<<

36

THEEVALUATIONOFWASTEMINIMIZATION/WASTE TREATMENTSTRATEGIESFORACOMMERCIAL PRODUCTIONPROCESSOF4-METHYL-3- THIOSEMICARBAZIDE by

WILROYBENNEN

BachelorDegree HogeschoolDrenthe(TheNetherlands) Adissertationsubmittedinpartialfulfilment oftherequirementsforthedegreeof MASTERTECHNOLOGIAE inthefacultyofAppliedScienceatthe PORTELIZABETHTECHNIKON January2002 Promotor : ProfB.Zeelie

CORE Metadata, citation and similar papers at core.ac.uk Co-promotor : MrG.Rubidge Provided by South East Academic Libraries System (SEALS)

37

H i n g s t a k k e r s 4 4 9 4 1 1 N P B e i l e n T h e N e t h e r l a n d s

T h e F a c u l t y C o m m i t t e e F a c u l t y o f A p p l i e d S c i e n c e P E T e c h n i k o n P r i v a t e B a g X 6 0 1 1 P o r t E l i z a b e t h 6 0 0 0

D e a r S i r / M a d a m

¢¡¤£¦¥¨§ ©  ¡¤¡¥¨¡¤¥¨¡¤©£©¤£¦© ¨

I h e r e b y c o n f i r m t h a t t h e p r o p o s e d a m e n d m e n t s h a v e b e e n m a d e t o m y d i s s e r t a t i o n i n c o m p l i a n c e w i t h t h e r u l e s s e t o u t b y t h e P E T e c h n i k o n E x a m i n a t i o n D e p a r t m e n t a n d F a c u l t y C o m m i t t e e . T h e f i n a l d o c u m e n t w i l l b e d e l i v e r e d t o t h e E x a m i n a t i o n D e p a r t m e n t a s s p e c i f i e d i n t h e l e t t e r o f a p p r o v a l .

Y o u r s F a i t h f u l l y

§ ¡"!$#%©¤©

'¤(© *)+¢+,).-),-/ &

38

SUMMARY

Chemicalsynthesisiscloselyrelatedtowaste minimization.Thereisnochemicalprocessthatdoesnot producewaste.Themethodsusedbyindustrytodeal withthiswasteisamajorenvironmentalconcern.This thesisdescribesthelaboratoryscalewasteminimization andwastetreatmentstrategiesforthecommercial productionprocessof4-methyl-3-thiosemicarbazide (MTSC).Theproductionprocessof4-methyl-3- thiosemicarbazidewasinvestigatedwiththeaimof increasingtheisolatedyieldofMTSCandatthesame timedecreasetheamountandtoxicityofeffluent obtained.Duringthisstudy,parameterswereinvestigated suchastheuseofexcessDIPEAandthetemperatureof thereaction.Preliminarystudiesclearlyshowedthatboth factorshaveasignificantinfluenceonthefinalyieldof theproduct.Thenextpartoftheinvestigationwasto optimizethetwoparametersinfluencingtheisolatedyield oftheMTSC.Forthisinvestigation,amultifactorial designwasusedtodeterminetheoptimumconditionsin theMTSCyieldresponse.Fromtheresultsobtained,it wasclearthattheexcessofDIPEAandthetemperature ofthereactionbothneedtobehightoobtainhighyields. Thesetheoreticalresultswereconfirmedbyresults obtainedpractically,whereyieldsofup82%were obtained,butitbecameclearthatevenhigheryields couldbeobtainedsincechromatographicresultsshowed yeildsashighas90%.ThemassbalanceoftheMTSC synthesisshowedalossofapproximately30gramsper reaction.Thislossmayhaveaninfluenceonthefinal yield.

39

TheeffluentobtainedduringthesynthesisofMTSCwas investigatedandawastetreatmentprotocolwas establishedtoreducethehighCODvalueoftheMTSC effluent.Theprotocolconsistsoftwostepsusedforthe cleanupoftheeffluent.Thefirstbeingacoolingstep;the effluentwascooledat0oCtoinduceprecipitationofa solid,consistingmostlyofMTSC.Thesecondstepisa highpressurewetoxidationoftheeffluentwithoxygenin ahighpressurereactor.Theremainingcompoundsinthe effluentwereoxidized,resultinginanotherprecipitate, consistingmostlyofsulphur.AftertheoxidationtheCOD valueoftheeffluentwasdecreasedby98%toavalueof 0.4%.TheMTSCpresentintheprecipitateobtainedafter coolingcouldbeisolatedandpurified,toaddtotheyield ofthesynthesis.Thesulphurobtainedduringthe oxidationcouldalsobeisolatedandreused,orsoldto preventitfromcontaminatingtheenvironment.

40

TheChemistryof

A t o m i c N u m b e r : 3 3 A t o m i c m a s s : 7 4 . 9 2 1 5 9 A M U E l e m e n t a l C l a s s i f i c a t i o n : M e t a l l o i d J . D . L e e , C o n c i s e I n o r g a n i c C h e m i s t r y , f i f t h e d i t i o n , C h a p m a n a n d H a l l , M a d r a s , p 4 7 7 , ( 1 9 9 6 ) .

O x i d a t i o n S t a t e s : - 3 , 0 , + 3 , + 5 V a l e n c e e l e c t r o n s : t w o S a n d t h r e e P E l e c t r o n i c s t r u c t u r e : [ A r ] 3 d 1 0 4 s 2 4 p 3 J . D . L e e , C o n c i s e I n o r g a n i c C h e m i s t r y , f i f t h e d i t i o n , C h a p m a n a n d H a l l , M a d r a s , p 9 8 1 , ( 1 9 9 6 ) . B o i l i n g p o i n t : 8 1 6 o C J . D . L e e , C o n c i s e I n o r g a n i c C h e m i s t r y , f i f t h e d i t i o n , C h a p m a n a n d H a l l , M a d r a s , p 9 7 7 , ( 1 9 9 6 ) . M e l t i n g p o i n t : 6 1 5 o C J . D . L e e , C o n c i s e I n o r g a n i c C h e m i s t r y , f i f t h e d i t i o n , C h a p m a n a n d H a l l , M a d r a s , p 9 7 5 , ( 1 9 9 6 ) . V a p o u r p r e s s u r e a t 3 7 2 o C : 1 m m H g A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . S p e c i f i c g r a v i t y : 5 . 7 3 A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . .

A b u n d a n c e i n e a r t h s c r u s t : 5 2 c n d o f 7 7 e l e m e n t s 1 . 8 g / m e t r i c t o n J . D . L e e , C o n c i s e I n o r g a n i c C h e m i s t r y , f i f t h e d i t i o n , C h a p m a n a n d H a l l , M a d r a s , p 9 7 3 , ( 1 9 9 6 ) . A r s e n i c l e v e l s o f s o i l s , r o c k s a n d o t h e r s u b s t a n c e s a r e g i v e n i n t a b l e ? ?

T a b l e ? ? A r s e n i c l e v e l s o f s o i l s , r o c k s a n d o t h e r s u b s t a n c e s J . G u l l e d g e , a n d J O ’ C o n n e r , “ r e m o v a l o f a r s e n i c ( V ) f r o m w a t e r b y a d s o r p t i o n o n a l u m i n i u m a n d f e r r i c h y d r o x i d e s ” , J o u r n a l o f t h e

A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . 021 , I s s u e 8 , p p 5 4 8 - 5 5 2 , ( 1 9 7 3 ) . M a t e r i a l C o n c e n t r a t i o n ( m g / k g i f n o t s t a t e d o t h e r w i s e ) O c e a n 1 4 t o n s / c u b i c m i l e E a r t h s ’ c r u s t 5 0 ( 0 . 0 0 0 0 5 % ) I g n e o u s r o c k s 1 - 9 S o i l d ( U S ) 7 . 1 P h o s p h a t e r o c k s 2 0 . 9 C o a l s ( E u r o p e , U S ) 4 5 P y r i t e ( U S ) 5 6 5 0 S p h a l e r i t e ( G e r m a n y ) 6 1 2 9

41

D e e p s e a s e d i m e n t s “ f e w p p m ” - 4 5 5 S o i l s i n v o l c a n i c r e g i o n s 2 0 P h o s p h a t e b a s e d f e r t i l i z e r s 2 0 D e t e r g e n t s 7 0 - 8 0

S t a n d a r d r e d u c t i o n p o t e n t i a l s J . D . L e e , C o n c i s e I n o r g a n i c C h e m i s t r y , f i f t h e d i t i o n , C h a p m a n a n d H a l l , M a d r a s , p 1 6 7 , ( 1 9 9 6 ) . : - A s + 3 e I A s H 3 - 0 . 6 0 V

- H A s O 2 + 3 e I A s + 0 . 2 5 V

- H A s O 3 + 2 e I H A s O 2 + 0 . 5 6 V R e d o x c o n d i t i o n s a n d p H c o n t r o l t h e s p e c i a t i o n o f a r s e n i c b e t w e e n t h e v a r o i u s

o x i d a t i o n s t a t e s . P o u r b a i x d i a g r a m s F . C o l e m a n , P o u r b a i x D i a g r a m s a n d R e a c t i o n s i n A q u e o u s

4 45656587 5:9<; ; 9<=>; 9JLK>?<4 MDB9GI; S o l u t i o n , i n t e r n e t s i t e : h t t p 3 , N o v 1 1 , 2 0 0 0 ( a p l o t o f p H v e r s u s p o t e n t i a l w i t h l i n e s i n d i c a t i n g t h e c h a n g e s i n f o r m o f a r s e n i c s p e c i e s ) a r e u s e f u l t o p r e d i c t t h e o x i d a t i o n s t a t e a n d c h e m i c a l f o r m o f a r s e n i c i n d i f f e r e n t e n v i r o n m e n t s . T h e P o u r b a i x d i a g r a m s a r e u s e f u l t h e r m o d y n a m i c p r e d i c t i o n s , b u t d o n o t p r o v i d e a c c u r a t e d a t a a s t o t h e r a t e s o f n o n - e q u i l i b r i u m c o n d i t i o n s . M . E d w a r d s , “ C h e m i s t r y o f a r s e n i c r e m o v a l d u r i n g c o a g u l a t i o n a n d F e - M n o x i d a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r

W o r k s A s s o c i a t i o n , V o l . U , p p 6 4 - 7 7 , ( 1 9 9 4 ) . T h e c o n v e r s i o n o f a r s e n i t e t o a r s e n a t e i n t h e p r e s e n c e o f d i s s o l v e d o x y g e n , i s o n e s u c h e x a m p l e ; t h e a r s e n a t e m a y o n l y b e f o r m e d o v e r p e r i o d s r a n g i n g f r o m d a y s t o m o n t h s , d e p e n d i n g o n t h e c o n d i t i o n s . U n d e r o x i c c o n d i t i o n s a r s e n a t e p r e d o m i n a t e s a n d m a y b e a d s o r b e d o r c o p r e c i p i t a t e d b y i r o n o r m a n g a n e s e c o m p o u n d s . A r s e n a t e m a y b e r e l e a s e d i n t h e p r e s e n c e o f o r t h o p h o s p h a t e o r n a t u r a l o r g a n i c m a t t e r ( N O M ) s i n c e t h e s e s p e c i e s c o m p e t e f o r s o r p t i o n s i t e s o n t h e s u r f a c e s o f t h e s o r p t i v e m a t r i x . U n d e r a n o x i c c o n d i t i o n s , i n t h e a b s e n c e o f s u l p h i d e s , a r s e n i t e i s s t a b l e ; i n t h e p r e s e n c e o f s u l p h i d e s , a r s e n i t e b e c o m e s i m m o b i l i z e d b y t h e f o r m a t i o n o f o r p i m e n t , r e a l g a r , a r s e n o p y r i t e , o r i s c o p r e c i p i t a t e d w i t h i r o n p y r i t e . M . E d w a r d s , “ C h e m i s t r y o f a r s e n i c r e m o v a l d u r i n g c o a g u l a t i o n a n d F e - M n o x i d a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l . U , p p 6 4 - 7 7 , ( 1 9 9 4 ) .

o o S o l u b i l i t y o f a r s e n i c t r i o x i d e ( A s 2 O 3 ) i s 1 2 g / L a t 2 C a n d 1 1 4 . 6 g / L a t 1 0 0 C U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 4 4 , 1 9 9 9 .

42

A r s e n i c t r i o x i d e i s t h e s t a r t i n g m a t e r i a l f o r a l l u s e s U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 5 , 1 9 9 9 . o f a r s e n i c ; i n c l u d i n g : • A g r i c u l t u r e a n d f o r e s t r y : h e r b i c i d e s i n c o t t o n , r i c e g r o w i n g , c o f f e e , w o o d p r e s e r v a t i o n , f e e d a d d i t i v e s t o a i d f a t t e n i n g a n d p r e v e n t i n f e c t i o n , • I n d u s t r i a l c h e m i c a l s : e l e c t r o l y t i c p u r i f i c a t i o n i n e l e c t r o l y s i s o f z i n c ; m e t a l p i c k l e s c o n t a i n i n g p h o s p h o r i c a c i d , • G l a s s i n d u s t r y : f i n i n g a g e n t s a n d d e c o l o u r i z e r s

TheUsesofArsenic W o o d p r e s e r v a t i v e – c h r o m a t e d c o p p e r a r s e n a t e : A s l e v e l s i n w o o d 8 1 1 1 m g A s / K g w o o d A . B . R i b e i r o , E . P . M a t e u s , L . M . O t t o s e n , a n d G . B e c h - N i e l s e n , “ E l e c t r o d y a l i t i c R e m o v a l o f C u , C r , a n d A s f r o m C h r o m a t e d C o p p e r A r s e n a t e - T r e a t e d T i m b e r W a s t e ” , E n v i r o n m e n t a l S c i e n c e a n d T e c h n o l o g y , V o l . 3 4 , N o . 5 , p p 7 8 4 - 7 8 9 , 2 0 0 0 . / / / / / / J . G u l l e d g e , a n d J O ’ C o n n e r , “ r e m o v a l o f a r s e n i c ( V ) f r o m w a t e r b y

a d s o r p t i o n o n a l u m i n i u m a n d f e r r i c h y d r o x i d e s ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . 021 , I s s u e 8 , p p 5 4 8 - 5 5 2 , ( 1 9 7 3 ) . A r s e n i t e s a r e u s e d a s a w o o d p r e s e r v a t i v e s a n d h e r b i c i d e s w h i l e a r s e n a t e s f i n d u s e a s p e s t i c i d e s o r p i g m e n t s A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . / / / / / / S . A r r y k u l , N . M a h a r a t c h a p o n g , K . K o o p t a r n o n , P . B u n n a u l , “ A r s e n i c r e m o v a l f r o m p o t a l b l e w a t e r ” , i n t e r n e t s i t e : h t t p : / / w w w . p s u . a c . t h / e p i d e m i o l o g y / c o n f e r / 5 s u r a p o e . h t m l .

A l l o y i n g a g e n t f o r h e a v y m e t a l s , l e a d s h o t p r o d u c t i o n J . G u l l e d g e , a n d J O ’ C o n n e r , “ r e m o v a l o f a r s e n i c ( V ) f r o m w a t e r b y a d s o r p t i o n o n a l u m i n i u m a n d f e r r i c h y d r o x i d e s ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l . 021 , I s s u e 8 , p p 5 4 8 - 5 5 2 , ( 1 9 7 3 ) . , s p e c i a l s o l d e r i n g a g e n t s , a n d a s a d o p i n g a g e n t i n s i l i c o n a n d g e r m a n i u m s o l i d s t a t e c o n d u c t o r s A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . .

G r e e n p i g m e n t s s u c h a s S c h e e l e ’ s g r e e n ( C u 2 A s 2 O 5 ) a n d P a r i s g r e e n

[ ( C H 3 C O O C u 2 ( A s O 3 ) ] w e r e o n c e c o m m o n b u t a r e l e s s u s e d t o d a y d u e t o t h e i r t o x i c i t y , a n d e v e n w o r s e , i n d a m p p l a c e s b a c t e r i a a n d m o u l d s c a n p r o d u c e J . D . L e e , C o n c i s e I n o r g a n i c p o i s o n o u s v o l a t i l e s u b s t a n c e s s u c h a s A s H 3 a n d A s ( C H 3 ) 3 C h e m i s t r y , f i f t h e d i t i o n , C h a p m a n a n d H a l l , M a d r a s , p 9 9 1 , ( 1 9 9 6 ) / / / / / / J . G u l l e d g e , a n d J O ’ C o n n e r , “ r e m o v a l o f a r s e n i c ( V ) f r o m w a t e r b y a d s o r p t i o n o n a l u m i n i u m a n d f e r r i c h y d r o x i d e s ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l . 021 , I s s u e 8 , p p 5 4 8 - 5 5 2 , ( 1 9 7 3 ) . .

43

L e a d a r s e n a t e ( P b H A s O 4 ) w a s f o r m e r l y u s e d i n E u r o p e a s a p l a n t p r o t e c t i o n a g e n t , a n d i s s t i l l u s e d i n A s i a . U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 4 8 , 1 9 9 9 .

A r s e n i c t r i o x i d e h a s b e e n u s e d t o p r e s e r v e a n i m a l h i d e s J . G u l l e d g e , a n d J O ’ C o n n e r , “ r e m o v a l o f a r s e n i c ( V ) f r o m w a t e r b y a d s o r p t i o n o n a l u m i n i u m a n d f e r r i c h y d r o x i d e s ” , J o u r n a l o f t h e A m e r i c a n W a t e r

W o r k s A s s o c i a t i o n , V o l . 021 , I s s u e 8 , p p 5 4 8 - 5 5 2 , ( 1 9 7 3 ) . . T h e f e l l m o n g e r y ( t a n n i n g o f s h e e p s k i n s ) i n d u s t r y h a s u s e d a r s e n i c i n t h e f o r m o f A s 2 S 2 t o l o o s e n w o o l o n s k i n s K . A . M u r r a y , W a s t e w a t e r T r e a t m e n t a n d P o l l u t i o n C o n t r o l , W a t e r R e s e a r c h C o m m i s s i o n , P r e t o i a , p 2 4 3 . 1 9 8 7 . .

T h e e l e c t r o n i c s i n d u s t r y r e q u i r e s h i g h p u r i t y a r s e n i c ( 9 9 . 9 9 9 % ) f o r t h e p r o d u c t i o n o f d i o d e s , i n f r a r e d d e t e c t o r s , a n d l a s e r s . G a l l i u m a r s e n i d e i s u s e d i n s o l a r c e l l s , w h i c h h a v e a n e f f i c i e n c y o f 2 0 % U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 5 , 1 9 9 9 . .

C a l c i u m a n d c o p p e r a r s e n a t e s ( t r i v a l e n t ) w e r e f o r m e r l y u s e d a s “ c o p p e r - a r s e n i c l i q u o r ” t o c o n t r o l p e s t s i n v i t i c u l t u r e U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 4 5 , 1 9 9 9 .

W o r d w i d e p r o d u c t i o n : 4 7 0 0 0 t o n s / a n n u m J . D . L e e , C o n c i s e I n o r g a n i c C h e m i s t r y , f i f t h e d i t i o n , C h a p m a n a n d H a l l , M a d r a s , p 9 9 1 , ( 1 9 9 6 ) .

