidic solutions the species produced, as characterized by IR and EXAFS, are mononuclear, e.g. ASS3H21, but solubility studies suggest trimeric species in some concentration regimes. Of the antimony sulfides only Sb2S3 (stibnite) has been characterized and its crystal structure does not contain Sb4S6 molecular units. We have used molecular quantum mechanical techniques to calculate the structures, stabilities, vibrational spectra and other properties of As S , 4 3 As4S4, As4S6, As4SIO, Sb4S3, Sb4S4, Sb4S6 and Sb4SlO (as well as S8 and P4S3, for comparison with previous calculations). The calculated structures and vibrational spectra are in good agreement with experiment (after scaling the vibrational frequencies by the standard correction factor of 0.893 for polarized split valence Hartree-Fock self-consistent-field calculations). The calculated geometry of the As4S. isomer recently characterized in pararealgar crystals also agrees well with experiment and is calculated to be about 2.9 kcal/mole less stable than the As4S4 isomer found in realgar. The calculated heats of formation of the arsenic sulfide gas-phase molecules, compared to the elemental cluster molecules As., Sb, and S8, are smaller than the experimental heats of formation for the solid arsenic sulfides, but shown the same trend with oxidation state.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Mercury--Quicksilver
    scueu« No. 12 Mineral Technology Series No 6 University of Arizona Bulletin Mercury---Quicksilver By P. E. JOSEPH SECOND ISSUE NOVEMBER, 1916. Entered as second class matter November 2:1, 191~, at the postoftice at Tucson, Arizona. under the Act ot August 24, 1912. Issued weekb". September to Ya)·. PUBLISHED BY THE University of Arizona Bureau of Mines CHARLES F. WILLIS, Director TUCSON, ARIZONA 1916-17 BIBLIOGRAPHY Bancroft, Howland. Notes on the occurrence of cinnabar in central western Arizona. U. S. G. S. Bull. 430, pp. 151-153, 1910. Becker, G. F. Geology of- the quicksilver deposits of the Pacific slope, with atlas. Mon. 13, p. 486, 1888. Only the atlas in stock. Quicksilver Ore Deposits; Mineral Resources U. S. for 1892, pp. 139-168, 1893. Christy, S. B. Quicksilver reduction at New Almaden, Cal. Min- eral Resources U. S. for 1883-1884, pp. 603-636, 1885. Hillebrand, W. F., and Schaller, W. T. Mercury miner-als from Terlingua, Tex. U. S. G. S. Bull. 405, pp. 174, 1909. McCaskey, H. D. Quicksilver in 1912; Mineral Resources U. S. for 1912, Pt. 1, pp. 931-948, 1913. Quicksilver in 1913-Production and Resources; Mineral Resources U. S. for 1913, Pt. 1, pp. 197-212, 1914. Melville, W. H., and Lindgren, Waldemar. Contributions to the mineralogy of the Pacific coast. U. S. G. S. Bull. 61, 30 pp., 1890. Parker, E. W. Quicksilver; Twenty-first Ann. Rept. U. S. G. S., Pt. 6, pp. 273-283, 1901. University of Arizona Bulletin BULLETIN No. 12 SECOND ISSUE, NOVEMBER, 1916 MERCURY-QUICKSILVER By P.