A r s e n i c t r i o x i d e i s a n e x c e l l e n t p o i s o n d u e t o i s l a c k o f e i t h e r a t a s t e o r o d o u r J . G u l l e d g e , a n d J O ’ C o n n e r , “ r e m o v a l o f a r s e n i c ( V ) f r o m w a t e r b y a d s o r p t i o n o n a l u m i n i u m a n d f e r r i c h y d r o x i d e s ” ,

J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . 021 , I s s u e 8 , p p 5 4 8 - 5 5 2 , ( 1 9 7 3 ) . . .

T h e m a j o r u s e o f a r s e n i c t r i o x i d e ( 9 0 % o f A s 2 O 3 ) i n t h e U . S . A . i n 1 9 9 8 w a s f o r t h e p r o d u c t i o n o f c h r o m a t e d c o p p e r a r s e n a t e , a w o o d p r e s e r v a t i v e . A n o t h e r w o o d p r e s e r v a t i v e i s a m m o n i a c a l c o p p e r - z i n c a r s e n a t e M . L e i s t , R . J . C a s e y , a n d D . C a r i d i , “

T h e m a n a g e m e n t o f a r s e n i c w a s t e s : p r o b l e m s a n d p r o s p e c t s ” , J o u r n a l o f H a z a r d o u s M a t e r i a l s , V o l . W20 , N o . 1 , p p 1 2 5 -

1 3 8 , 2 0 0 0 . A r s e n i c u s a g e i n a g r i c u l t u r a l c h e m i c a l s h a s s e e n a s t e a d y d e c r e a s e M . L e i s t , R . J . C a s e y , a n d D . C a r i d i , “ T h e m a n a g e m e n t o f a r s e n i c w a s t e s : p r o b l e m s a n d p r o s p e c t s ” , J o u r n a l o f H a z a r d o u s M a t e r i a l s ,

V o l . W20 , N o . 1 , p p 1 2 5 - 1 3 8 , 2 0 0 0 . T h e m o s t l i k e l y c a u s e o f s u c h a r e d u c e d u s a g e i s t h e p r o d u c t i o n o f e n v i r o n m e n t a l l y f r i e n d l y o r g a n i c m o l e c u l e s t h a t a r e

44 b i o d e g r a d a b l e . A r s e n i c , b e i n g a n e l e m e n t , i s i n d e s t r u c t i b l e i n t h e n a t u r a l e n v i r o n m e n t .

D i m e t h y l a r s i n i c a c i d [ ( C H 3 ) 2 A s O 2 H ] i s a n o n - s e l e c t i v e a r s e n i c a l h e r b i c i d e u s e d f o r w e e d c o n t r o l o n n o n - c r o p l a n d , l a w n r e n o v a t i o n , d e f o l i a n t a n d d e s i c c a n t f o r c o t t o n , a n d k i l l i n g u n w a n t e d t r e e s b y i n j e c t i o n . I t s L D 5 0 f o r r a t s i s 7 0 0 m g / k g . T h e B r i t i s h C r o p P r o t e c t i o n C o u n c i l a n d T h e R o y a l S o c i e t y o f C h e m i s t r y , T h e P e s t i c i d e M a n u a l , 1 0 t h E d i t i o n , C .

T o m l i n ( E d . ) , T h e B a t h P r e s s , B a t h , p 3 5 2 , 1 9 9 5 .

C a c o d y l i c a c i d , [ ( C H 3 ) 2 A s O ( O H ) ] , i s e f f e c t i v e a g a i n s t w e e d s a n d f u n c t i o n s a s a c o n t a c t h e r b i c i d e J . G u l l e d g e , a n d J O ’ C o n n e r , “ r e m o v a l o f a r s e n i c ( V ) f r o m w a t e r b y a d s o r p t i o n o n

a l u m i n i u m a n d f e r r i c h y d r o x i d e s ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . 021 , I s s u e 8 , p p 5 4 8 - 5 5 2 , ( 1 9 7 3 ) . . M e t h y l a r s o n i c a c i d , o r i t s s a l t s , h a v e b e e n u s e d a s s e l e c t i v e c o n t a c t h e r b i c i d e s w i t h s o m e s y s t e m i c p r o p e r t i e s . M a j o r f i e l d s o f a p p l i c a t i o n b e i n g : ( M S M A ) g r a s s w e e d s c o n t r o l i n c o t t o n , s u g a r c a n e , s p r a y i n g u n d e r t r e e c r o p s , a n d n o n - c r o p a r e a s , ( D M S A ) g r a s s c o n t r o l f o r c i t r u s , c o t t o n , t u r f , a n d u n c r o p p e d l a n d . T h e B r i t i s h C r o p P r o t e c t i o n C o u n c i l a n d T h e R o y a l S o c i e t y o f C h e m i s t r y , T h e P e s t i c i d e M a n u a l , 1 0 t h E d i t i o n , C . T o m l i n ( E d . ) , T h e B a t h P r e s s , B a t h , p 6 8 4 , 1 9 9 5 . A r s e n i c s e e m s t o b e o f n u t r i t i o n a l v a l u e a s e x e m p l i f i e d b y i s u s e i n f e e d s t o a u g m e n t t h e g r o w t h o f j u v e n i l e p i g s . A d d i t i o n o f 0 . 2 % 3 - n i t r o , 4 - h y d r o x y p h e n y l a r s o n i c a c i d l e d t o a 5 7 . 4 % i n c r e a s e i n g r o w t h r a t e a n d a 3 3 . 4 % f e e d - c o n v e r s i o n e f f i c i e n c y J . G u l l e d g e , a n d J O ’ C o n n e r , “ r e m o v a l o f a r s e n i c ( V ) f r o m w a t e r b y

a d s o r p t i o n o n a l u m i n i u m a n d f e r r i c h y d r o x i d e s ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . 021 , I s s u e 8 , p p 5 4 8 - 5 5 2 , ( 1 9 7 3 ) . .

EnvironmentalFateofArsenicalPesticides

OccurrenceofAs

A r s e n i c o c c u r s n a t u r a l l y i n r o c k s , w a t e r , s o i l , a i r , p l a n t s a n d m a m m a l s . A r s e n i c m a y b e r e l e a s e d i n t o t h e e n v i r o n m e n t t h r o u g h a w i d e v a r i e t y o f a c t i v i t i e s , o f n a t u r a l a n d a n t h r o p o g e n i c o r i g i n – v o l c a n i c a c t i o n , e r o s i o n o f r o c k s , f o r e s t f i r e s , b u r n i n g f o s s i l f u e l s , p a p e r p r o d u c t i o n , c e m e n t m a n u f a c t u r i n g , m i n i n g ,

45 p e s t i c i d e a p p l i c a t i o n , s p i l l s , a n d l a n d f i l l s A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . .

ArsenicBearingMinerals T a b l e ? / A r s e n i c B e a r i n g M i n e r a l s U l l m a n s E n c y c l o p e d i a : U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 4 4 , 1 9 9 9 . M i n e r a l F o r m u l a % A r s e n i c

A r s e n o p y r i t e F e A s S ( F e S 2 . F e A s 2 ) 4 6

L o l l i n g i t e F e A s 2 7 3

O r p i m e n t A s 2 S 3 6 1 R e a l g a r A s S 7 0 N a t i v e a r s e n i c A s 9 0 - 1 0 0

M a j o r s u p p l i e r s o f a r s e n i c a r e S w e d e n , B e l g i u m , M e x i c o , U . S . A . , C h i n a , S o u t h - w e s t A f r i c a , a n d P e r u , w h i l e t h e m a j o r c o n s u m e r s a r e M a l a s i a , U . S . A . , a n d U . K . . U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 5 , 1 9 9 9 .

A r s e n i c a n d a n t i m o n y m a y b o t h o c c u r a s c o n t a m i n a n t s i n c o p p e r o r e s E . A . C r e c e l i u s , a n d C . J . J o h n s o n , a n d G . C . H o f e r , “ C o n t a m i n a t i o n o f s o i l s n e a r c o p p e r s m e l t e r b y a r s e n i c , a n t i m o n y a n d l e a d ” , W a t e r ,

A i r a n d S o i l P o l l u t i o n , v o l . X , p p 3 3 7 - 3 4 2 , 1 9 7 4 . C h i n a i s t h e l a r g e s t p r o d u c e r o f a r s e n i c t r i o x i d e ( 1 5 0 0 0 t o n e s ) w i t h B e g i u m s e c o n d , p r o d u c i n g 9 0 0 0 t o n e p e r a n n u m M . L e i s t , R . J . C a s e y , a n d D . C a r i d i , “ T h e m a n a g e m e n t o f a r s e n i c w a s t e s : p r o b l e m s a n d p r o s p e c t s ” , J o u r n a l o f H a z a r d o u s M a t e r i a l s , V o l . W20 , N o . 1 , p p 1 2 5 - 1 3 8 , 2 0 0 0 .

T a b l e ? ? D e p i c t s t h e U . S . A . u s a g e U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 6 , 1 9 9 9 . o f a r s e n i c :

T a b l e ? ? A b r e a k d o w n o f t h e U . S . A . u s e s f o r a r s e n i c ( Y e a r ? ? ? ) U s e P e r c e n t a g e o f 1 9 4 2 0 t o n s / a n n u m A g r i c u l t u r e a n d f o r e s t r y 7 0 I n d u s t r i a l c h e m i c a l s 2 0 G l a s s 5 A l l o y s a n d e l e c t r o n i c s 3 P h a r m a c e u t i c a l s , f e e d a d d i t i v e s a n d 2 c a t a l y s t s

46

A p p r o x i m a t e l y 9 0 % o f i n d u s t r i a l a r s e n i c i s u s e d a s a w o o d p r e s e r v a t i v e , w h i l e o t h e r m i n o r u s e s i n c l u d e d y e s , d r u g s , w a r g a s e s a n d s o a p s A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . .

Watertreatment

Y © © ¨ §Z¤¥[©\¡¤§ w a t e r t r e a t m e n t s y s t e m s m a y b e d i v i d e d i n t o t w o c a t e g o r i e s , n a m e l y p o i n t - o f - u s e ( P O U ) a n d p o i n t o f e n t r y ( P O E ) s y s t e m s G . C r a u n , J . G o o d r i c h , “ S e l e c t i n g r e s i d e n t i a l o r p e r s o n a l w a t e r t r e a t m e n t s y s t e m s ” i n : P r o v i d i n g S a f e D r i n k i n g W a t e r i n S m a l l S y s t e m s , p p 2 9 7 - 3 0 7 T E C H L I B R A R Y < < < < < < < < < < < g e t p u b s , y e a r a n d p l a c e o f p u b s P O U s y s t e m s , w h i c h a r e t y p i c a l l y u s e d i n h o u s e h o l d s o r b y t r a v e l e r s f e a r i n g t h a t t h e i r w a t e r m a y b e c o n t a m i n a t e d , a r e f u r t h e r d i v i d e d i n t o p o u r o r p u m p t h r o u g h u n i t s , f a u c e t u n i t s , l i n e b y p a s s u n i t s o r s t a t i o n a r y t r e a t m e n t u n i t s . P O E s y s t e m s a r e u s e d i n l i n e b e f o r e o n e o r m o r e r e s i d e n t i a l u n i t s .

T a b l e ? ? W a t e r t r e a t m e n t t e c h n o l o g i e s a n d t h e i r r e l a t i v e c o s t s G . C r a u n , J . G o o d r i c h , “ S e l e c t i n g r e s i d e n t i a l o r p e r s o n a l w a t e r t r e a t m e n t s y s t e m s ” i n : P r o v i d i n g S a f e D r i n k i n g W a t e r i n S m a l l S y s t e m s , p p 2 9 7 - 3 0 7 T E C H L I B R A R Y < < < < < < < < < < < g e t p u b s , y e a r a n d p l a c e o f p u b s T e c h n o l o g y C o n t a m i n a n t s R e m o v e d I n i t i a l O p e r a t i n g L e v e l o f C o s t C o s t s s k i l l r e q u i r e d f o r O p e r a t i o n a n d M a i n t e n a n c e c h l o r i n e , i o d i n e m i c r o b i a l L L L U V , o z o n e m i c r o b i a l M L M s u b m i c r o n p r o t o z o a , b a c t e r i a L L - M L c a r t r i d g e f i l t e r r e v e r s e m i c r o b i a l , M H H o s m o s i s i n o r g a n i c c h e m i c a l s a n d m e t a l s , m i n e r a l s , s o m e o r g a n i c s c h e m i c a l s , r a d i u m , d i s t i l l a t i o n m i c r o b i a l , M M L i n o r g a n i c c h e m i c a l s a n d m e t a l s , m i n e r a l s , s o m e

47

o r g a n i c s c h e m i c a l s , r a d i u m , u r a n i u m a c t i v a t e d o r g a n i c c h e m i c a l s , r a d o n , M M - H L c a r b o n o d o u r s , p r o t o z o a a n d s o m e b a c t e r i a p a c k e d t o w e r r a d o n , v o l a t i l e o r g a n i c M L H a e r a t i o n c o m p o u n d s , t a s t e s , o d o u r s i o n e x c h a n g e I n o r g a n i c c h e m i c a l s , M M - H M r a d i u m , n i t r a t e , a c t i v a t e d a r s e n i c , s e l e n i u m , H H H a l u m i n a f l u o r i d e e l e c t r o d y a l y s i s I n o r g a n i c c h e m i c a l s , H H H r a d i u m , u r a n i u m ,

'¤©¡'¤ \©¤ `

]_^ ]

T h e t w o o x i d a t i o n s t a t e s c o m m o n l y f o u n d i n d r i n k i n g w a t e r a r e a r s e n a t e ( A s V ) a n d a r s e n i t e ( A s I I I ) . B o t h a r s e n a t e a n d a r s e n i t e a r e p a r t o f t h e a r s e n i c

( H 3 A s O 4 ) a n d a r s e n i o u s ( H 3 A s O 3 ) s y s t e m s . H e n c e t h e p H o f t h e s y s t e m w i l l c o n t r o l t h e d e g r e e o f p r o t o n a t i o n o f t h e a c i d s . T h e p K a v a l u e s o f t h e s e a c i d s a r e h e l p f u l i n d e t e r m i n i n g t h e f o r m t h a t t h e a c i d s m a n i f e s t a t v a r i o u s p H l e v e l s . T a b l e ? ? l i s t s t h e p K a v a l u e s o f a r s e n i o u s a n d a r s e n i c a c i d s K . R a v e n , A . J a i n , R . L o e p p e r t , “ A r s e n i t e a n d a r s e n a t e a d s o r p t i o n o n f e r r i h y d r i t e : k i n e t i c s , e q u i l i b r i u m , a n d a d s o r p t i o n e n v e l o p e s ” ,

E n v i r o n m e n t a l S c i e n c e a n d T e c h n o l o g y , V o l . X2a , p p 3 4 4 - 3 4 9 , 1 9 9 8 . . T h e s e v a l u e s a r e i n v e r y c l o s e a g r e e m e n t w i t h t h o s e r e p o r t e d b y M e n g X . M e n g , S . B a n g , a n d G . K o r f i a t i s , “ E f f e c t s o f s i l i c a t e ,

s u l p h a t e , a n d c a r b o n a t e o n a r s e n i r e m o v a l b y f e r r i c c h l o r i d e ” , W a t e r R e s e a r c h , V o l . X2b , I s s u e 4 , p p 1 2 5 5 - 1 2 6 2 , ( 2 0 0 0 ) . .

T a b l e ? ? ? p K a v a l u e s f o r a r s e n i o u s a n d a r s e n i c a c i d s A c i d p K 1 p K 2 p K 3

H 3 A s O 3 9 . 2 2 1 2 . 1 3 1 3 . 4 0

H 3 A s O 4 2 . 2 0 6 . 9 7 1 1 . 5 3

48

A p p e n d i x ? ? S h o w s t h e d i s t r i b u t i o n a r s e n i c a l s p e c i e s t h a t e x i s t i n s o l u t i o n a s a f u n c t i o n o f X . M e n g , S . B a n g , a n d G . K o r f i a t i s , “ E f f e c t s o f s i l i c a t e , s u l p h a t e , a n d c a r b o n a t e o n a r s e n i r e m o v a l

b y f e r r i c c h l o r i d e ” , W a t e r R e s e a r c h , V o l . X2b , I s s u e 4 , p p 1 2 5 5 - 1 2 6 2 , ( 2 0 0 0 ) . ( i n t e r n e t l o x c a t i o n : h t t p : / / w w w . s c i e n c e d i r e t c t . c o m / s c i e n c e ? _ o b = M i a m i C a p t i o n U R L & _ m e t h o d = r e t r i e v e & _ u d i = B 6 V 7 3 - 3 Y F 3 V X J - N & _ i m a g e = f i g 2 & _ b a = 4 & _ u s e … )

A t t y p i c a l p H ’ s ( p H 5 - 8 ) i n n a t u r a l w a t e r s a r s e n a t e e x i s t s a s a n a n i o n w h i l e a r s e n i t e r e m a i n s a s a f u l l y p r o t o n a t e d m o l e c u l e P . B r a n d h u b e r , a n d G . A m y , “ A l t e r n a t i v e m e t h o d s f o r m e m b r a n e f i l t r a t i o n o f a r s e n i c f r o m d r i n k i n g w a t e r ” , D e s a l i n a t i o n , V o l . V2VTW , p p 1 - 1 0 , 1 9 9 8 . . T h i s b e h a v i o u r i s d u e t o t h e h i g h p K a v a l u e s o f H 3 A s O 3 c o m p a r e d t o t h o s e o f

H 3 A s O 4 . p H , h o w e v e r , i s n o t t h e o n l y v a r i a b l e a f f e c t i n g t h e f o r m t h a t a r s e n i c m a n i f e s t s ; t h e f o u r o x i d a t i o n s t a t e s ( - 3 , 0 , + 3 , a n d + 5 ) m a k e s i g n i f i c a n t c o n t r i b u t i o n s t o t h e c h e m i s t r y o f a r s e n i c a s d i c t a t e d b y t h e r e d o x p o t e n t i a l o f t h e s o l u t i o n . A P o u r b a i x d i a g r a m m a y b e u s e d t o p r e d i c t t h e f o r m o f a n e l e m e n t b a s e d o n t h e p H a n d r e d o x p o t e n t i a l o f i t s e n v i r o n m e n t . A p p e n d i x ? ? “ PourbaixDiagramsandReactionsinAqueousSolution”,Internetsite: h t t p : / / w w w . w e l l e s l e y . e d u / C h e m i s t r y / c h e m 1 2 0 / p o u r . h t m l d e p i c t s P o u r b a i x d i a g r a m s f o r a r s e n i c , i r o n , a l u m i n i u m , a n d s u l p h u r . A p p e n d i x ? / c o n t a i n s c o m b i n e d P o u r b a i x d i a g r a m s f o r i r o n , s u l p h u r a n d a r s e n i c c o m p o u n d s G o k e n , 1 9 8 8 , I S B N 0 - 8 7 3 3 9 - 0 3 7 - 7 , i n t e r n e t s i t e : h t t p : / / m e m e b e r s . i i n e t . n e t . a u / ~ m e n e / f i g a s 3 b . h t m / / / / / / / / / / / O s s e o - A s a r e a o , 1 9 8 4 , I S B N 0 8 9 5 2 0 - 4 6 9 x , i n t e r n e t s i t e : h t t p : / / m e m e b e r s . i i n e t . n e t . a u / ~ m e n e / f i g a s 2 b . h t m T h i s u s e f u l d i a g r a m d e s c r i b e s t h e e x i s t e n c e o f a r s e n i c , i r o n - a r s e n i c , i r o n - s u l p h u r a n d r e l a t e d c o m p o u n d s .