    [Show full text]
  • A (Sixth) List of New Mineral Names
    352 A (sixth) list of new mineral names: By L. J. Srv.Nc~a, M.A., F.G.S. Assistant in the Mineral Department of the British Museum. [Communicated March 11, 1918.] Achla,~ite. (R. Koechlin, l~iineralogisches Taschenbuch der Wiener Mineralogischen Gesellschaft, 1911, pp. 12, 62 ; Min. Petr. Mitt., 1912, vol. xxxi, p. 91 (Achiardit).) Synonym of Dachiardite (G. D'Achiardi, 1906; 4th list). Aohlusite. W.F. Petterd, 1910. Catalogue of the Minerals of Tasmania, 8rd edit., Hobart, 1910, p. 191; Papers Roy. Soc. Tasmania, 1910, p. 191. A green alteration product of topaz resembling steatite in appearance, but near soda-mica in composition. Derivation not stated, but no doubt from ~X~.J~, mist, alluding to the cloudy alteration of the clear topaz. Aomite-augite. F. Zambonini, 1910. Mineralogia Vesuviana. Mere. Accad. Sci. Fis. Mat. Napoli, vol. xiv, pp. 158, 155 (acmlteaugite). The same as aegirine-augite (H. Rosenbusch, 1902 ; 2nd List), but brown in colour. Aegerite. (~Jineral Resources U.S. Geol. Survey, for 1910, 1911, part ii, p. 886.) Trade-name for a bitumen allied to elaterite. Aconite. (Mineral Resources U.S. Geol. Survey, for 1909, 1911, part ii, p. 738.) Trade-name for a bitumen very similar to elaterite. Albanite. C. I. Istrati and M. A. Mihailescu, 1912. Bul. Soc. Rem~ne ,Sti., vol. xx, p. 626. A bituminous material from Alt~nia. Alleharite. B. Je~.ek, 1912. Zeits. Kryst. Min., vol. li, p. 275 (Alleharit). Small, acicular, orthorhombic crystals, resembling stibnite in appearance, found with vrbaite (q.v.) on specimens of realgar and i Previous lists of this series have been given at the ends of vols.
    [Show full text]
  • Effect of Size and Processing Method on the Cytotoxicity of Realgar Nanoparticles in Cancer Cell Lines
    International Journal of Nanomedicine Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Effect of size and processing method on the cytotoxicity of realgar nanoparticles in cancer cell lines Weizhong Zhao1 Abstract: In this study, the effects of the size and Chinese traditional processing (including Xun Lu3 elutriation, water cleaning, acid cleaning, alkali cleaning) on realgar nanoparticles (RN)-induced Yuan Yuan1 antitumor activity in human osteosarcoma cell lines (MG-63) and hepatoma carcinoma cell lines Changsheng Liu1 (HepG-2) were investigated. The human normal liver cell line (L-02) was used as control. RN Baican Yang3 was prepared by high-energy ball milling technology. The results showed that with the assistance Hua Hong1 of sodium dodecyl sulfate, the size of realgar could be reduced to 127 nm after 12 hours’ ball milling. The surface charge was decreased from 0.83 eV to -17.85 eV and the content of As O Guoying Wang3 2 3 clearly increased. Except for elutriation, the processing methods did not clearly change the size Fanyan Zeng2 of the RN, but the content of As2O3 was reduced dramatically. In vitro MTT tests indicated that 1The State Key Laboratory in the two cancer cell lines, RN cytotoxicity was more intense than that of the coarse realgar of Bioreactor Engineering, 2Key Laboratory for Ultrafine nanoparticles, and cytotoxicity was typically time- and concentration-dependent. Also, RN Materials of Ministry of Education cytotoxicities in the HepG-2 and L-02 cells all increased with increasing milling time. Due to and Engineering Research Center the reduction of the As O content, water cleaning, acid cleaning, and alkali cleaning decreased for Biomedical Materials of Ministry 2 3 of Education, East China University RN cytotoxicity in HepG-2, but RN after elutriation, with the lowest As2O3 (3.5 mg/g) and the of Science and Technology, 3Pharmacy smallest size (109.3 nm), showed comparable cytotoxicity in HepG-2 to RN without treatment.