C o n v e n t i o n a l o x i d a n t s u s e d i n w a t e r t r e a t m e n t ( e . g . c h l o r i n e , p e r m a n g a n a t e , o z o n e a n d p e r o x i d e ) r e a d i l y c o n v e r t a r s e n i t e t o a r s e n a t e J . H e r i n g . P . C h e n , J . W i l k i e , M .

E l i m e l c h , a n d S . L i a n g , “ A r s e n i c r e m o v a l b y f e r r i c c h l o r i d e ” , J o u r n a l o f A m e r i c a n W a t e r W o r k s A s s o c o a i t i o n , V o l . c2c , 4 , p p 1 5 5 - 1 6 7 , ( 1 9 9 6 ) . T h e r a t e o f o x i d a t i o n o f a r s e n i t e t o a r s e n a t e b y d i s s o l v e d o x y g e n i s s l o w M . E m e t t , a n d G . K h o e , “ P h o t o c h e m i c a l o x i d a t i o n o f a r s e n i c b y o x y g e n a n d i r o n i n a c i d i c s o l u t i o n s , W a t e r R e s e a r c h ,

V o l . X21 , I s s u e 3 , p p 6 4 9 - 6 5 6 , ( 2 0 0 1 ) . T h e a r s e n i c t h a t i s f o u n d i n n a t u r a l w a t e r s i s n o t s i m p l y a q u e o u s a r s e n i c i o n s , b u t r a t h e r a c o m b i n a t i o n o f d i s s o l v e d f o r m s a n d p a r t i c u l a t e o r c o l l o i d a l a r s e n i c . B r a n d h u b e r P . B r a n d h u b e r , a n d G . A m y , “ A l t e r n a t i v e m e t h o d s f o r m e m b r a n e f i l t r a t i o n o f a r s e n i c f r o m d r i n k i n g w a t e r ” , D e s a l i n a t i o n , V o l . V2VTW , p p 1 - 1 0 , 1 9 9 8 s h o w e d t h a t g r o u n d w a t e r s t e n d t o h a v e a m o r e h o m o g e n e o u s a r s e n i c a l p a r t i c l e s i z e a s c o m p a r e d t o s u r f a c e w a t e r s . T a b l e ? ? ( c o m p i l e d f r o m t h e w o r k o f B r a n d h u b e r P . B r a n d h u b e r , a n d G . A m y ,

“ A l t e r n a t i v e m e t h o d s f o r m e m b r a n e f i l t r a t i o n o f a r s e n i c f r o m d r i n k i n g w a t e r ” , D e s a l i n a t i o n , V o l . V2VTW , p p 1 - 1 0 , 1 9 9 8 ) s h o w s t h e t y p i c a l s i z e r a n g e s o f p a r t i c u l a t e a r s e n i c i n s u r f a c e a n d

49 g r o u n d w a t e r s . T h i s w o r k s h o w e d t h a t t h e d i s s o l v e d a r s e n i c c o n c e n t r a t i o n i n s u r f a c e w a t e r s v a r i e d f r o m l e s s t h a n 1 % - 8 2 % , i n d i c a t i n g t h a t e a c h w a t e r m a y b e d i f f e r e n t d e p e n d i n g o n i t s e n v i r o n m e n t s u r f a c e w a t e r s . W a t e r s a l r e a d y c o n t a i n i n g h i g h l e v e l s o f p a r t i c l a t e o f c o l l o i d a l a r s e n i c m a y b e m o r e r e a d i l y t r e a t e d t h a n t h o s e c o n t a i n i n g e s s e n t i a l l y d i s s o l v e d a r s e n i c . A n a l y s i s o f a r s e n i c b e a r i n g w a t e r s f o r t h e i r a r s e n i c a l p a r t i c l e s i z e d i s t r i b u t i o n r a n g e m a y t h u s b e b e n e f i c i a l f o r e c o n o m i c a l c o n s i d e r a t i o n s .

A r s e n i c o c c u r s i n g r o u n d w a t e r a t t y p i c a l l e v e l s o f 0 . 0 2 - 0 . 0 1 p p m i n t h e M i d w e s t a n d N e w E n g l a n d a n d g r e a t e r t h a n 0 . 0 1 p p m i n o t h e r a r e a s i n t h e U S i n d u s t r y A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . .

N a t u r a l l y e l e v a t e d c o n c e n t r a t i o n s o f a r s e n i c o c c u r i n g r o u n d w a t e r ’ s o f t h e w e s t e r n U n i t e d S t a t e s , l a k e s m a y r a n g e f r o m < 1 – 4 0 V g / L . J . G . H e r i n g , P . C h e n , J . A . W i l k i e , M . E l i m e l c h , a n d S . L i a n g , “ A r s e n i c R e o m v a l b y F e r r i c C h l o r i d e ” , J o u r n a l o f A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l c2c , N o . 4 , p p 1 5 5 – 1 6 7 , 1 9 9 6 E x t r e m e l y e l e v a t e d l e v e l s o f a r s e n i c , i . e . 1 7 m g / L h a v e b e e n r e p o r t e d i n M o n o l a k e , C a l i f o r n i a . L . C . D . A n d e r s o n , a n d K . W . B r u l a n d , B i o c h e m i s t r y o f A r s e n i c i n N a t u r a l W a t e r s : T h e I m p o r t a n c e o f M e t h y l a t e d S p e c i e s ” , E n v i r o n m e n t a l S c i e n c e a n d

T e c h n o l o g y , V o l . a21 , p p 4 2 0 - 4 2 9 E d w a r d s e t a l a s c i t e d b y L . M N e i l , a n d M . E d w a r d s , “ A r s e n i c r e m o v a l d u r i n g p r e c i p i t a t i v e s o f t e n i n g ” , J o u r n a l o f E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 1 2 3 , N o . 5 , p p 4 5 3 - 4 6 0 , 1 9 9 7 . s u r v e y e d U . S . w a t e r s y s t e m s a n d r e l a t e d a r s e n i c l e v e l s t o t h e h a r d n e s s o f w a t e r ; h e f o u n d t h a h a r d w a t e r s ( > 1 5 0 m g C a C O 3 / L ) c o n t a i n e d 4 3 % m o r e a r s e n i c t h a n s o f t w a t e r s ( < 1 5 0 m g C a C O 3 / L ) .

D i s s o l u t i o n o f a r s e n i c f r o m n a t u r a l l y o c c u r r i n g a r s e n i c - b e a r i n g m i n e r a l s a n d s e d i m e n t s i n I n d i a a n d B a n g l a d e s h h a s p u t m o r e t h a n 2 0 m i l l i o n p e o p l e a t r i s k f r o m d r i n k i n g c o n t a m i n a t e d w a t e r . M . T . E m e t t , a n d G . H . K h o e , “ P h o t o c h e m i c a l O x i d a t i o n o f A r s e n i c b y O x y g e n a n d I r o n i n A c i d i c S o l u t i o n s ” , W a t e r R e s e a r c h , V o l . X21 , N o . 3 , p p 6 4 9 - 6 5 6 , 2 0 0 1 . T y p i c a l a r s e n i c l e v e l s i n t h e g r o u n d w a t e r o f t h e s e a r e a s r a n g e d f r o m 0 . 3 - 0 . 7 p p m w i t h s o m e w a t e r s c o n t a i n i n g a s m u c h a s 5 p p m A . D e b , A G u p t a , P . B r a n d y o p a d h y a y , R B i s w a s , a n d S . R o y , “ A p p r o p r i a t e t e c h n o l o g y f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r o f r u r a l W e s t B e n g a l ” , i n P r o v i d i n g S a f e D r i n k i n g

W a t e r i n S m a l l S y s t e m : T e c h n o l o g y , O p e r a t i o n s , a n d E c o n o m i c s . C o t r u v o , G . C r a u n , a n d N . H e a r n e ( E d s ) , W o r l d H e a l t h O r g a n i z a t i o n , C R C P r e s s , p p 2 7 3 - 2 7 8 , 1 9 9 9 . .

50

C h i l e a n d T a i w a n a l s o e x p e r i e n c e e l e v a t e d g r o u n d w a t e r l e v e l s o f a r s e n i c i n c e r t a i n r e g i o n s A . D e b , A G u p t a , P . B r a n d y o p a d h y a y , R B i s w a s , a n d S . R o y , “ A p p r o p r i a t e t e c h n o l o g y f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r o f r u r a l W e s t B e n g a l ” , i n P r o v i d i n g S a f e D r i n k i n g W a t e r i n S m a l l S y s t e m : T e c h n o l o g y ,

O p e r a t i o n s , a n d E c o n o m i c s . C o t r u v o , G . C r a u n , a n d N . H e a r n e ( E d s ) , W o r l d H e a l t h O r g a n i z a t i o n , C R C P r e s s , p p 2 7 3 - 2 7 8 , 1 9 9 9 . A r s e n i c i s a n u n w a n t e d h a z a r d o u s w a s t e g e n e r a t e d f r o m t h e p r o c e s s i n g o f a v a r i e t y o f o r e s i n c l u d i n g t h o s e o f c o p p e r , g o l d , n i c k e l , l e a d a n d z i n c . M . L e i s t , R . J . C a s e y , a n d D . C a r i d i , “ T h e m a n a g e m e n t o f a r s e n i c w a s t e s : p r o b l e m s a n d p r o s p e c t s ” , J o u r n a l o f H a z a r d o u s M a t e r i a l s ,

V o l . W20 , N o . 1 , p p 1 2 5 - 1 3 8 , 2 0 0 0 .

L e i s t , e t a l M . L e i s t , R . J . C a s e y , a n d D . C a r i d i , “ T h e m a n a g e m e n t o f a r s e n i c w a s t e s : p r o b l e m s a n d p r o s p e c t s ” , J o u r n a l o f H a z a r d o u s M a t e r i a l s , V o l . W20 , N o . 1 , p p 1 2 5 - 1 3 8 , 2 0 0 0 . , p r e d i c t s a n i n c r e a s e i n A s w a s t e a s i n d u s t r y p r o c e s s e s m o r e c o m p l i c a t e d s u l p h i d e o r e s s u c h a s l o w g r a d e g o l d a s s o c i a t e d w i t h a r s e n o p y r i t e a n d n i c k e l o r e s w i t h h i g h a r s e n i c c o n t e n t s .

OxidationStatesArsenic

T h e c o m m o n o x i d a t i o n s t a t e s a r e 0 , + 3 , + 5 , a n d – 3 . E m e t t e t a l M . E m e t t , a n d G . K h o e ,

“ P h o t o c h e m i c a l o x i d a t i o n o f a r s e n i c b y o x y g e n a n d i r o n i n a c i d i c s o l u t i o n s , W a t e r R e s e a r c h , V o l . X21 , I s s u e 3 , p p 6 4 9 - 6 5 6 , ( 2 0 0 1 ) . r e p o r t e d t h e e x i s t e n c e o f a t e t r a v a l e n t a r s e n i c i n t e r m e d i a t e d e t e c t e d i n r a d i c a l r e a c t i o n s . D i s s o l v e d t e t r a v a l e n t a r s e n i c w a s o b s e r v e d a n d c h a r a c t e r i z e d i n a r s e n i o u s a c i d , a r s e n i t e a n d a r s e n a t e s o l u t i o n s .

AnalysisforAs

T o t a l a r s e n i c : T o t a l a r s e n i c m a y b e d e t e r m i n e d b y a t o m i c s p e c t r o s c o p y ( U S E P A a p p r o v e d ) , e i t h e r d i r e c t a n a l y s i s b y p l a t f o r m g r a p h i t e f u r n a c e a t o m i c a b s o r p t i o n ( P G F - A A ) , o r b y a s h i n g ( w e t o r d r y ) a n d a s p i r a t i o n i n t o a f l a m e a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t e r o r a n i n d u c t i v e l y c o u p l e d p l a s m a e m i s s i o n s p e c t r o m e t e r ( I C P ) , I C P - m a s s s p e c t r o m e t e r .

O t h e r m e t h o d s i n c l u d e : h y d r i d e g e n e r a t i o n o n t o H g B r 2 a b s o r p t i o n f i l t e r s t h a t t u r n y e l l o w o n e x p o s u r e t o a r s e n i c – i n t e r p r e t e d b y c o m p a r i s o n t o a c o l o u r c h a r t ( d e t e c t i o n l i m i t = 0 . 1 p p m ) H . H u a n g , P . D a s g u p t a , “ A f i e l d d e p l o y a b l e i n s t r u m e n t f o r t h e m e a s u r e m e n t a n d s p e c i a t i o n o f a r s e n i c i n p o t a b l e w a t e r ” , A n a l y t i c a C h i m i c a A c t , V o l . X2c2d , p p 2 7 - 3 7 , 1 9 9 9 . , m o l y b d a t e c o m p l e x a t i o n t o f o r m c o l o u r e d m o l e c u l a r s p e c i e s t h a t a b s o r b v i s i b l e r a d i a t i o n H . H u a n g , P . D a s g u p t a , “ A f i e l d d e p l o y a b l e i n s t r u m e n t f o r t h e m e a s u r e m e n t a n d s p e c i a t i o n o f

51

a r s e n i c i n p o t a b l e w a t e r ” , A n a l y t i c a C h i m i c a A c t , V o l . X2c2d , p p 2 7 - 3 7 , 1 9 9 9 / / / / / D . J o h n s o n , M . P i l s o n ,

“ S p e c t r o p h o t o m e t r i c d e t e r m i n a t i o n o f a r s e n i t e , a r s e n a t e a n d p h o s p h a t e i n n a t u r a l w a t e r s ” , A n a l y t i c a C h i m i c a A c t a ,

V o l . 12c , p p 2 8 9 - 2 9 9 , ( 1 9 7 2 ) .

S p e c i a t i o n : T o d e t e r m i n e t h e a r s e n i c s p e c i e s o f t o x i c o l o g i c a l r e l e v a n c e t o m a n ( A s I I I , A s V , m o n o m e t h y l a r s i n i c a c i d a n d d i m e t h y l a r s i n i c a c i d ) t h e h y d r i d e g e n e r a t i o n m e t h o d i s r e c o m m e n d e d T.Gebel,“ConfoundingVariablesintheEnvironmentalToxicologyofArsenic”, Toxicology,Vol144,pp155-162,2000..Organo-arsenicalsandtrimethylatedformsarenotdetectedusingthis method. S h o u l d t h e n o n t o x i c p o r t i o n o r a r s e n i c n e e d t o b e d e t e r m i n e d t h e n t h e t o x i c o l o g i c a l l y r e l e v a n t h y d r i d e c o n c e n t r a t i o n s h o u l d b e s u b t r a c t e d f r o m t o t a l a r s e n i c a n a l y s i s . A s I I I m a y a l s o b e d e t e r m i n e d b y p o l a r o g r a p h i c m e a n s , b u t t h e p e n t a v a l e n t f o r m i s n o t r e d u c e d . M o l e c u l a r s p e c t r o s c o p i c m e t h o d s a r e a l s o a v a i l a b l e . A r s e n a t e ( n o t a r s e n i t e ) r e a c t s w i t h m o l y b d a t e t o f o r m a b l u e c o m p l e x ( a b s o r b i n g a t 8 2 5 n m ) – t h e l i m i t o f d e t e c t i o n i s 0 . 0 0 1 5 m g A s / L . s p e c i a t i o n i s p o s s i b l e i f t h e a r s e n i t e i s f i r s t c o n v e r t e d t o a r s e n a t e . M . E d w a r d s , “ C h e m i s t r y o f a r s e n i c r e m o v a l d u r i n g c o a g u l a t i o n a n d F e - M n o x i d a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l . U , p p 6 4 - 7 7 , ( 1 9 9 4 ) .

H u a n g e t a l H . H u a n g , P . D a s g u p t a , “ A f i e l d d e p l o y a b l e i n s t r u m e n t f o r t h e m e a s u r e m e n t a n d s p e c i a t i o n o f a r s e n i c i n p o t a b l e w a t e r ” , A n a l y t i c a C h i m i c a A c t , V o l . X2ced , p p 2 7 - 3 7 , 1 9 9 9 . d e v e l o p e d a l i g h t w e i g h t ( 6 . 5 k i l o g r a m s ) p o r t a b l e s t r i p p i n g v o l t a m m e t r i c i n s t r u m e n t t h a t w a s c a p a b l e o f d e t e r m i n a t i o n o f t r i a n d p e r n t a v a l e n t a r s e n i c w i t h a l i m i t o f d e t e c t i o n ( L O D ) o f 0 . 5 V g / L .

L e e t a l X . L e , a n d W C u l l e n , “ S p e c i a t i o n o f A r s e n i c i n W a t e r a n d B i o l o g i c a l M a t r i c e s ” , A W W A R F R e s e a r c h N e w s , p r o j e c t # 2 8 7 , i n t e r n e t s i t e h t t p : / / w w w . a w w a r f . c p m / e x u m s / 2 8 7 . h t m , 2 0 0 1 . d e v e l o p e d t h r e e m e t h o d s o f a r s e n i c s p e c i a t i o n i n a q u e o u s m a t r i c e s , t h e y a n a l y z e d f o r a r s e n i t e , a r s e n a t e , m o n o m e t h y l a r s o n i c a c i d ( M M A ) , a n d d i m e t h y l a r s o n i c a c i d ( D M A ) . T h e i r m o s t e f f e c t i v e m e t h o d w a s h i g h - p r e s s u r e l i q u i d c h r o m a t o g r a p h i c s e p a r a t i o n o f t h e s p e c i e s f o l l o w e d b y h y d r i d e g e n e r a t i o n a t o m i c f l u o r e s c e n c e s p e c t r o m e t r i c d e t e c t i o n – t h e c o m p l e t e a n a l y s i s t o o k 3 - 4 m i n u t e a n d t h e L O D w a s 0 . 4 - 0 . 8 V g / L . T h e y f o u n d t h a t w a t e r a n d u r i n e s a m p l e s w e r e s t a b l e w i t h r e s p e c t t o a r s e n i c f o r t w o m o n t h s a t 4 o C . ArsenicWasteTreatment T h r e e g e n e r a l m e t h o d s o f w a s t e t r e a t m e n t i n c l u d e :

52 c o n c e n t r a t i o n a n d c o n t a i n m e n t – s a f e t y a n d c o s t f a c t o r s t e n d t o l i m i t t h i s m e t h o d , d i l u t i o n a n d d i s p e r s i o n – t h i s u n d e s i r a b l e p r o c e d u r e i s m e r e l y l e g i s l a t i v e , a n d e n c a p s u l a t i o n - . M . L e i s t , R . J . C a s e y , a n d D . C a r i d i , “ T h e m a n a g e m e n t o f a r s e n i c w a s t e s : p r o b l e m s a n d p r o s p e c t s ” , J o u r n a l o f H a z a r d o u s M a t e r i a l s , V o l . W20 , N o . 1 , p p 1 2 5 - 1 3 8 , 2 0 0 0 .

MethodsofAqueousArsenicRemoval

Precipitationandcoagulation

f ©©\§g h©¡i!$¤j¥¨ `¤ ¥¨§ ©k¡¤l¥¨\©` ¥¨ m ¨n ¨ ¡¤¤j`¡¤ op'§   ¡¤

D e f i n i t i o n s : M . E d w a r d s , “ C h e m i s t r y o f a r s e n i c r e m o v a l d u r i n g c o a g u l a t i o n a n d F e - M n o x i d a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . U , p p 6 4 - 7 7 , ( 1 9 9 4 ) . P r e c i p i t a t i o n i s t h e i n s o l u b i l i z a t i o n o f c o n t a m i n a n t s b y e x c e e d i n g t h e i r s o l u b i l i t y p r o d u c t . C o p r e c i p i t a t i o n i s a n i n c o r p o r a t i o n o f s o l u b l e s p e c i e s i n t o a g r o w i n g [ h y d r o x i d e ] p h a s e b y i n c l u s i o n , o c c l u s i o n , o r a d s o r p t i o n . A d s o r p t i o n r e f e r s t o f o r m a t i o n o f s u r f a c e c o m p l e x e s b e t w e e n s o l u b l e s p e c i e s [ a r s e n i c ] a n d t h e s o l i d s u r f a c e [ o x y h y d r o x i d e ]

Coagulationhasbeenpracticedsinceancienttimes.Extractsofseeds,leaves,and rootswereusedinthefareastforclarificationofwaterR.Droste,TheoryandPracticeofWater andWastewaterTreatment,JohnWiley&Sons,NewYork,P387,1997..Theseprocessesinvolvethe removalofarsenicthatexistsintheaqueoussystemassuspendedparticles,or 3- negativelychargedanionssuchasAsO4 . Agglomerationisaidedbymetalssaltssuchasferricorsulphates,the settlingofsuspendedsolidmaybeaugmentedbyadditionoflongchainmolecular flocculants.Thelongchainmolecularflocculantsaremoreefficientthanthe inorganicsalts,buttheyaremorecostly.Suchcompoundsincludenonionic polymerssuchaspolyacrilamide(molecularmassesof1-30million),anionic moleculessuchaspolyacrylamidecarboxylatesalts(molecularmassesofseveral million),andcationicmoleculesincludingpolyethylaminesorpolyvinylamines (molecularmassesoflessthan1million)R.Droste,TheoryandPracticeofWaterandWastewater Treatment,JohnWiley&Sons,NewYork,P387,1997 .Activatedsilica(acidifiedNa2SiO3)isalsoa commonlyusedcoagulant;itisbelievedtoformpolysilicatesthatmaycrosslink andprecipitate.SuchsolutionsareonlystableforafewweeksR.Droste,TheoryandPractice ofWaterandWastewaterTreatment,JohnWiley&Sons,NewYork,P387,1997.. T h e c o a g u l a t i o n p o w e r o f a n a g e n t d e p e n d s o n i t s c h a r g e a n d t h e s i z e o f a s y n t h e t i c p o l y m e r a l s o p l a y s a r o l e . T a b l e ? ? l i s t s t h e r e l a t i v e p o w e r o f s o m e i n o r g a n i c e l e c t r o l y t e s

53

T a b l e ? ? l i s t s t h e p r o p e r t i e s a n d r e l a t i v e p o w e r o f s o m e i n o r g a n i c e l e c t r o l y t e s R.Droste,TheoryandPracticeofWaterandWastewaterTreatment,JohnWiley&Sons,NewYork,P385,1997. C h e m i c a l E l e c t r o l y t e F o r m u l a M o l e c u l a r P o s i t i v e N e g a t i v e a g e n t m a s s C o l l o i d s C o l l o i d s s o d i u m N a C l N a C l 5 8 . 5 1 1 c h l o r i d e a l u m i n i u m A l C l 3 A l C l 3 1 3 3 . 4 1 1 0 0 0 c h l o r i d e s o d i u m N a 3 P O 4 N a 3 P O 4 1000 1 p h o s p h a t e a l u m A l 2 ( S O 4 ) 3 A l 2 ( S O 4 ) 3 . 1 8 H 2 O 6 6 6 . 7 3 0 > 1 0 0 0 f e r r i c F e 2 ( S O ) 4 ) 3 Fe2(SO)4)3 4 0 0 3 0 > 1 0 0 0 s u l p h a t e

A l u m i s t h e m o s t c o m m o n l y u s e d s a l t w i t h i r o n b e i n g t h e s e c o n d m o s t p o p u l a r R.Droste,TheoryandPracticeofWaterandWastewaterTreatment,JohnWiley&Sons,NewYork,P385,1997.. T h e a c i d i t y o f t h e s e i o n s l e a d t o l o w e r i n g o f p H a n d i t m a y n e c e s s a r y t o a d d a l k a l i n i t y t o m a i n t a i n t h e p H . D r o e s t e r e p o r t e d t h a t h t e o p t i m u m p H r a n g e s f o r c o a g u l a t i o n w i t h i r o n a n d a l u m a r e 4 . 5 - 5 . 5 a n d 5 . 5 - 6 . 3 r e s p e c t i v e l y R.Droste, TheoryandPracticeofWaterandWastewaterTreatment,JohnWiley&Sons,NewYork,P384,1997.. T h e u s e o f i r o n i s a d v a n t a g e o u s o v e r a l u m i n i u m i n t h a t t h e r e s i d u a l i r o n l e f t i n t h e w a t e r a f t e r c o a g u l a t i o n i s l e s s t o x i c t h a n t h e a l u m i n i u m . A l u m i n i u m i s a s s o c i a t e d w i t h A l z h e i m e r ’ s d i s e a s e a n d t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n ( A W W A ) h a s s e t a g o a l o f t h e m a x i m u m c o n t a m i n a n t l e v e l ( M C L ) f o r a l u m i n i u m o f 0 . 0 5 0 p p m , ( t h e s a m e a s t h e c u r r e n t M C L f o r a r s e n i c ) R.Droste,TheoryandPracticeofWaterandWastewater Treatment,JohnWiley&Sons,NewYork,P182,1997..

T h e r e a c t i o n s o c c u r r i n g d u r i n g o r d i n a r y w a t e r c o a g u l a t i o n i n v o l v e t h e f o r m a t i o n o f h y d r o x i d e s , T a b l e ? ? l i s t s t h e r e a c t i o n s o f a l u m i n i u m a n d i r o n s a l t s o c c u r r i n g d u r i n g a q u e o u s c o a g u l a t i o n G . T c h o b a n o g l o u s , W a s t e w a t e r E n g i n e e r i n g : T r e a t m e n t D i s p o s a l a n d R e u s e , S e c o n d E d i t i o n , M c G r a w - H i l l B o o k C o m p a n y , N e w Y o r k , p p 2 6 1 - 2 6 7 , 1 9 7 9 . ///////R.Droste,TheoryandPracticeofWaterandWastewaterTreatment,JohnWiley&Sons,NewYork,P262,1997.. Table??Thereactionsofaluminiumandironsaltsoccurringduringaqueouscoagulation ¢¡¤ op'§  Reaction + 2 - A l u m A l 2 ( S O 4 ) 3 . 1 8 H 2 O + 6 H 2 O I 2 A l ( O H ) 3 ( S ) + 6 H + 3 S O 4 + 1 8 H 2 O

A l 2 ( S O 4 ) 3 . 1 8 H 2 O + 3 C a ( H C O 3 ) 2 * I 2 A l ( O H ) 3 ( S ) + 3 C a S O 4 + 6 C O 2

54

+ 1 8 H 2 O

Ferric F e 2 ( S O 4 ) 3 + 3 C a ( H C O 3 ) 2 * I 2 F e ( O H ) 3 ( S ) + 3 C a S O 4 + 6 C O 2 sulphate

* N a t u r a l h a r d n e s s i s t h e s o u r c e o f 3 C a ( H C O 3 ) 2 Thehydroxidesthatformhavealargesurfaceareapriortocoagulationandneagitvely chargedionsmaybeadsorbedontothehydroxidesurfaces. Precipitation

P r e c i p i t a t i o n o f a r s e n i c m a y i n v o l v e t h e r e a c t i o n o f a r s e n i c a l s p e c i e s w i t h a a n i o n t h a t f o r m s a n i n s o l u b l e ( o r s p a r i n g l y s o l u b l e ) p r o d u c t ; i t m a a l s o i n c l u d e a g g l o m e r a t i o n o f s u s p e n d e d a r s e n i c - c o n t a i n g p a r t i c l e s o r t h e e n m e s h m e n t i n t o a f l o c c u l a t e d p r e c i p i t a t e .

T h e U S E n v i r o n m e n t a l P r o t e c t i o n A g e n c y ( E P A ) c o m p i l e d a r e v i e w U S E P A , T e c h n o l o g i e s a n d c o s t s f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r , i n t e r n e t s i t e : h t t p : / / w w w . e p a . g o v / s a f e w a t e r / a r s / t r e a t m e n t s _ a n d _ c o s t s . p d f , P 2 - 1 5 , 2 0 0 0 o f p r e c i p i t a t i v e p r o c e s s e s u s e d t o r e m o v e a r s e n i c f r o m a q u e o u s m e d i a . T h e s a l i e n t p o i n t s a p p l i c a b l e t o t h i s r e s e a r c h a r e d i s c u s s e d .

E q u i p m e n t r e q u i r e d f o r p r e c i p i t a t i v e p r o c e s s e s i n c l u d e s c h e m i c a l f e e d s y s t e m s , m i x i n g d e v i c e s , b a s i n s f o r m i x i n g , f l o c c u l a t i o n , s e t t l i n g , f i l t e r m e d i a , s l u d g e h a n d l i n g e q u i p m e n t , a n d f i l t e r b a c k w a s h s y s t e m s . A d d i t i o n a l a s p e c t s t o b e c o n s i d e r e d i n c l u d e w a s t e d i s p o s a l o f a r s e n i c b e a r i n g s l u d g e s . N o r m a l l y a l e a c h i n g t e s t s u c h a s t h e T L C P t e s t w o u l d b e r u n o n s l u d g e s a m p l e s a t r e g u l a r i n t e r v a l s t o e n s u r e t h a t t h e a r s e n i c i s n o t r e a d i l y l e a c h e d . A n a l y t i c a l e q u i p m e n t , a p p a r a t u s a n d a n o p e r a t o r a r e a l s o r e q u i r e d .

I t i s w e l l k n o w n t h a t t h e p e n t a v a l e n t s t a t e o f a r s e n i c i s m o r e r e a d i l y r e m o v e d t h a t t h e t r i v a l e n t f o r m . C o m m o n c o a g u l a n t s i n c l u d e f e r r i c s u l p h a t e o r t h e c h l o r i d e a n d a l u m .

A l u m i n i u m b a s e d c o a g u l a t i o n w i t h d i s i n f e c t i o n b y c h l o r i n a t i o n i s m o s t c o m m o n l y u s e d i n N e w Z e a l a n d J . G r e g o r , “ A r s e n i c d u r i n g a l u m i n i u m - b a s e d d r i n k i n g w a t e r t r e a t m e n t ” , W a t e r R e s e a r c h , V o l . 3 5 , N o . 7 , p p 1 6 5 9 - 1 6 6 4 , 2 0 0 1 . . I n t h i s p r o c e s s A s I I I i s n o t r e m o v e d b y V t h e t r e a t m e n t p r o c e s s a n d e v e n t u a l l y b e c o m e s o x i d i z e d t o A s i n t h e f i n a l C l 2 d i s i n f e c t i o n s t e p . A r s e n i c V f o r m s s t a b l e p r e c i p i t a t e s w i t h m a n y i o n s . S o m e o f

55 t h e s e c o m p o u n d s a r e l i s t e d i n t a b l e ? ? a l o n g w i t h t h e i r s o l u b i l i t y p r o d u c t s

( K S P ) .

z {B|y}E~(s¨r62~E€n|y‚~6ƒ„{B g†‡ˆƒEvy}6x ‰[ˆvyŠ‹EŒ6|yz<~y:mx }EŽ

Table??Kspvaluesofpentavalentarsenates qer6sutwvyx

  6­¬ ¬y¯6°

‚v6‰6x x  |: x Œ6v¨ƒT‹’‘  vy}6x }EŽ6“”{T•E–2—B˜m™:š6›B–„œ:i™"ž Ÿ ˜¡–6™6¢£T™„¤ š6›EI™F¥eŸ ™„£:£T˜mŸ ™F¥I{§¦"‹„z r„¨<©6ª2{6tw‹2rB«i{ «6ª6® {„¨<±6±y²„r§³ ³ ³ ³ ³ ³ ³y´rBµ2‹„¶T:}EŽ6|2{B´r

·

‹y¶F‹6¸E|yŠ|2{F|y}E~¨´r<¹º|6ƒE|6¸„{B ”»8vyŠ‹EŒ6|yz§‹E‘y|6v„‚ƒEvy}6x ‰6¼¾½ ½ ½ ¿2|y}E~¨|yˆƒTv„}6x ‰’¼ ¦ ¿Ix ‹„}Eƒn‘m‚‹yŠ”|6ÀyEv:‹yEƒ¤ƒE‹yz E‚x ‹y}Eƒ­€­x ‚Á[z |y}’ ÁE|„}66Š¨¼¾½ ½ ½ ¿2ƒE|yz 

 6

|„}E~¨‰T‹„Š |ymx ƒE‹y}­€­x ‚Á|yz 6Š¨x }:x :Š[¼ ½ ½ ½ ¿>{B‰E|yz ‰6x 6Š¨¼¾½ ½ ¿>{F|y}E~x ‚‹y}6¼ ½ ½ ½ ¿2ƒT|„z  ƒE“Â{Ä䚄¤ £T˜ i™"ž Ÿ ˜¡–6™6¢£T™„¤6Å£TÆ:£Tš6˜ ÇBȄ{<¦ ‹yz rTÉOÊ6{6tw‹2rBªi{ ©6±6±6®

°6¯ {T¼L¨<±6±6±6¿Lr ª F o r m u l a - l o g K s p

C a 3 ( A s O 4 ) 2 1 8 . 1 7

M g 3 ( A s O 4 ) 2 1 9 . 6 8

M n 3 ( A s O 4 ) 2 2 8 . 7 2

F e 3 ( A s O 4 ) 2 2 0 . 2 4

L a 3 A s O 4 21.03

M c N e i l e t a l L . M N e i l , a n d M . E d w a r d s , “ A r s e n i c r e m o v a l d u r i n g p r e c i p i t a t i v e s o f t e n i n g ” , J o u r n a l o f E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 1 2 3 , N o . 5 , p p 4 5 3 - 4 6 0 , 1 9 9 7 . s h o w e d t h a t s i m p l e f o r m a t i o n o f t h e a r s e n a t e s w a s n o t t h e m e c h a n i s m f o r a r s e n a t e r e m o v a l f o r c a l c i u m a n d m a n g a n e s e a r s e n a t e s ; i n s t e a d t h e a r s e n a t e w a s a d s o r b e d o n c a l c i u m c a r b o n a t e o r m a n g a n e s e h y d r o x i d e . I t w a s a l s o s h o w n t h a t t h e c o r r e s p o n d i n g a r s e n i t e r e m o v a l s w e r e a b o u t a n o r d e r o f m a g n i t u d e M N e i l , a n d M . E d w a r d s , “ A r s e n i c r e m o v a l d u r i n g p r e c i p i t a t i v e s o f t e n i n g ” , J o u r n a l o f E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 1 2 3 , N o . 5 , p p 4 5 3 - 4 6 0 , 1 9 9 7 . l o w e r t h a n t h e a r s e n a t e r e m o v a l s ; t h e p r e o x i d a t i o n o f a r s e n a t e i s t h u s f a v o u r a b l e .

B r a n d h u b e r P . B r a n d h u b e r , a n d G . A m y , “ A l t e r n a t i v e m e t h o d s f o r m e m b r a n e f i l t r a t i o n o f a r s e n i c f r o m d r i n k i n g w a t e r ” , D e s a l i n a t i o n , V o l . V2VTW , p p 1 - 1 0 , 1 9 9 8 t e s t e d a r s e n i c r e m o v a l s ( b y v a r y i n g f e r r i c c h l o r i d e c o a g u l a t i o n s o n a 0 . 0 2 0 m g / L a r s e n a t e s o l u t i o n o f 7 . 6 5 a t 9 . 8 o C i n c l u d i n g f i l t r a t i o n t h r o u g h a 0 . 2 V f i l t e r ) f o r t h e i r f i t o f t h e L a n g m u i r a d s o r p t i o n m o d e l a n d f o u n d a p l o t o f c o a g u l a n t d o s e v s . % a r s e n i c r e m o v e d w a s a h y p e r b o l i c f u n c t i o n . T h e e q u a t i o n t h a t d e s c r i b e d t h e p l o t i s

% a r s e n i c r e m o v a l = 1 0 0 * ( k x d o s e ) / ( 1 + k x d o s e ) ,

w h e r e k = 0 . 3 3 2 L / m g a n d d o s e = F e C l 3 d o s e i n m g / L

56

T h e s e d a t a s u g g e s t t h a t i n c r e a s i n g t h e c o a g u l a n t d o s e b e y o n d a c e r t a i n p o i n t w o u l d r e s u l t i n a r e d u c e d a r s e n i c r e m o v a l d e s p i t e u n i f o r m l y i n c r e a s e d f e r r i c c h l o r i d e d o s e s .

W a t e r s o f t e n i n g b y r a i s i n g t h e p H t o p r e c i p i t a t e t h e m a g n e s i u m a n d c a l c i u m r e m o v e s a r s e n i c m o r e e f f e c t i v e l y a s t h e p H i s r a i s e d ( p H 9 – p H 1 1 ) p r o d u c e g o o d r e m o v a l s e v e n o n a r s e n i c c o n c e n t r a t i o n s a s l o w a s 0 . 0 0 8 m g / L . R a i s i n g t h e p H e v e n f u r t h e r ( 1 1 – 1 2 ) p r e c i p i t a t e s m a g n e s i u m a s i t h y d r o x i d e , h o w e v e r , t h e r e i s e v i d e n c e t h a t m a g n e s i u m h y d r o x i d e s s e t t l e p o o r l y M N e i l , a n d M . E d w a r d s , “ A r s e n i c r e m o v a l d u r i n g p r e c i p i t a t i v e s o f t e n i n g ” , J o u r n a l o f E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 1 2 3 , N o . 5 , p p 4 5 3 - 4 6 0 , 1 9 9 7 . t h u s i n c r e a s i n g t h e c o s t o f t h e o p e r a t i o n . T h e m a x i m u m a c c e p t a b l e v a l u e ( M A V ) f o r N e w Z e a l a n d i s 0 . 0 1 m g / L ; t h i s M A V i s n o t a l w a y s a c h i e v e d a n d c o u l d b e a t t a i n e d b y d i s i n f e c t i o n p r i o r t o A l u m c o a g u l a t i o n . A p o s s i b l e d i s a d v a n t a g e o f p r i o r c h l o r i n a t i o n i s t h a t o r g a n i c m a t t e r m a y b e o x i d i z e d t o f o r m f o u l t a s t i n g b y - p r o d u c t t h u s i n h i b i t i n g t h e a e s t h e t i c q u a l i t y o f t h e w a t e r .