    [Show full text]
  • Ralphcannonite, Agzn2tlas2s6, a New Mineral of the Routhierite
    1 1 Ralphcannonite, AgZn2TlAs2S6, a new mineral of the 2 routhierite isotypic series from Lengenbach, Binn 3 Valley, Switzerland 4 1* 2 3 5 LUCA BINDI , CRISTIAN BIAGIONI , THOMAS RABER , PHILIPPE 4 5 6 ROTH , FABRIZIO NESTOLA 7 8 9 10 1 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira, 4, I- 11 50121 Firenze, Italy 12 2 Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, I-56126 Pisa, 13 Italy 14 3 FGL (Forschungsgemeinschaft Lengenbach), Edith-Stein-Str. 9, D-79110 Freiburg, 15 Germany 16 4 FGL (Forschungsgemeinschaft Lengenbach), Ilanzhofweg 2, CH-8057 Zurich, Switzerland 17 5 Dipartimento di Geoscienze, Università di Padova, Via Gradenigo, 6, I-35131 Padova, Italy 18 19 20 21 22 *e-mail address: [email protected] 23 2 24 ABSTRACT 25 The new mineral species ralphcannonite, AgZn2TlAs2S6, was discovered in the Lengenbach 26 quarry, Binn Valley, Wallis, Switzerland. It occurs as metallic black equant, isometric to 27 prismatic crystals, up to 50 μm, associated with dufrénoysite, hatchite, realgar, and baryte. 28 Minimum and maximum reflectance data for COM wavelengths in air are [λ (nm): R (%)]: 29 471.1: 25.8/27.1; 548.3: 25.2/26.6; 586.6: 24.6/25.8; 652.3: 23.9/24.8. Electron microprobe 30 analyses give (wt%): Cu 2.01(6), Ag 8.50(16), Zn 10.94(20), Fe 3.25(8), Hg 7.92(12), Tl 31 24.58(26), As 18.36(19), Sb 0.17(4), S 24.03(21), total 99.76(71).
    [Show full text]
  • Mercury and Mercury Compounds
    United States Office of Air Quality EPA-454/R-97-012 Environmental Protection Planning And Standards Agency Research Triangle Park, NC 27711 December 1997 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF MERCURY AND MERCURY COMPOUNDS L & E EPA-454/R-97-012 Locating And Estimating Air Emissions From Sources of Mercury and Mercury Compounds Office of Air Quality Planning and Standards Office of Air and Radiation U.S. Environmental Protection Agency Research Triangle Park, NC 27711 December 1997 This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and has been approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation for use. EPA-454/R-97-012 TABLE OF CONTENTS Section Page EXECUTIVE SUMMARY ................................................ xi 1.0 PURPOSE OF DOCUMENT .............................................. 1-1 2.0 OVERVIEW OF DOCUMENT CONTENTS ................................. 2-1 3.0 BACKGROUND ........................................................ 3-1 3.1 NATURE OF THE POLLUTANT ..................................... 3-1 3.2 OVERVIEW OF PRODUCTION, USE, AND EMISSIONS ................. 3-1 3.2.1 Production .................................................. 3-1 3.2.2 End-Use .................................................... 3-3 3.2.3 Emissions ................................................... 3-6 4.0 EMISSIONS FROM MERCURY PRODUCTION ............................. 4-1 4.1 PRIMARY MERCURY
    [Show full text]
  • Mercury Isotope Fractionation During Ore Retorting in the Almadén Mining District, Spain
    Chemical Geology 357 (2013) 150–157 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Mercury isotope fractionation during ore retorting in the Almadén mining district, Spain John E. Gray a,⁎, Michael J. Pribil a, Pablo L. Higueras b a U.S. Geological Survey, P.O. Box 25046, MS 973, Denver, CO 80225, USA b Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almadén, Spain article info abstract Article history: Almadén, Spain, is the world's largest mercury (Hg) mining district, which has produced over 250,000 metric Received 28 May 2013 tons of Hg representing about 30% of the historical Hg produced worldwide. The objective of this study was to Received in revised form 20 August 2013 0 measure Hg isotopic compositions of cinnabar ore, mine waste calcine (retorted ore), elemental Hg (Hg (L)), Accepted 22 August 2013 and elemental Hg gas (Hg0 ), to evaluate potential Hg isotopic fractionation. Almadén cinnabar ore δ202Hg Available online 30 August 2013 (g) varied from −0.92 to 0.15‰ (mean of −0.56‰, σ = 0.35‰, n = 7), whereas calcine was isotopically heavier δ202 − ‰ ‰ ‰ σ ‰ δ202 Editor: J. Fein and Hg ranged from 0.03 to 1.01 (mean of 0.43 , =0.44 ,n = 8).Theaverage Hg enrichment of 0.99‰ between cinnabar ore and calcines generated during ore retorting indicated Hg isotopic mass depen- Keywords: dent fractionation (MDF). Mass independent fractionation (MIF) was not observed in any of the samples in Mercury isotopes this study. Laboratory retorting experiments of cinnabar also were carried out to evaluate Hg isotopic fractionation 0 0 0 Retorting of products generated during retorting such as calcine, Hg (L),andHg(g).