H e r i n g J . H e r i n g , “ A r s e n i c R e m o v a l b y E n h a n c e d C o a g u l a t i o n a n d M e m b r a n e P r o c e s s e s ” , M e n a c h e m E l i m e l e c h , D e p a r t m e n t o f C i v i l a n d E n v i r o n m e n t a l E n g i n e e r i n g , U n i v e r s i t y o f C a l i f o r n i a , L o s A n g e l e s , , i n t e r n e t s i t e : h t t p : / / w w w . a w w a r f . c o m / e x s u m s / 9 0 7 0 6 . h t m , 1 9 9 6 . i n v e s t i g a t e d a l u m a n d f e r r i c c o a g u l a t i o n i n a r s e n i c r e m o v a l f r o m d r i n k i n g w a t e r h a v i n g 0 . 0 0 2 – 0 . 1 0 0 m g / L a r s e n i c a n d r e a c h e d t h e f o l l o w i n g c o n c l u s i o n s :

• O p t i m i u m p H r a n g e s : a l u m 6 - 7

F e C l 3 1 - 8 • O n a m a s s t o m a s s b a s i s f e r r i c c h l o r i d e i s m o r e e f f e c t i v e t h a n a l u m , b u t o n a m o l e t o m o l e b a s i s s i m i l a r r e s u l t s a r e a c h i e v e d • A l u m c a n n o t r e m o v e t r i v a l e n t a r s e n i c , b u t f e r r i c c h l o r i d e c a n b u t l e s s e f f e c t i v e l y t h a n p e n t a v a l e n t a r s e n i c • V a r i a t i o n o f f i l t e r p o r e s i z e f r o m 0 . 1 - 1 . 0 m i c r o m e t e r s h a d v e r y l i t t l e e f f e c t o n t h e a r s e n i c r e m o v a l s ! ! ! ! ! ! ! N o t e t h a t t h i s f a c t i s i n a g r e e m e n t w i t h t h i s r e s e a r c h w o r k i n w h i c h s a m p l e s o f a l u m c o a g u l a t e d a r s e n i c w e r e d e c a n t e d a n d f i l t e r e d ( t h r o u g h a 0 . 2 V m f i l t e r ) a n d b o t h t h e d e c a n t a t e a n d t h e f i l t r a t e y i e l d e d v e r y c l o s e r e m o v a l s • U n d e r o p t i m a l c o n d i t i o n s o r g a n i c m a t t e r a n d i n o r g a n i c i o n s s u c h a s C a , s u p h a t e a n d p h o s p h a t e h a d m i n i m a l i n f l u e n c e s o n a r s e n i c r e m o v a l s . ! ! ! ! O t h e r w o r k e r s f o u n d i n t e r f e r e n c e s b y p h o s p h a t e , a n e x p e c t a b l e

57

p h e n o m e n a s i n c e p h o s p h o r u s i s a l s o a g r o u p V A e l e m e n t a n d t h e i r c h e m i s t r i e s a r e s i m i l a r .

Thealuminiumhydroxideismoresolublethantheferrichydroxide hencethereducedeffectivepHrangeJ.Hering,“ArsenicRemovalbyEnhanced CoagulationandMembraneProcesses”,MenachemElimelech,DepartmentofCivilandEnvironmental Engineering,UniversityofCalifornia,LosAngeles,,internetsite:http://www.awwarf.com/exsums/90706.htm, 1996. Recoveryofcoagulants

Afterthecoagulationprocessiscompletethesludgemaybeacidifiedwith sulphuricacidtosolubilizethemetalionsusedforcoagulation.Edwardsand Benjamin,ascitedbyDrosteR.Droste,TheoryandPracticeofWaterandWastewaterTreatment,JohnWiley &Sons,NewYork,P262,1997,regeneratedferricsludges50timesbytreatingthesludgeat aphof3.5-4.5toredissolvetheferricions.Iftoxicionssuchasorcadmium arepresentinthesludge,carefulmonitoringisrequiredtopreventcontaminationof thetreatedwater.

T a b l e ? ? A C o m p a r i s o n o f A r s e n i c R e m o v a l T e c h n i q u e s

M e t h o d [ A s ] i n i t i a A s S u b s t r a t e % A s L e a c h I n t e r f e r D a t a

l m g / L V a l e n c y D o s e R e m o t e s t e n t v a l p a s s i o n s = P , F a i l = F

F e C l 3 & C a ( O H ) 2 9 . 8 ? 0 . 5 - 1 . 0 g / L 9 8 - R e f - L e i s t 9 9 L . M N e i l , a n d M . E d w a r d s , “ A r s e n i c r e m o v a l d u r i n g p r e c i p i t a t i v e s o f t e n i n g ” , C a C O 3 a n d i r o n 0 . 0 1 0 5 9 m g / L 8 2 ( v a l e n c e n o t o f E n v i r o n m e n t a l E n g i g i v e n )

F e C l 3 3 1 ? 0 . 2 - 1 . 0 g / L 8 6 - - L e i s t 9 3 S . A r r y k u l , N . M a h a r a t c h a p o n g , K . K o o p t a r n o n , P . B u n n a u l , “ A r s e n i c r e m o v a l f r o m F e C l 3 0 . 1 5 F e / A s 9 0 % ? - > 4 / 1 p o t a l b l e w a t e r ” , i n t e r n e t s i t e : h t t p : / / w w w . p s u . a c . t h / e p i d e m i o l o g y / c o n f e r / 5 s u r a p o e . h t m l

J . H e r i n g . P . C h e n , J . W i l k i e , M . E l i m e l c h , a n d S . L i a n g , “ A r s e n i c r e m o v a l b y f e r r i c F e C l 3 0 . 0 2 5 F e / A s 9 7 % ? = 1 1 6 / 1 c h l o r i d e ” , J o u r n a l o f A m e r i c a n W a t e r ( 1 9 9 6 ) .

J . H e r i n g . P . C h e n , J . W i l k i e , M . E l i m e l c h , a n d S . L i a n g , “ A r s e n i c r e m o v a l b y f e r r i c F e C l 3 0 . 0 2 3 F e / A s 6 5 % ? = 5 8 / 1 c h l o r i d e ” , J o u r n a l o f A m e r i c a n W a t e r W o r k s A s s o c i a t i o n ( 1 9 9 6 ) .

58

( 1 9 9 6 ) .

S . T o k u n g a , S . Y o k o y a m a , a n d S . W a s a y , “ R e m o v a l o f a e r s e n i c ( I I I ) a n d a r s e n i c ( V ) L a C l 3 18.75 3 1 4 0 i o n s f r o m a q u e o u s s o l u t i o n s w i t h l a n t h a n u m ( I I I ) s a l t a n d c o m p a r i s o n w i t h

a l u m i n i u m ( I I I ) , c a l c i u m ( I I ) , a n d i r o n ( I I I ) s a l t s ” ,

W‡V , N o . 3 , p p 2 9 9

S . T o k u n g a , S . Y o k o y a m a , a n d S . W a s a y , “ R e m o v a l o f a e r s e n i c ( I I I ) a n d a r s e n i c ( V ) L a C l 3 18.75 5 1 9 9 . 5 i o n s f r o m a q u e o u s s o l u t i o n s w i t h l a n t h a n u m ( I I I ) s a l t a n d c o m p a r i s o n w i t h

a l u m i n i u m ( I I I ) , c a l c i u m ( I I ) , a n d i r o n ( I I I )

W‡V , N o . 3 , p p 2 9 9 T.Harper,and.Kingham,“removalofarswenicfromwastewaterusingprecipitativemethods”, F e C l 3 & C a ( O H ) 2 9 . 8 - Fe/As=46 9 8 - ? ? WaterEnvironmentresearc 9 9 23

9 8 T.Harper,and.Kingham,“removalofarswenicfromwastewaterusingprecipitativemethods”, N a 2 S & C a ( O H ) 2 9 . 8 - Na2S/As= 8 1 ? ? WaterEnvironmentresearch,Vol.64,pp200 140 T . H a r p e r , a n d . K i n g h a m , “ r e m o v a l o f a r s w e n i c f r o m w a s t e w a t e r u s i n g p r e c i p i t a t i v e A l u m & C a ( O H ) 2 9 . 8 ? Al/As=6.0 7 9 ? ? m e t h o d s ” , W a t e r E n v i r o n m e n t r e s e a r c h , V o l . 6 4 , p p 2 0 0 P r e f o r m e d 0.010 5 3 7 5 9 8 ? J . H e r i n g . P . C h e n , J . W i l k i e , M . E l i m e l c h , a n d S . L i a n g c h l o r i d e ” , J o u r n a l o f A m e r i c a n W a t e r W o r k s A s s o c o a i t i o n F e ( O H ) 3 ( 1 9 9 6 ) . P r e f o r m e d 0.010 3 3 7 5 9 2 ? J . H e r i n g . P . C h e n , J . W i l k i e , M . E l i m e l c h , a n d S . L i a n g , “ A r s e n i c r e m o v a l b y f e r r i c c h l o r i d e ” , J o u r n F e ( O H ) 3 ( 1 9 9 6 ) .

3 - L . M N e i l , a n d M . E d w a r d s , “ A r s e n i c r e m o v a l d u r i n g p r e c i p i t a t i v e s o f t e n i n g ” , M g ( O H ) 2 f o r m e d 0 . 0 1 5 5 5 0 m g / L > 9 5 P O 4 , i n s i t u M g 2 + O H - a t o f E n v i r o n m e n t a l E n g i n e e r p H > 1 1 . 5 6

ËÍÌ(ÎBÏÑÐ_ÒFÓ 2 - L . M N e i l , a n d M . E d w a r d s , “ A r s e n i c r e m o v a l d u r i n g p r e c i p i t a t i v e s o f t e n i n g ” , 0 . 0 2 5 5 2 0 m g / L > 9 5 C O 3 2 + o f E n v i r o n m e n t a l E n g i n e e r i n g ÔÕ§Ö[קØ(ÕEÙÚÖÛ M g

ËÑÜÎBÏÑÐ_ÒFÓ 0 . 0 7 5 5 1 m g / L 8 0 L . M N e i l , a n d M . E d w a r d s , “ A r s e n i c r e m o v a l d u r i n g p r e c i p i t a t i v e s o f t e n i n g ” , 2 + o f E n v i r o n m e n t a l E n g i n e e r i n g ÔÕ§Ö[קØ(ÕEÙÚÖÛ M n

N a 2 S , p H 8 , F e ? ? ? 9 8 - l e i s t 9 9 . 6 T r i v a l e n t F e & C r 1 0 5 8 g / L 9 7 . 8 L e i s t h y d r o x i d e s M n + t r e a t e d G A C 1 5 5 ? 9 9 ( B a , C u , F e I I , I I I

59

F e I I I ) M n g r e e n s a n d & 0 . 2 3 F e : A s = 2 0 8 7 . 5 V i r a r a g h a v a n F e M n g r e e n s a n d 0 . 0 5 2 5 8 9 M . E d w a r d s , “ C h e m i s t r y o f a r s e n i c r e m o v a l d u r i n g c o a g u l a t i o n a n d F e o x i d a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a ( 1 9 9 4 ) . GSAResourcesInc.,Applicationdatasheet:Removalofarsenicandotherheavymetalsfrom I r o n ( I I ) l a d e n ? 3 & 5 * * ? ? P water,website:www.gsaresources.com,(200 C h a b a z i t e ( a f i n a l z e o l i t e ) c o n c . < 5 p p b I r o n o x i d e c o a t e d - 3 , 5 P U S E P A , T e c h n o l o g i e s a n d c o s t s f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r , s a n d i n t e r n e t s i t e : 4 3 , 2 0 0 0 . I r o n f i l i n g s 2 . 0 - 5 9 5 - ? U S E P A , T e c h n o l o g i e s a n d c o s t s f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r , 2 0 . 0 8 1 * i n t e r n e t s i t e : 4 7 , 2 0 0 0 . E l e m e n t a l i r o n & - 5 - # P U S E P A , T e c h n o l o g i e s a n d c o s t s f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r , i n t e r n e t s i t e : S u l p h u r a n d H 2 O 2 4 4 , 2 0 0 0 . C e m e n t l e a c h a t ? 0 . 4 4 g 9 5 P V . D u t r e , C . C h e s t e n s , J . S c h a e p , C . V a n d e c a t e e l e , “ S t u d y o f t h e r e m e d i a t i o n o f a s i t e c o n t a m i n a t e d w i t h a r s e n i c ” , s t a b i l i z a t i o n ( o f e [ A s ] = c e m e n t ( o r p p 1 8 5 - 1 9 4 . 1 9 9 8 . s o l i d s ) 1 6 . 1 p p l i m e ) / g m s o i l P C e m e n t & l i m e & 1 . 0 g 9 9 s t a b i l i z a t i o n ( o f w a t e r \ s o l i d s ) P l i m e [ o n l y ] 9 6 s t a b i l i z a t i o n ( o f s o l i d s ) I r o n I I l a d e n - 3 , 5 2 . 2 g A s V - P G S A R e s o u r c e s I n c . , “ R e m o v a l o f a r s e n i c a n d o t h e r h e a v y m e t a l s f r o m w a t e r ” , Z e o l i t e o r 7 . 5 g C o r t a r o , A r i z o n a 8 5 6 5 2 , i n t e r n e t s i t e : A s I I I / k g m e d i a M e m b r a n e 0 . 0 2 5 5 5 - > 9 5 P P . B r a n d h u b e r , a n d G . A m y , “ A l t e r n a t i v e m e t h o d s f o r m e m b r a n e f i l t r a t i o n o f a r s e n i c f i l t r a t i o n 0 . 0 1 8 5 3 - 5 7 f r o m d r i n k i n g w a t e r ” , T e c h n o l o g i e s a n d c o s t s f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r ,

h t t p : / / w w w . e p a . g o v / s a f e w a t e r / a r s / t r e a t m e n t s _ a n d _ c o s t s

60

* 7 d a y r e a c t i o n s t o a t t a i n l e s s t h a n 0 . 0 5 p p m A s * * C a p a c i t y f o r a r s e n i t e a n d a r s e n a t e a r e 6 - 9 a n d 2 - 2 . 5 g A s / k g m e d i a # e q u i l i b r i u m c o n c e n t r a t i o n s b e l o w 0 . 0 5 p p m w e r e a t t a i n e d w i t h u p t o 5 0 m g A s a d s o r b e d / g F e ? i n d i c a t e t h a t t h e s a m p l e s w e r e n o t s p e c i a t e d \ 2 w e e k s s e t t i n g t i m e

P r e c i p i t a t i o n o f s m a l l a m o u n t s h i g h l y c o n c e n t r a t e d a r s e n i c w a s t e s i s c o s t e f f e c t i v e M . L e i s t , R . J . C a s e y , a n d D . C a r i d i , “ T h e m a n a g e m e n t o f a r s e n i c w a s t e s : p r o b l e m s a n d p r o s p e c t s ” ,

J o u r n a l o f H a z a r d o u s M a t e r i a l s , V o l . W20 , N o . 1 , p p 1 2 5 - 1 3 8 , 2 0 0 0 .

A r s e n i c i s m o s t e f f e c t i v e l y r e m o v e d i n t h e p e n t a v a l e n t s t a t e , i r o n c o a g u l a t i o n b e i n g t h e p r e f e r r e d m e t h o d o f r e m o v a l . M . L e i s t , R . J . C a s e y , a n d D . C a r i d i , “ T h e m a n a g e m e n t o f

a r s e n i c w a s t e s : p r o b l e m s a n d p r o s p e c t s ” , J o u r n a l o f H a z a r d o u s M a t e r i a l s , V o l . W20 , N o . 1 , p p 1 2 5 - 1 3 8 , 2 0 0 0 . / / / / / J .

H e r i n g . P . C h e n , J . W i l k i e , M . E l i m e l c h , a n d S . L i a n g , “ A r s e n i c r e m o v a l b y f e r r i c c h l o r i d e ” , J o u r n a l o f A m e r i c a n W a t e r

W o r k s A s s o c o a i t i o n , V o l . c2c , 4 , p p 1 5 5 - 1 6 7 , ( 1 9 9 6 ) .

Interferencebyanionsduringferricprecipitationofarsenic

A r s e n i t e r e m o v a l ( p r e c i p i t a t i o n , o r a d s o r p t i o n o n t o p r e f o r m e d f e r r i c h y d r o x i d e ) i s m o r e s e n s i t i v e t o i n t e r f e r e n c e b y c o m p e t i n g a n i o n s ( s u c h a s s u l p h a t e o r p h o s p h a t e ) t h a n a r s e n a t e r e m o v a l J . H e r i n g . P . C h e n , J . W i l k i e , M . E l i m e l c h , a n d S .

L i a n g , “ A r s e n i c r e m o v a l b y f e r r i c c h l o r i d e ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c o a i t i o n , V o l . c2c , 4 , p p 1 5 5 - 1 6 7 , ( 1 9 9 6 ) . . T h e p r e s e n c e o f 3 m M c a l c i u m ( a t p H 9 . 0 ) a u g m e n t e d t h e a r s e n a t e r e m o v a l f o r b o t h p r e c i p i t a t i o n b y f e r r i c c h l o r i d e a n d a d s o r p t i o n o n t o p r e f o r m e d f e r r i c h y d r o x i d e a n d i t r e d u c e d t h e p h o s p h a t e i n t e r f e r e n c e J . H e r i n g . P . C h e n , J . W i l k i e , M . E l i m e l c h , a n d S . L i a n g , “ A r s e n i c r e m o v a l b y f e r r i c c h l o r i d e ” , J o u r n a l o f t h e A m e r i c a n W a t e r

W o r k s A s s o c o a i t i o n , V o l . c2c , 4 , p p 1 5 5 - 1 6 7 , ( 1 9 9 6 ) . . T h i s o b s e r v a t i o n i s i n a g r e e m e n t w i t h t h e w o r k o f M c N e i l a n d E d w a r d s L . M N e i l , a n d M . E d w a r d s , “ A r s e n i c r e m o v a l d u r i n g p r e c i p i t a t i v e s o f t e n i n g ” , J o u r n a l o f E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 1 2 3 , N o . 5 , p p 4 5 3 - 4 6 0 , 1 9 9 7 . . M e n g e t a l X . M e n g , S . B a n g , a n d G . K o r f i a t i s , “ E f f e c t s o f s i l i c a t e , s u l p h a t e , a n d c a r b o n a t e o n a r s e n i r e m o v a l b y f e r r i c c h l o r i d e ” , W a t e r R e s e a r c h , V o l . X2b , I s s u e 4 , p p 1 2 5 5 - 1 2 6 2 , ( 2 0 0 0 ) . f o u n d t h a t s i l i c a t e s i g n i f i c a n t l y d e c r e a s e d a r s e n i t e r e m o v a l w h e n t h e S i c o n c e n t r a t i o n e x c e e d e d 1 m g / L a n t h e p H w a s g r e a t e r t h a n 5 , w h i l e a r s e n a t e w a s o n l y s l i g h t l y r e d u c e d ; c a l c i u m a n d m a g n e s i u m i o n s c o u n t e r a c t e d t h i s e f f e c t i n a r s e n a t e c o a g u l a t i o n . S u l p h a t e a n d c a r b o n a t e h a d a n e g l i g i b l e e f f e c t o n b o t h a r s e n i t e a n d a r s e n a t e r e m o v a l s . C a C O 3 , M g ( O H ) 2 , M n ( O H ) 2 , a n d F e ( O H ) 3 w e r e f a c i l i t a t e d t h e

61 r e m o v a l o f a r s e n i c d u r i n g p r e c i p i t a t i v e s o f t e n i n g o f w a t e r A m e r i c a W a t e r W o r k s A s s o c i a t i o n R e s e a r c h F o u n d a t i o n , i n t e r n e t s i t e : h t t p : / / w w w . a w w a r f . c o m / e x u m s / 1 5 3 . h t m , ( 2 0 0 0 ) . .