    [Show full text]
  • Amorphous Arsenic Chalcogenide Films Modified Using Rare-Earth
    ARTICLE IN PRESS Journal of Non-Crystalline Solids xxx (2006) xxx–xxx www.elsevier.com/locate/jnoncrysol Amorphous arsenic chalcogenide films modified using rare-earth complexes S.A. Kozyukhin a,*, E.N. Voronkov b, N.P. Kuz’mina c a Department of Magnetic Materials, Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninskii Pr., 31, Moscow 119991, Russia b Moscow Power Engineering Institute (Technical University), Moscow, 111250, Russia c Department of Chemistry, Moscow State University, Moscow, 119899, Russia Abstract The optical absorption and current–voltage characteristic of amorphous arsenic chalcogenide As2X3 (X = S, Se) films modified by rare-earth complexes with organic mixed-ligands have been studied. The following two types of complexes were used: europium dipiva- loylmethanate Eu(thd)3 and lanthanide diethyldithiocarbamates Ln(ddtc)3 (Ln = Pr, Eu). It was shown that the use of rare-earth mixed- complexes with similar volatility to the chalcogenide volatility permits the deposition of amorphous films by thermal evaporation. The decrease in absorption coefficient at the Urbach’s edge after introduction of the europium dipivaloylmethanate complexes containing oxygen in arsenic selenide has been revealed. The type of organic ligands, incorporated in the amorphous matrix, determines the shape of current–voltage characteristic. The observed results have been discussed on the basis of the different rigidity of the structure of amor- phous arsenic chalcogenides. Ó 2006 Elsevier B.V. All rights reserved. PACS: 73.61.Jc; 78.66.Jg Keywords: Electrical and electronic properties; Conductivity; Films and coatings; Chemical vapor deposition; Infrared glasses; Chalcogenides; Optical properties; Absorption; Rare-earths in glasses 1. Introduction e.g.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 68, pages 1248-1252,1983 NEW MINERAL NAMES* Perr J. DUNN, MrcHeE'r-FLerscHen, Gr,oncB Y. CHno, Lours J. Cesnr, AND JosEpHA. MexoanrNo Biivoetite* Lcpersonnite* bright yellow and is transparent and translucent. No fluores- Unnamed CeNi-Mg uranyl silicate cence was observed under short- or long-wave UV. The mea- sureddensity is 3.97g/cmr. It is opticallybiaxial negative,2V = M. Deliensand P. Piret (1982)Bijvoetite et lepersonnite,carbon- 73" calc.,a = 1.638, : 1.666,y : 1.682;pleochroic with X pale ates hydratds d'uranyle et des terres rares de Shinkolobwe, B yellow, bright yellow and Z bnght yellow; orientation, only Zaire. Can. Mineral.. 20.231J38. I=cisgiven. = Bijvoetite The mineral is orthorhombic, Pnnm or Pnn2 with a 16.23(3), b = 38.7aQ),c : rr.73Q)4, Z : 2, (V : 7375(50)43,J.A.M.). Blivoetite and lepersonniteoccur with hydrated uranium ox- The density calculated from the unit cell parameters and the ides near primary uraninite in the lower part of the oxidation empirical formula is 4.01 g/cm3. Strongest lines in the X-ray zone at Shinkolobwe, Zaire. Bijvoetite is rare and is known only powder diffraction pattern (for CuKa) are: 8.15(100X200), from a single specimen. Associated minerals are: lepersonnite, 4.06(I 5X400),3.65(70X1 33), 3.2I (50X0.I 2.0) and 2.86(40)(283). sklodowskite, curite, uranophane, becquerelite, rutherfordine, An electronmicroprobe analysis gave: SiO22.79, UOj76.14, studtite and a CeMg-Ni uranyl silicate structurally related to Gd2O32.W,Dy2O3 1.07, Y2O3 0.41, Tb2O3 0.(D, CaO 0.45,CO2 uranophane.
    [Show full text]