D a v i s a n d S t u m , a s c i t e d b y M e n g e t a l X . M e n g , S . B a n g , a n d G . K o r f i a t i s , “ E f f e c t s o f s i l i c a t e ,

s u l p h a t e , a n d c a r b o n a t e o n a r s e n i r e m o v a l b y f e r r i c c h l o r i d e ” , W a t e r R e s e a r c h , V o l . X2b , I s s u e 4 , p p 1 2 5 5 - 1 2 6 2 , ( 2 0 0 0 ) . , s u c c e s s f u l l y d e s c r i b e d t h e a d s o r p t i o n o f c a t i o n s a n d a n i o n s o n t h e s u r f a c e s o f m e t a l o x i d e s a n d h y d r o x i d e s u s i n g s u r f a c e c o m p l e x a t i o n m o d e l s . M e n g u s e d t h e t r i p l e l a y e r m o d e l ( T L M ) t o d e s c r i b e t h e i n t e r f e r e n c e o f s i l i c a t e i n t h e a d s o r p t i o n o f a r s e n i t e a n d a r s e n a t e o n t h e s u r f a c e o f f e r r i c h y d r o x i d e s f o r m e d d u r i n g f e r r i c c o a g u l a t i o n . T h e t r i p l e l a y e r m o d e l s i m u l a t e s t h e f o r m a t i o n o f i n n e r a n d o u t e r s u r f a c e c o m p l e x e s b y p l a c i n g t h e a d s o r b e d i o n s i n d i f f e r e n t p l a n e s i n t h e e l e c t r i c a l l a y e r K . H a y e s , a n d J . L e c k i e , “ M o d e l l i n g i o n i c s t r e n g t h

e f f e c t s o n a n i o n a d s o r p t i o n a t h y d r o u s o x i d e / s o l u t i o n i n t e r f a c e s ” , J o u r n a l o f C o l l o i d I n t e r f a c e S c i e n c e , V o l . VTa21 , p p

7 1 7 - 7 2 6 , 1 9 8 8 . T h e r e m o v a l o f a r s e n i t e a n d a r s e n a t e ( 0 . 1 m g A s / L a t p H 6 . 8 ) d e c r e a s e d f r o m a p p r o x i m a t e l y 9 0 t o 4 5 % w h e n t h e s i l i c a t e c o n c e n t r a t i o n w a s i n c r e a s e d f r o m 1 - 1 0 m g / L d u r i n g c o a g u l a t i o n s w i t h 5 m g / L f e r r i c c h l o r i d e X . M e n g , S . B a n g , a n d G .

K o r f i a t i s , “ E f f e c t s o f s i l i c a t e , s u l p h a t e , a n d c a r b o n a t e o n a r s e n i r e m o v a l b y f e r r i c c h l o r i d e ” , W a t e r R e s e a r c h , V o l . X2b , I s s u e 4 , p p 1 2 5 5 - 1 2 6 2 , ( 2 0 0 0 ) . A t p H l e v e l s l e s s t h a n 6 . 8 a r s e n a t e r e m o v a l s w e r e n o t a f f e c t e d b y s i l i c a t e . T h e p r e s e n c e o f p o s i t i v e l y c h a r g e d c a l c i u m a n d m a g n e s i u m i o n s c o u n t e r a c t e d t h e s i l i c a t e i n t e r f e r e n c e – t h e s e i o n s w o u l d h a v e r e d u c e d t h e n e g a t i v e s u r f a c e c h a r g e t h u s p e r m i t t i n g t h e a r s e n a t e t o c o n t a c t t h e h y d r o x i d e s u r f a c e X . M e n g , S . B a n g , a n d G . K o r f i a t i s , “ E f f e c t s o f s i l i c a t e , s u l p h a t e , a n d c a r b o n a t e o n a r s e n i r e m o v a l b y f e r r i c c h l o r i d e ” , W a t e r R e s e a r c h , V o l . X2b , I s s u e 4 , p p 1 2 5 5 - 1 2 6 2 , ( 2 0 0 0 ) . . R e p l a c i n g s o d i u m h y d r o x i d e w i t h c a l c i u m h y d r o x i d e l e a d t o e n h a n c e d f e r r i c p r e c i p i t a t i o n o f a r s e n a t e i n t h e p r e s e n c e o f s u l p h a t e ; t h i s i m p r o v e m e n t i s m o s t l i k e l y d u e t o t h e f o r m a t i o n o f t h e g y p s u m N . P a p a s s i o p i , E . V i r c i k o v a , V . N e n o v , A . K o n t o p o u l o s , L . M o l n a r , “ R e m o v a l a n d f i x a t i o n o f a r s e n i c i n t h e f o r m o f f e r r i c a r s e n a t e s ” , H y d r o m e t a l l u r g y , V o l . b‡V , p p 2 4 3 - 2 5 3 , ( 1 9 9 6 ) . .

T h e T L M X . M e n g , S . B a n g , a n d G . K o r f i a t i s , “ E f f e c t s o f s i l i c a t e , s u l p h a t e , a n d c a r b o n a t e o n a r s e n i r e m o v a l b y f e r r i c c h l o r i d e ” , W a t e r R e s e a r c h , V o l . X2b , I s s u e 4 , p p 1 2 5 5 - 1 2 6 2 , ( 2 0 0 0 ) . i n c l u d e d s u r f a c e r e a c t i o n s s u c h a s p r o t o l y s i s , a n d e l e c t r o l y t e b i n d i n g : L o g K + + • S u r f a c e i o n i z a t i o n s : S O H + H I S O H 2 5 . 1 S O H I S O - + H + - 1 0 . 7

62

• E l e c t r o l y t e a d s o r p t i o n : S O H + K + I S O - K + H + - 9 . 0 - S O H + N O 3 I S O H 2 - N O 3 6 . 9 ( S O H r e f e r s t o s u r f a c e h y d r o x i d e )

• I n n e r s p h e r e s u r f a c e c o m p l e x a t i o n r e a c t i o n s i n c l u d e : L o g K 2 - + S O H + H 3 A s O 4 I S A s O 4 + H 2 O + 2 H 0 . 6 - + S O H + H 3 A s O 3 I S H A s O 3 + H 2 O + H - 3 . 1 + + S O H + H 3 A s O 3 + K I S A s O 3 K + H 2 O + H - 2 . 1 + + S O H + H 4 S i O 4 + K I S H 2 S i O 4 K + H 2 O + H - 2 . 1

T h e s i z e o f F e ( O H ) 3 p r e c i p i t a t e s t h a t f o r m u p o n d i s s o l u t i o n o f f e r r i c c h l o r i d e w a s s e e n t o v a r y a c r o s s t h e p H r a n g e 4 - 9 w i t h t h e l a r g e r p a r t i c l e s e x i s t i n g a t t h e e x t r e m e s a n d t h u s p o s s e s s i n g g r e a t e r a d s o r p t i v e c a p a c i t i e s f o r a r s e n i t e a t t h e s e e x t r e m e s d u e t o t h e g r e a t e r a v a i l a b l e s u r f a c e a r e a J . H e r i n g . P . C h e n , J . W i l k i e , M . E l i m e l c h , a n d S . L i a n g , “ A r s e n i c r e m o v a l b y f e r r i c c h l o r i d e ” , J o u r n a l o f A m e r i c a n W a t e r W o r k s

A s s o c o a i t i o n , V o l . c2c , 4 , p p 1 5 5 - 1 6 7 , ( 1 9 9 6 ) . .

P a p a s s i o p i e t a l N . P a p a s s i o p i , E . V i r c i k o v a , V . N e n o v , A . K o n t o p o u l o s , L . M o l n a r , “ R e m o v a l a n d f i x a t i o n o f a r s e n i c i n t h e f o r m o f f e r r i c a r s e n a t e s ” , H y d r o m e t a l l u r g y , V o l . b‡V , p p 2 4 3 - 2 5 3 , ( 1 9 9 6 ) . f o u n d t h a t p H , s u l p h a t e c o n t e n t , a n d i n i t i a l a r s e n i c c o n c e n t r a t i o n i n f l u e n c e d t h e a q u e o u s r e m o v a l o f a r s e n i c . T h e e f f e c t i v e n e s s o f a r s e n i c r e m o v a l i s m a i n l y d e p e n d a n t o n t h e F e / A s r a t i o . T h e o p t i m u m p H f o r p r e c i p i t a t i o n d e p e n d s o n t h e F e / A s m o l a r r a t i o n p r e s e n t i n t h e i n i t i a l s o l u t i o n . T h e p H f o r m a x i m u m r e m o v a l s h i f t e d f r o m 3 t o 5 t o 6 a s t h e F e / A s m o l a r r a t i o i n c r e a s e d f r o m 2 t o 4 t o 6 , r e s p e c t i v e l y . T h e e f f e c t i v e n e s s o f a r s e n i c p r e c i p i t a t i o n a n d s e t t l i n g r a t e i n c r e a s e d w i t h F e / A s m o l a r r a t i o a n d t h e s e p r e c i p i t a t e s w e r e m o s t s t a b l e t o , l e a c h i n g a t p H 5 . 0 a t 2 5 o C . T h e y a l s o f o u n d t h a t t h e f e r r i c a r s e n a t e s w e r e m o s t s t a b l e i n t h e p H r a n g e o f 3 - 8 w i t h a r s e n i c s o l u b i l i t y ’ s r e m a i n i n g l e s s t h a n 0 . 1 0 0 m g / L . F e r r i c a r s e n a t e p r e c i p i t a t e s w i t h F e / A s r a t i o s a b o v e 3 a r e c o n s i d e r e d s a f e f o r d i s p o s a l u p t o n e u t r a l p H v a l u e s w h i l e t h o s e w i t h F e / A s r a t i o s > 5 . 9 m a y b e d i s p o s e d e v e n a t a l k a l i n e p H v a l u e s . T h e p r e c i p i t a t e r e l e a s e d f r o m 0 . 0 1 - a p p r o x i m a t e l y 0 . 1 m g A s / L . T h e s e f a c t o r i n d i c a t e t h a t s u i t a b l y f o r m e d f e r r i c a r s e n a t e s a r e s t a b l e i n t h e p H r a n g e f r o m 3 - 8 u n d e r l a b o r a t o r y c o n d i t i o n s , h o w e v e r , t h e e n v i r o n m e n t s u c h a p r e c i p i t a t e w i l l

63 e x p e r i e n c e i n a l a n d f i l l i s u n p r e d i c t a b l e a n d d i f f e r e n t b e h a v i o r m a y b e e n c o u n t e r e d .

L a n t h a n u m c h l o r i d e e x h i b i t s a w i d e r p H w i n d o w c o m p a r e d t o f e r r i c c h l o r i d e I t h t c o a g u l a t i o n o f a r s e n a t e ; t h e r e s p e c t i v e p H w i n d o w s a r e 5 - 1 0 a n d 5 - 7 S . T o k u n g a , S . Y o k o y a m a , a n d S . W a s a y , “ R e m o v a l o f a e r s e n i c ( I I I ) a n d a r s e n i c ( V ) i o n s f r o m a q u e o u s s o l u t i o n s w i t h l a n t h a n u m ( I I I ) s a l t a n d c o m p a r i s o n w i t h a l u m i n i u m ( I I I ) , c a l c i u m ( I I ) , a n d i r o n ( I I I ) s a l t s ” , W a t e r E n v i r o n m e n t

R e s e a r c h , V o l . W‡V , N o . 3 , p p 2 9 9 - 3 0 6 , ( 1 9 9 9 ) . . T h i s w i d e r w i n d o w i s a d v a n t a g e o u s t o w a t e r t r e a t m e n t s i n c e w a t e r s m a y r e q u i r e l e s s p r e t r e a t m e n t s i n c e m o s t n a t u r a l w a t e r s p H r a n g e s a r e i n t h e p H r a n g e o f 5 - 1 0 .

M a n g a n e s e g r e e n s a n d ( M n O 2 - c o a t e d s a n d ) c o m b i n e d w i t h F e a d d i t i o n ( F e : A s = 2 0 ) r e d u c e s A s I I I l e v e l s f r o m 0 . 2 0 0 m g / L t o 0 . 0 2 5 m g / L . T . V i r a r a g h a v a n , K . S . S u b r a m a n i a n , a n d J . A . A r u l d o s s , “ A r s e n i c i n d r i n k i n g w a t e r : p r o b l e m s a m d s o l u t i o n s ” , W a t e r S c i e n c e a n d T e c h n o l o g y ,

V o l . b2d , N o . 2 , 1 9 9 9 .

T a b l e ? ? A c o m p a r i s o n o f t h e r e m o v a l o f T r i v a l e n t a n d P e n t a v a l e n t A r s e n i c R e m o v a l A g e n t % A s I I I R e m o v e d % A s V R e m o v e d r e f

F e C l 3 3 0 9 0 l e i s t F e I I I 4 0 7 6 l e i s t L a I I I 6 0 9 9 S . T o k u n g a , S . Y o k o y a m a , a n d S .

W a s a y , “ R e m o v a l o f

a e r s e n i c ( I I I ) a n d

a r s e n i c ( V ) i o n s f r o m

a q u e o u s s o l u t i o n s w i t h

l a n t h a n u m ( I I I ) s a l t

a n d c o m p a r i s o n w i t h

a l u m i n i u m ( I I I ) ,

c a l c i u m ( I I ) , a n d

i r o n ( I I I ) s a l t s ” ,

W a t e r E n v i r o n m e n t

R e s e a r c h , V o l . W‡V , N o .

3 , p p 2 9 9 - 3 0 6 , ( 1 9 9 9 ) . A l I I I & p o l y A l 0 4 0 ? c h r o i d e

64

R e v e r s e o s m o s i s & 5 7 > 9 5 P . B r a n d h u b e r , a n d G . n a n o f i l t r a t i o n A m y , “ A l t e r n a t i v e m e t h o d s f o r m e m b r a n e

f i l t r a t i o n o f a r s e n i c

f r o m d r i n k i n g w a t e r ” ,

D e s a l i n a t i o n , V o l . V2VTW , p p 1 - 1 0 , 1 9 9 8 .

T a b l e ? ? A C o m p a r a t i v e R e v i e w o f A l u m v e r s u s F e r r i c C o a g u l a t i o n [ F e I I I ] [ F e I [ A l u m ] p H [ A s ] A s C o a g u l a n t % A s r e f m g / L I ] m g / L p p m o x i d a t i : A s m o l e r e m o v e m g / o n r a t i o d L s t a t e 3 3 5 1 0 - - 5 7 5 0 0 5 6 ~ 1 0 0 N . P a p a s s i o p i , E . V i r c i k o v a , V . 1 6 8 0 0 - - 5 3 7 7 5 5 6 ~ 1 0 0 N e n o v , A . K o n t o p o u l o s , L . 8 5 5 0 - - 5 1 9 1 3 5 6 ~ 1 0 0 M o l n a r , “ R e m o v a l a n d f i x a t i o n 2 2 3 - - 5 5 0 5 6 9 9 . 9 5 o f a r s e n i c i n t h e f o r m o f f e r r i c a r s e n a t e s ” ,

H y d r o m e t a l l u r g y , V o l . b 2 4 3 - 2 5 3 , ( 1 9 9 6 ) . - - 2 . 4 5.5 0 . 3 3 2 2 . 5 4 1 # M . E d w a r d s , “ C h e m i s t r y o f -9 a r s e n i c r e m o v a l d u r i n g

c o a g u l a t i o n a n d F e - M n

o x i d a t i o n ” , J o u r n a l o f t h e

A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l . U , p p 6 4

( 1 9 9 4 ) . 5 . 0 - - 5.5 0 . 3 3 2 2 . 5 8 3 M . E d w a r d s , “ C h e m i s t r y o f -9 a r s e n i c r e m o v a l d u r i n g

c o a g u l a t i o n a n d F e - M n

o x i d a t i o n ” , J o u r n a l o f t h e

A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l . U , p p 6 4

( 1 9 9 4 ) . 1 0 - 5 0 - 5 - ? 5 8 9 - 9 9 J . G u l l e d g e , a n d J O ’ C o n n e r , “ r e m o v a l o f a r s e n i c ( V ) f r o m F e 2 ( S O 4 8 w a t e r b y a d s o r p t i o n o n ) . 9 H 2 O a l u m i n i u m a n d f e r r i c

65

a l u m i n i u m a n d f e r r i c

h y d r o x i d e s ” , J o u r n a l o f t h e

A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l . 021 , I s s u e 8 ,

p p 5 4 8 - 5 5 2 , ( 1 9 7 3 ) . - - 1 0 - 5 - ? 5 1 9 - 9 4 J . G u l l e d g e , a n d J O ’ C o n n e r , 5 0 * * 8 “ r e m o v a l o f a r s e n i c ( V ) f r o m w a t e r b y a d s o r p t i o n o n

a l u m i n i u m a n d f e r r i c

h y d r o x i d e s ” , J o u r n a l o f t h e

A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l . 021 , I s s u e 8 ,

p p 5 4 8 - 5 5 3 , ( 1 9 7 3 ) . 3 – 1 0 * * - - 5 - 0 . 0 0 1 6 5 8 3 4 - 2 7 5 2 8 3 - 9 6 K . S c o t t , J . G r e e n , H . D o , a n d S M c L e a n , “ A r s e n i c r e m o v a l b y ( F e C l 3 ) 8 c o a g u l a t i o n ” , J o u r n a l o f t h e

A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l . b , p p 1 1 4

( 1 9 9 5 ) . - - 6 - 2 0 5 - - 5 9 4 3 - 3 1 4 5 2 3 - 6 7 K . S c o t t , J . G r e e n , H . D o , a n d 8 S M c L e a n , “ A r s e n i c r e m o v a l b y c o a g u l a t i o n ” , J o u r n a l o f t h e

A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l . b , p p 1 1 4 ( 1 9 9 5 ) . - - 3 0 + 5 - 0 . 0 5 5 > 9 0 E d w a r d s c i t e d b y 7 L e i s t I n d e p e n C h e n g d e n t o f p H a t 5 . 5 – 7 . 0 * a s f e r r i c s u l p h a t e * * P o l y m e r ( c a t i o n i c p o l y D A D M A C ) d o s e s o f 2 - 3 m g / L w e r e u s e d , a n d 0 . 0 1 m g / L n o n i o n i c p o l y a c r y l a m i d e w a s a d d e d a s a f i l t e r a i d . # s o r p t i o n d e n s i t i e s w e r e s i g n i f i c a n t l y h i g h e r f o r i r o n ( m i n i m u m v a l u e > 0 . 0 1 M A s / M F e ) t h a n a l u m i n i u m ( m a x i m u m v a l u e < M A s / M A l ) # # w a s t e w a t e r s a m p l e

66

B e l o w a p H o f 7 . 5 a l u m a n d f e r r i c i o n s ( o n a m o l a r b a s i s ) a r e c o m p a r a b l e c o a g u l a n t s , b u t f e r r i c i o n s a r e s u p e r i o r i n a r s e n i t e r e m o v a l a t p H l e v e l s g r e a t e r t h a n 7 . 5 . A b o v e p H 8 a l u m i n i u m h y d r o x i d e i s s o l u b l e . M . E d w a r d s , “ C h e m i s t r y o f

a r s e n i c r e m o v a l d u r i n g c o a g u l a t i o n a n d F e - M n o x i d a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . U , p p 6 4 - 7 7 , ( 1 9 9 4 ) .

W h e n f e r r i c c o a g u l a n t s a r e a d d e d a l l t h e i r o n f o r m s F e ( O H ) 3 . H o w e v e r , n o t a l l L . M N e i l , a n d M . t h e a l u m i n i u m a d d e d a s a l u m c o a g u l a n t p r e c i p i t a t e s a s A l ( O H ) 3 . E d w a r d s , “ P r e d i c t i n g r s e n i c r e m o v a l d u r i n g m e t a l h y d r o x i d e p r e c i p i t a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l . c2U , N o . 1 , p p 7 5 - 8 6 , ( 1 9 9 7 ) . S i n c e o n l y p a r t i c u l a t e m e t a l ( A l a n d F e ) h y d r o x i d e s c a n m e d i a t e a r s e n i c r e m o v a l , p H s h o u l d b e c a r e f u l l y a d j u s t e d i n a l u m c o a g u l a t i o n t r e a t m e n t u n i t s .

A l l f e r r i c i o n s a r e c o n v e r t e d t o t h e h y d r o x i d e , b u t n o t a l l t h e a l u m i n i u m i s c o n v e r t e d t o t h e c o r r e s p o n d i n g h y d r o x i d e , h e n c e t h e g r e a t e r c o a g u l a t i o n p o w e r o f f e r r i c i o n s . L . M N e i l , a n d M . E d w a r d s , “ P r e d i c t i n g r s e n i c r e m o v a l d u r i n g m e t a l h y d r o x i d e p r e c i p i t a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . c2U , N o . 1 , p p 7 5 - 8 6 , ( 1 9 9 7 ) . F o r e x a m p l e , o f t h e 0 . 7 7 m g / L A l d o s e d a t a w a t e r t r e a t m e n t p l a n t , o n l y 0 . 1 8 m g / L w e r e p r e c i p i t a t e d . L . M N e i l , a n d M . E d w a r d s , “ P r e d i c t i n g r s e n i c r e m o v a l d u r i n g m e t a l h y d r o x i d e

p r e c i p i t a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . c2U , N o . 1 , p p 7 5 - 8 6 , ( 1 9 9 7 ) .

R a m b e r g , a s c i t e d b y M c N e i l e t a l L . M N e i l , a n d M . E d w a r d s , “ P r e d i c t i n g r s e n i c r e m o v a l d u r i n g m e t a l h y d r o x i d e p r e c i p i t a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . c2U , N o . 1 , p p 7 5 - 8 6 , ( 1 9 9 7 ) . , u s e d b o t h f e r r i c c h l o r i d e a n d s u l p h a t e o n a n e q u i m o l a r b a s i s a s c o a g u l a n t s i n p i l o t s c a l e t e s t s , a n d t h e s u l p h a t e w a s o n a v e r a g e f e w p e r c e n t m o r e e f f i c i e n t t h a n t h e c h l o r i d e i n c o a g u l a t i o n o f a 0 . 0 8 0 m g / L a r s e n a t e s o l u t i o n .

T a b l e ? ? T h e E f f e c t o f A d d i t i o n a l I o n s o n C o a g u l a t i o n C o a g u l a n t [ A s ] & A d d i t i o n a l E f f e c t C a u s e o f R e f v a l e n c e I o n E f f e c t 2 + F e C l 3 5 , 3 . 0 m M C a E n h a n c e d C a 3 ( P O 4 ) 2 L e i s t

0 . 0 2 m g / L f o r m a t i o n Ý%ÜÞ[ß(Ü[à C a 2 + a s ÖÛ C a C O 3

A c t i v a t e d 5 A s h i n 5 x I n o r g a n i c i o n s L e i s t c i t i n g C a r b o n C a r b o n e n h a n c e d c o n t r i b u t e d t o H u a n g A s a d s o r p t i o n r e m o v a l

67

A l u m i n a s t r o n g l y a d s o r b s a r s e n i c . W h e n r e g e n e r a t i o n o f t h e a l u m i n a i s p e r f o r m e d b y e l u t i o n w i t h 2 M N a O H o n l y 5 0 - 7 0 % o f t h e a r s e n i c i s r e l e a s e d . U S E P A , T e c h n o l o g i e s a n d c o s t s f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r , i n t e r n e t s i t e : h t t p : / / w w w . e p a . g o v / s a f e w a t e r / a r s / t r e a t m e n t s _ a n d _ c o s t s . , P 4 - 1 9 , 2 0 0 0 .

E d w a r d s M . E d w a r d s , “ C h e m i s t r y o f a r s e n i c r e m o v a l d u r i n g c o a g u l a t i o n a n d F e - M n o x i d a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . U , p p 6 4 - 7 7 , ( 1 9 9 4 ) . d i f f e r e n t i a t e d b e t w e e n c o p r e c i p i t a t i o n a n d a d s o r p t i o n b y p e r f o r m i n g t h e h y d r o x i d e s a n d t h e n a d d i n g t h e a r s e n i c ( t h i s p r o c e d u r e e x c l u d e c o p r e c i p i t a t i o n ) . I f t h e c o a g u l a n t i s a d d e d t o t h e s o l u t i o n c o n t a i n i n g t h e a r s e n i c t h e n c o p r e c i p i t a t i o n a n d a d s o r p t i o n m a y o c c u r .

R e g e n e r a t i o n o f a c t i v a t e d a l u m i n a i s a c c o m p l i s h e d w i t h 4 % N a O H , h o w e v e r r e c o v e r i e s r a n g e f r o m 5 0 - 7 0 % a n d t h e e f f i c i e n c y o f a c t i v a t e d a l u m i n a i s r e d u c e d a f t e r e a c h u s e , h e n c e t h e c o s t l i n e s s o f a c t i v a t e d a l u m i n a s y s t e m s U S E P A , T e c h n o l o g i e s a n d c o s t s f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r , i n t e r n e t s i t e : h t t p : / / w w w . e p a . g o v / s a f e w a t e r / a r s / t r e a t m e n t s _ a n d _ c o s t s . p d f , P 2 - 1 8 , 2 0 0 0 . . S u s p e n d e d s o l i d s c l o g a l u m i n a c o l u m n s a n d m a y b e r e m o v e d b y b a c k w a s h i n g . C l i f f o r d a n d L i n , a s c i t e d b y t h e E P A U S E P A , T e c h n o l o g i e s a n d c o s t s f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r , i n t e r n e t s i t e : h t t p : / / w w w . e p a . g o v / s a f e w a t e r / a r s / t r e a t m e n t s _ a n d _ c o s t s . p d f , P 2 - 1 8 , 2 0 0 0 . f o u n d t h a t s i l i c a a n d m i c a w e r e p a r t i c u l a r l y p r o b l e m a t i c i n a c t i v a t e d a l u m i n a s y s t e m s . A r s e n i c l e v e l s o f 0 . 0 0 3 m g / L m a y b e a c h i e v e d u s i n g a c t i v a t e d a l u m i n a . R e g e n e r a t i o n s b y s t r o n g a c i d a n d s t r o n g b a s e t e n d t o “ c e m e n t ” t h e a c t i v a t e d a l u m i n a c o l u m n s - t h e s o l u b i l i z a t i o n o f t h e a l u m i n a l e a d s t o r e - p r e c i p i t a t i o n o f a l u m i n i u m i n t h e c o l u m n U S E P A , T e c h n o l o g i e s a n d c o s t s f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r , i n t e r n e t s i t e : h t t p : / / w w w . e p a . g o v / s a f e w a t e r / a r s / t r e a t m e n t s _ a n d _ c o s t s . p d f , P 2 - 1 9 , 2 0 0 0 . .

T a b l e ? ? T h e t y p i c a l s i z e r a n g e s o f p a r t i c u l a t e a r s e n i c i n s u r f a c e a n d g r o u n d w a t e r s L . M N e i l , a n d M . E d w a r d s , “ P r e d i c t i n g r s e n i c r e m o v a l d u r i n g m e t a l h y d r o x i d e p r e c i p i t a t i o n ” , J o u r n a l o f t h e

A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . c2U , N o . 1 , p p 7 5 - 8 6 , ( 1 9 9 7 ) . / / / / / / T . H a r p e r , a n d . K i n g h a m , “ R e m o v a l o f a r s w e n i c f r o m w a s t e w a t e r u s i n g p r e c i p i t a t i v e m e t h o d s ” , W a t e r E n v i r o n m e n t r e s e a r c h , V o l . 6 4 , p p 2 0 0 - 2 0 3 , ( 1 9 9 2 ) . P a r t i c l e s i z e w i n d o w F o r m o f G r o u n d w a t e r S u r f a c e W a t e r a r s e n i c > 0 . 4 5 V > A s s i z e > 3 K D a l t o n c o l l o i d a l 1 4 % 1 1 A s s i z e > 3 K D a l t o n d i s s o l v e d 8 3 5 4

68

A s s i z e > 0 . 4 5 V p a r t i c u l a t e 3 3 4 H a r p e r e t a l T . H a r p e r , a n d . K i n g h a m , “ R e m o v a l o f a r s w e n i c f r o m w a s t e w a t e r u s i n g p r e c i p i t a t i v e m e t h o d s ” , W a t e r E n v i r o n m e n t r e s e a r c h , V o l . 6 4 , p p 2 0 0 - 2 0 3 , ( 1 9 9 2 ) . c o m p a r e d d e c a n t a t i o n t o f i l t r a t i o n f o r p h a s e s e p a r a t i o n o f f e r r i c c o a g u l a t e d w a s t e w a t e r c o n t a i n i n g 3 1 m g / L a r s e n i c a n d f o u n d t h a t a n V m f i l t e r r e m o v e d 5 5 m o r e a r s e n i c t h a t w a s l i k e l y t o i n t h e c o l l o i d a l f o r m . R e c e n t w o r k L . M N e i l , a n d M . E d w a r d s , “ P r e d i c t i n g r s e n i c r e m o v a l d u r i n g m e t a l h y d r o x i d e p r e c i p i t a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . c2U , N o . 1 , p p 7 5 - 8 6 , ( 1 9 9 7 ) . h a s d e m o n s t r a t e d t h a t p a r t i c u l a t e a r s e n i c i s n e a r l y a l w a y s a s s o c i a t e d w i t h p a r t i c u l a t e i r o n a n d t h a t p a r t i c u l a t e a r s e n i c i s a s i g n i f i c a n t f r a c t i o n o f t h e t o t a l a r s e n i c i n m a n y r a w w a t e r s . S t u d i e s p e r f o r m e d b y H e r i n g e t a l J . H e r i n g . P . C h e n , J . W i l k i e , M . E l i m e l c h , a n d S . L i a n g , “ A r s e n i c r e m o v a l b y f e r r i c c h l o r i d e ” , J o u r n a l o f A m e r i c a n W a t e r W o r k s A s s o c o a i t i o n , V o l . c2c , 4 , p p 1 5 5 - 1 6 7 , ( 1 9 9 6 ) . o n f e r r i c c o a g u l a t i o n o f l o w l e v e l s o f a r s e n i c ( 0 . 0 2 m g / L a r s e n a t e a n d a r s e n i t e s e p a r a t e l y ) r e v e a l e d t h a t f i l t r a t i o n t h r o u g h 0 . 5 a n d 1 . 0 V m f i l t e r s h a d a n e g l i g i b l e e f f e c t o n t h e % a r s e n i c r e m o v e d , b u t u n f i l t e r e d s o l u t i o n s s h o w e d % a r s e n i c r e m o v a l s 2 - 7 2 % l o w e r t h a n t h e f i l t e r e d s o l u t i o n s . N o o r g a n i c f l o c c u l a n t s w e r e a d d e d i n t h i s p r o t o c o l .

M c N e i l a n d E d w a r d s L . M N e i l , a n d M . E d w a r d s , “ P r e d i c t i n g a r s e n i c r e m o v a l d u r i n g m e t a l h y d r o x i d e p r e c i p i t a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . c2U , N o . 1 , p p 7 5 - 8 6 , ( 1 9 9 7 ) . c o m p i l e d a u s e f u l d e c i s i o n t r e e t h a t m a y b e u s e d t o o p t i m i z e a r s e n i c r e m o v a l – t h e t r e e d i s c u s s e s f a c t o r l i m i t i n g a r s e n i c r e m o v a l , t h e i r c a u s e s , r e m e d i e s a n d p o t e n t i a l d r a w b a c k s a s a f u n c t i o n o f c o m p l e x i t y a n d c o s t . T h e d e c i s i o n t r e e * i n v o l v e s t h e f o l l o w i n g : • C o v e r t a r s e n i t e t o a r s e n a t e p r i o r t o a d d i t i o n o f c o a g u l a n t • I m p r o v e f l o c s e p a r a t i o n b y s e l e c t i o n o f p H , p o l y m e r i c f l o c c u l e n t , a n d / o r c h a n g i n g t h e c o a g u l a n t d o s e • I f a l u m i n i u m f l o c s a r e s t i l l s o l u b l e , i n v e s t i g a t e p H r a n g e o r c o n s i d e r i r o n • I f a r s e n i c s t i l l p a s s e s t h r o u g h t h e s y s t e m i n c r e a s e c o a g u l a n t d o s e a t t h e e x p e n s e o f m o r e s l u d g e a n d a d d i t i o n p H a d j u s t m e n t b y l i m e .

* T h i s d e c i s i o n t r e e i s a p p l i c a b l e t o d r i n k i n g w a t e r t r e a t m e n t s i n c e t h e s e d a t e w e r e g l e a n e d f r o m s u c h w a t e r t r e a t m e n t u n i t s . T h e t r e e i s m o s t l i k e l y t o b e a p p l i c a b l e t o e f f l u e n t t r e a t m e n t w h e r e h i g h a r s e n i c l e v e l s a r e e n c o u n t e r e d s i n c e t h e b a s i c m e c h a n i s m s h o u l d r e m a i n s i m i l a r .

69

MembraneFiltration

M e m b r a n e f i l t r a t i o n i s d i v i d e d i n t o f o u r c a t e g o r i e s ; r e v e r s e o s m o s i s ( R O ) , n a n o f i l t r a t i o n ( N F ) , u l t r a f i l t r a t i o n ( U F ) , a n d m i c r o f i l t r a t i o n ( M F ) . T a b l e ? ? d i s p l a y s t h e c h a r a c t e r i s t i c s o f t h e s e f i l t r a t i o n t e c h n i q u e s D e g r e m o n t , a n d L y o n n a i s e d e E a u x - D u m e z , “ B a s i c p h y s i c a l - c h e m i c a l p r o c e s s e s i n w a t e r t r e a t m e n t ” , W a t e r T r e a t m e n t H a n d b o o k , S i x t h E d i t i o n , V o l u m e 1 , L a v o i s i e r P u b l i s h i n g , P a r i s , p p 5 9 5 - 6 3 5 , ( 1 9 9 1 ) . T a b l e ? ? C h a r a c t e r i s t i c s o f s e l e c t e d f i l t r a t i o n t e c h n i q u e s f i l t r a t i o n r e v e r s e n a n o f i l t r a t i o n u l t r a f i l t r a t i o n m i c r o f i l t r a t i o n m e t h o d o s m o s i s p o r e s i z e ( V m ) 0 . 0 0 2 - 0 . 0 0 2 - 0 . 0 0 0 1 0 . 0 2 - 0 . 0 0 2 V m 2 - 0 . 0 2 V m 0 . 0 0 0 1 s p e c i e s i o n s , c o a r s e f e w e r i o n s , c o a r s e o r g a n i c S o m e v i r u s e s , f i l t e r e d o r g a n i c p a s s a g e o f 3 0 m o l e c u l e s , b a c t e r i a , m o l e c u l e s – 6 0 % o f m a c r o m o l e c u l e s , y e a s t s , a l g a e , m o n o v a l e n t p o l y m e r s , s u s p e n d e d s a l t s , 5 - 1 5 % p r o t e i n s , s o l i d s , c o l l o i d s . p a s s a g e o f v i r u s e s b i v a l e n t s a l t s , c o a r s e o r g a n i c m o l e c u l e s f l u x r a t e o n 1 - 1 0 1 - 1 0 2 0 - 4 0 0 2 0 0 - 5 0 0 p u r e w a t e r ( L . h r - 1 . m - 2 . b a r - 1 )

T a b l e ? ? s u m m a r i z e s m e m b r a n e a p p l i c a t i o n s o f t h e w o r k o f J . H e r i n g J . H e r i n g , “ A r s e n i c R e m o v a l b y E n h a n c e d C o a g u l a t i o n a n d M e m b r a n e P r o c e s s e s ” , M e n a c h e m E l i m e l e c h , D e p a r t m e n t o f C i v i l a n d

E n v i r o n m e n t a l E n g i n e e r i n g , U n i v e r s i t y o f C a l i f o r n i a , L o s A n g e l e s , , i n t e r n e t s i t e : h t t p : / / w w w . a w w a r f . c o m / e x s u m s / 9 0 7 0 6 . h t m , 1 9 9 6 . i n v e s t i g a t i n g a r s e n i c r e m o v a l b y e n h a n c e d c o a g u l a t i o n a n d m e m b r a n e p r o c e s s e s .

T a b l e ? ? P a r a m e t e r s a f f e c t i n g t h e a r s e n i c r e m o v a l s b y d i f f e r e n t m e m b r a n e s

70

F i l t r a t i o n A s O x i d a t i o n A r s e n i c F o r m m e t h o d s t a t e 3 + 5 + D i s s o l v e P a r t i c u l a d t e R O Y Y Y N N F Y / N Y Y / N N U F N Y / N N Y / N M F N N Y / N Y / N Y = y e s , N = n o t p o s s i b l e

á

ßÌ(âã ߨäFå Ü ß¨æÑç â[è ä ß äFå àâã ߨä ßä ä ÎBà ã¡ã å ß(ã è ääBã ß(çã ÒÄß(Ü

Ø Ø Ù Ö ÖÛ ØÍ×BØ(ÕEÙéÔ Õ ÖêÙ Ö(Õ Ø Ø Û Ø(Õ Ö Ö Ö Û

äFÞ ß ä äFÞ ß å ߨä å¡ã ä ߨäFå Ü ß¨æÑç è ã àä å äFÞÍäBÞ ß(å äFÞ ß(ç ä<ß(çã

Ö(ÕBÖ × Ö(Õ Ö ÔÔÕ§ØëÔÕ Öì× Õ Ø Ù Ö Ö Ö ÖÛÍí Ö ÛîØ× Ö Ø¨ï¤Ö Öpð

ñ äFÞ äFÞ ß è Üå‚àÍå‚èÍónÜ ÜÍäBÞ ÜôäFÞ ß å ߨä ç ßëÜ ßæÚç â[è ä

× ÖìקØëÕTÙòØ× Ö Õ Ö Øí Ö Ö ÔÔÕ§ØëÔÕ ÖêÙìÖëÙ Õ ÖêÙ Ö ÖÛ Ø

àääFÞ ß è Üå‚à ß(ã

Ö[× ×BÖ Ö Õ Ö ÕBÖ(ÙÚبï ð

CostofAqueousArsenicRemoval

T a b l e ? ? w a s c o m p i l e d f r o m U S E P A , T e c h n o l o g i e s a n d c o s t s f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r , P 4 - 1 9 , 2 0 0 0 . I t c o m p a r e s t h e c a p i t a l a n d o p e r a t i o n a n d m a n a g e m e n t ( O & M ) c o s t s p r o j e c t e d b y t h e U S E P A .

T a b l e ? ? A c o m p a r i s o n o f t h e c a p i t a l a n d o p e r a t i o n a n d m a i n t e n a n c e c o s t s f o r v a r i o u s a r s e n i c r e m o v a l t e c h n i q u e s U S E P A , T e c h n o l o g i e s a n d c o s t s f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r , i n t e r n e t s i t e : h t t p : / / w w w . e p a . g o v / s a f e w a t e r / a r s / t r e a t m e n t s _ a n d _ c o s t s . p d f , p p 3 - 1 – 3 - 5 7 , 2 0 0 0 . A r s e n i c R e m o v a l F l o w r a t e o f C a p i t a l c o s t s O p e r a t i o n a n d T e c h n i q u e t r e a t e d M a i n t e n a n c e ( e f f l u e n t m e g a c o s t s g a l l o n s / d a y ) A c t i v a t e d a l u m i n a 0 . 0 1 $ 1 0 6 0 0 p H 6 $ 5 0 0 0 0 p H 7 - 8 $ 8 0 0 0 L i m e s o f t e n i n g 0 . 0 1 $ 1 0 3 0 0 $ 6 0 0 C o a g u l a t i o n a s s i s t e d 0 . 0 1 $ 1 5 0 0 0 0 $ 1 1 2 0 0 m i c r o f i l t r a t i o n E n h a n c e d 0 . 0 1 $ 9 0 0 0 $ 3 0 0 c o a g u l a t i o n / f i l t r a t i o n P r e o x i d a t i o n ( 1 . 5 0 . 0 1 $ 7 3 0 0 $ 1 1 0 0 p p m ) C l 2

71

G r a n u l a r f e r r i c 0 . 0 1 - - h y d r o x i d e I o n e x c h a n g e 0 . 0 1 ( < 2 0 p p m $ 1 2 4 0 0 $ 6 0 0 0 s u l p h a t e ) 0 . 0 1 ( 2 0 - 5 0 p p m $ 2 5 0 0 0 $ 9 5 0 0 s u l p h a t e ) G r e e n s a n d f i l t r a t i o n 0 . 0 1 $ 8 5 0 0 0 $ 8 5 0 0

AdsorptionofArsenic

A r s e n i c m a y b e a d s o r b e d b y n u m e r o u s m a t e r i a l s i n c l u d i n g p h y l l o s i l i c a t e s , s i l i c a , h y d r o u s o x i d e s o f F e a n d A l , t r e a t e d a c t i v a t e d c a r b o n , t r e a t e d Z e o l i t e s , s e a s a n d , m a g n e s i u m h y d r o x i d e a n d m a n g a n e s e d i o x i d e R . L . D r o s t e , T h e o r y a n d P r a c t i c e o f W a t e r a n d W a s t e w a t e r T r e a t m e n t , J o h n W i l e y a n d S o n s , N e w Y o r k , p 4 7 8 , 1 9 9 7 . / / / K . R a v e n , A . J a i n ,

R . L o e p p e r t , “ A r s e n i t e a n d a r s e n a t e a d s o r p t i o n o n f e r r i h y d r i t e : k i n e t i c s , e q u i l i b r i u m , a n d a d s o r p t i o n e n v e l o p e s ” ,

E n v i r o n m e n t a l S c i e n c e a n d T e c h n o l o g y , V o l . X2a , p p 3 4 4 - 3 4 9 , 1 9 9 8 . / / / / U S E P A , T e c h n o l o g i e s a n d c o s t s f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r , i n t e r n e t s i t e : h t t p : / / w w w . e p a . g o v / s a f e w a t e r / a r s / t r e a t m e n t s _ a n d _ c o s t s . p d f , P 2 - 1 4 - 2 - 1 9 . 2 0 0 0 . . / / / L . M c N e i l , M . E d w a r d s , “ A r s e n i c r e m o v a l d u r i n g p r e c i p i t a t i v e s o f t e n i n g ” , J o u r n a l o f E n v i r o n m e n t a l E n g i n e e r i n g , V o l VTa2X , n o . 5 , 1 9 9 7 .

` ¨ mõ¨n ¨©§'¤£¦  ] i s a g r a n u l a r n a t u r a l z e o l i t e t h a t i s p r e f e r e n t i a l l y s e l e c t i v e f o r f l u o r i d e i o n s , A s , S e , P h o s p h a t e , a n d s i l i c a . T h e o r d e r o f p r e f e r e n t i a l - - - - - r e m o v a l o f a n i o n s a t p H 6 i s O H > H 2 P O 4 > F > H 2 A s O 4 > H S e O 3 . T h e o p t i m u m p H f o r r e m o v a l o f t h e a f o r e m e n t i o n e d i o n s i s 5 . 5 – 6 . 0 R . L . D r o s t e , T h e o r y a n d P r a c t i c e o f W a t e r a n d W a s t e w a t e r T r e a t m e n t , J o h n W i l e y a n d S o n s , N e w Y o r k , p 4 7 8 , 1 9 9 7 . / / / / A . D e b , A G u p t a , P . B r a n d y o p a d h y a y , R B i s w a s , a n d S . R o y , “ A p p r o p r i a t e t e c h n o l o g y f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r o f r u r a l W e s t B e n g a l ” , i n

P r o v i d i n g S a f e D r i n k i n g W a t e r i n S m a l l S y s t e m : T e c h n o l o g y , O p e r a t i o n s , a n d E c o n o m i c s . C o t r u v o , G . C r a u n , a n d N . H e a r n e ( E d s ) , W o r l d H e a l t h O r g a n i z a t i o n , C R C P r e s s , p p 2 7 3 - 2 7 8 , 1 9 9 9 . S h o u l d t h e p H b e r a i s e d b e y o n d 9 . 5 , t h e a c t i v a t e d a l u m i n a b e c o m e s a c a t i o n e x c h a n g e r R . L . D r o s t e , T h e o r y a n d P r a c t i c e o f W a t e r a n d W a s t e w a t e r T r e a t m e n t , J o h n W i l e y a n d S o n s , N e w Y o r k , p 4 7 8 , 1 9 9 7 . . T h e m e c h a n i s m o f a r s e n i c r e m o v a l , t h o u g h i t i s t e r m e d a d s o r p t i o n , i s m o r e c o r r e c t l y r e f e r r e d t o a s c h e m i s o r p t i o n a n d l i g a n d e x c h a n g e . A . D e b , A G u p t a , P . B r a n d y o p a d h y a y , R B i s w a s , a n d S . R o y , “ A p p r o p r i a t e t e c h n o l o g y f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r o f r u r a l W e s t B e n g a l ” , i n P r o v i d i n g S a f e

D r i n k i n g W a t e r i n S m a l l S y s t e m : T e c h n o l o g y , O p e r a t i o n s , a n d E c o n o m i c s . C o t r u v o , G . C r a u n , a n d N . H e a r n e ( E d s ) , W o r l d H e a l t h O r g a n i z a t i o n , C R C P r e s s , p p 2 7 3 - 2 7 8 , 1 9 9 9 . . T y p i c a l c a p a c i t i e s o f a c t i v a t e d a l u m i n a f o r a r s e n i c f r o m 5 - 1 5 g / k g , a n d t h e a q u e o u s e q u i l i b r i u m a r s e n i c c o n c e n t r a t i o n s r a n g e f r o m 0 . 0 0 5 – 0 . 2 p p m . A . D e b , A G u p t a , P . B r a n d y o p a d h y a y , R B i s w a s , a n d S . R o y , “ A p p r o p r i a t e

72

t e c h n o l o g y f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r o f r u r a l W e s t B e n g a l ” , i n P r o v i d i n g S a f e D r i n k i n g W a t e r i n

S m a l l S y s t e m : T e c h n o l o g y , O p e r a t i o n s , a n d E c o n o m i c s . C o t r u v o , G . C r a u n , a n d N . H e a r n e ( E d s ) , W o r l d H e a l t h O r g a n i z a t i o n , C R C P r e s s , p p 2 7 3 - 2 7 8 , 1 9 9 9 . . T h e a c t i v a t e d a l u m i n a i s p r e p a r e d b y l o w t e m p e r a t u r e ( 3 0 0 - 6 0 0 o C ) d e h y d r a t i o n o f a m o r p h o u s a n d g a m m a a l u m i n i u m o x i d e s A . D e b , A G u p t a , P . B r a n d y o p a d h y a y , R B i s w a s , a n d S . R o y , “ A p p r o p r i a t e t e c h n o l o g y f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r o f r u r a l W e s t B e n g a l ” , i n P r o v i d i n g S a f e D r i n k i n g W a t e r i n S m a l l S y s t e m : T e c h n o l o g y , O p e r a t i o n s , a n d E c o n o m i c s . C o t r u v o , G . C r a u n , a n d N . H e a r n e ( E d s ) , W o r l d H e a l t h O r g a n i z a t i o n , C R C P r e s s , p p 2 7 3 - 2 7 8 , 1 9 9 9 . . R e g e n e r a t i o n i s a c c o m p l i s h e d b y t h e u s e o f 4 % c a u s t i c s o l u t i o n s , f o l l o w e d b y a n e u t r a l i z a t i o n r i n s e w i t h d i l u t e d H C l . A d i s a d v a n t a g e o f t h e a c t i v a t e d a l u m i n a r e g e n e r a t i o n i s t h a t a t o x i c , a r s e n i c r i c h s l u d g e t e n d s t o s e t t l e f r o m u s e d t h e r e g e n e r a n t s u p e r n a t a n t ; t h e s l u d g e m a y b e s t a b i l i z e d u s i n g 5 – 1 0 % c e m e n t - s a n d ( b a s e d o n d r y s l u d g e m a s s ) . T h e c e m e n t - s t a b i l i z e d s l u d g e p a s s e d l e a c h i n g t e s t s u n d e r a c i d c o n d i t i o n s A . D e b , A G u p t a , P . B r a n d y o p a d h y a y , R B i s w a s , a n d S . R o y , “ A p p r o p r i a t e t e c h n o l o g y f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r o f r u r a l W e s t B e n g a l ” , i n P r o v i d i n g S a f e D r i n k i n g W a t e r i n

S m a l l S y s t e m : T e c h n o l o g y , O p e r a t i o n s , a n d E c o n o m i c s . C o t r u v o , G . C r a u n , a n d N . H e a r n e ( E d s ) , W o r l d H e a l t h O r g a n i z a t i o n , C R C P r e s s , p p 2 7 3 - 2 7 8 , 1 9 9 9 . . N a t u r a l l y a l t e r n a t e a r s e n i c r e m o v a l t e c h n i q u e s m a y b e u s e d t o t r e a t t h e s l u d g e . W h e r e e x p e r t i s e a n d f a c i l i t i e s a r e a v a i l a b l e t h e a r s e n i c m a y b e r e c l a i m e d s o a s t o p r e v e n t f u t u r e l e a k a g e f r o m t h e “ s t a b i l i z e d ” f o r m .

F e r g u s o n e t a l a s c i t e d b y R a v e n K . R a v e n , A . J a i n , R . L o e p p e r t , “ A r s e n i t e a n d a r s e n a t e a d s o r p t i o n o n

f e r r i h y d r i t e : k i n e t i c s , e q u i l i b r i u m , a n d a d s o r p t i o n e n v e l o p e s ” , E n v i r o n m e n t a l S c i e n c e a n d T e c h n o l o g y , V o l . X2a , p p 3 4 4 - 3 4 9 , 1 9 9 8 . o b s e r v e d t h a t a r s e n i c a d s o r p t i o n i s h i g h l y d e p e n d a n t o n i t s o x i d a t i o n s t a t e i n t h e p H r a n g e o f 5 . 5 – 7 . 5 . T h i s f a c t h a s a l s o b e e n r e p o r t e d b y o t h e r w o r k e r s R . L . D r o s t e , T h e o r y a n d P r a c t i c e o f W a t e r a n d W a s t e w a t e r T r e a t m e n t , J o h n W i l e y a n d S o n s , N e w Y o r k , p 4 7 8 , 1 9 9 7 . . / / / / U S E P A , T e c h n o l o g i e s a n d c o s t s f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r , i n t e r n e t s i t e : h t t p : / / w w w . e p a . g o v / s a f e w a t e r / a r s / t r e a t m e n t s _ a n d _ c o s t s . p d f , P 2 - 1 5 , 2 0 0 0 . / / / M . L e i s t , R . J . C a s e y , a n d D . C a r i d i , “

T h e m a n a g e m e n t o f a r s e n i c w a s t e s : p r o b l e m s a n d p r o s p e c t s ” , J o u r n a l o f H a z a r d o u s M a t e r i a l s , V o l . W20 , N o . 1 , p p 1 2 5 - 1 3 8 , 2 0 0 0 . .

Adsorptionofarseniconironhydroxides

¢¤£   £ £ £  ¤    

© © © © © ©

øwùEú6ûyü„ý<þn÷BÿEù¡ ü„ý:ø\÷ û¡¥¦¥Eû¨§ ý þ § Tû„ü¦ û¨ùyü ù¡§ EûyüEù û¨ù §¥ ü ü û¡§§ § û ü’û  „ýBû¦¡ §  ýFùyü

Ravenetal ö‡÷

 £ £  £ !#"%$'& ()¦"¦*,+"¨- .¦/¤0213& +"¨1+4.¦"¨5768+¦139¦"¦)/ ):¦; <=£¡ >¡? @AA¡B@A¨C D8C¦CE

©

§¥ üûyüFú6û ¥Eû ý ý ÷ ý¥¦¥ ý ÷ ù investigatedthe adsorptionofarsenateandarseniteonpreformedferrihydriteFe(OH)3withasurfacearea of202m2/g,andazeropointofsalteffect(ZPSE)atpH8.5.ClosefitsoftheFreundlich andLangmuiradsorptionisothermswereobserved.Broadadsorptionmaximawere exhibitedforboththetrivalentandpentavalentarsenic;extendingfrompH6.8-9.4and5.2- 7.4respectively.ThearseniteadsorptiononlyreducedsignificantlyabovepHvaluesof9.4

73

wherethefreehydroxidelevelsmaypermitdissolutionoftheH3AsO3(pKa=9.22)andthe formationofanegativelychargedion.ThereductionofarsenateadsorptionaspHis increasedisattributedtorepulsionofthenegativelychargedpentavalentspeciesbythe negativesurfacesitesontheferrihydriteK.Raven,A.Jain,R.Loeppert,“Arseniteandarsenateadsorptionon ferrihydrite:kinetics,equilibrium,andadsorptionenvelopes”,EnvironmentalScienceandTechnology,Vol.32,pp344-349,1998..Ferguson andGavis,ascitedbyRavenK.Raven,A.Jain,R.Loeppert,“Arseniteandarsenateadsorptionon ferrihydrite:kinetics,equilibrium,andadsorptionenvelopes”,EnvironmentalScienceandTechnology,Vol.32,pp344-349, 1998.,alsoobtainedsimilarresults. Arsenicadsorptionreactionsinvolvethefollowingsurfacecomplexationreactions: - + • ArsenateadsorptionFe-OH+H2AsO4 +H Fe-H2AsO4+H2O • ArsenateadsorptionFe-OH+H3AsO3Fe-H2AsO3+H2O

Theprecisemechanismofthearseniteadsorptionwasnotdetermined.Adsorption

F GHI 

ù¡§ „ý

ofarseniteandarseniteontometalhydroxidewerereviewedbyEdwards ÷

KJ  4£¤ £ O £  £ RQ B'F £S  £ T)U3("¦./3)¨V¦- 9¨+XW *,+(& 13.¦"7Y4.¨- +(ZY[)¦(\]

© © ©

û¨ L § ù¡§M Eûyü N§‚û¡ ú6ù ¦§ ü¤PL ùP¡ ù üùyü û ü ù ü ý

W ]])¨13& .¨- & )¦" <=£¡ ^ _A¡Ba`` b'DOC¦CA¡c

÷ ý¥¦¥ ý ÷ ý Whofoundarseniteadsorptionsof>0.4MAs/Mat pH8;itwasproposedthatarseniteadsorptioncouldbebasedononeormoreof thefollowingphenomena: • Arsenitereductionofferricsolidsandre-oxidationoftheferroussolidby dissolvedoxygen(thisphenomenahasnotbeenobserved) • Formationofanunknownferricarsenite • Formationofarsenicpolymersanalogoustopolphosphates • Formationofferricarseniteorarsenatecomplexesthatcouldresorbtothe surface,asreportedforpolyphosphatesonironoxide.

Adsorptionofarsenateontopreformedmediaisaboutfivetimesweakerthanthe

F GHI  dJX 4£ £ 8 £  £ eQ BfF £¤S  £ T)HUg("¦.¦/

© © ©

ù¨§ „ý û¡ N § ù¨§M Eûyü¦ L§ˆû¡ ú6ù ¦§ üPN ù¦P¡ ù üùyü û ü ù ü ý

insituadsorption. ÷

)hV¦- 9h+ W *,+(& 13.¦"7Y[.¨- +(ZY4)¦(\]iW ]])¨13& .¨- & )¦" <=£¡ ^ _A¡Bj`¦` bfD8C¦CA¡c

÷ ý¥¦¥ ý ÷ ý Thisobservationsuggeststhatthe surfaceareaoftheinsitumediumisgreaterorthatcoprecipitationoccurs.

74

AresearchprojectG.Amy,M.Edwards,M.Benjamin,KCarlson,J.Chwirka,P.Brandhuber,L. McNeil,andF.Vagliasindi,“ArsenicTreatabilityOptionsandEvaluationofResidualsManagementIssues”, AmericanWaterWorksAssociationResearchFoundationProject#153,internetsite: http://www.awwarf.cpm/exums/153.htm,2000.fundedbytheAmericanWaterWorks AssociationResearchFoundation(AWWARF)testedanumberof arsenicremovaltechniques.Theirmajorfindingsarelistedbelow • Ironandalumcoagulantshadapproximatelyequalcapacitiesfor sorptionofarsenate • A r s e n a t e w a s m o r e e f f e c t i v e l y r e m o v e d t h a n a r s e n i t e • A r s e n i c r e m o v a l v i a p r e c i p i t a t i v e s o f t e n i n g c a n b e f a c i l i t a t e d v i a a

v a r i e t y o f s o l i d s t h a t f o r m i n c l u d i n g C a C O 3 , M g ( O H ) 2 , M n ( O H ) 2 , a n d

F e ( O H ) 3 • I o n e x c h a n g e r e s i n p e r f o r m a n c e w a s d e p e n d e d o n t h e s o u r c e w a t e r , n a t u r a l o r g a n i c m a t t e r ( N O M ) , s u l p h a t e a n d p H •

RegulatoryLimitsforArsenic

M o s t o f t h e i n t e r n a t i o n a l d r i n k i n g w a t e r l i m i t s f o r a r s e n i c r a n g e f r o m 0 . 0 1 t o 0 . 0 5 p p m .

I n 1 9 4 2 t h e U . S . P u b l i c H e a l t h S e r v i c e s e t a m a x i m u m c o n t a m i n a n t l e v e l o f 0 . 0 5 0 p p m f o r a r s e n i c A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . . T h e W o r l d H e a l t h O r g a n i z a t i o n ( W H O ) r a i s e d t h e g u i d e l i n e v a l u e f o r A s f r o m 0 . 0 5 t o 0 . 0 1 m g / L . M . L e i s t , R . J . C a s e y , a n d D . C a r i d i , “ T h e m a n a g e m e n t o f a r s e n i c w a s t e s : p r o b l e m s a n d p r o s p e c t s ” , J o u r n a l o f H a z a r d o u s M a t e r i a l s , V o l . W20 , N o . 1 , p p 1 2 5 - 1 3 8 , 2 0 0 0 .

T h e C a n a d i a n m a x i m u m c o n t a m i n a n t l e v e l ( M C L ) f o r A s i s 2 5 V g / L . T . V i r a r a g h a v a n , K . S . S u b r a m a n i a n , a n d J . A . A r u l d o s s , “ A r s e n i c i n d r i n k i n g w a t e r : p r o b l e m s a m d s o l u t i o n s ” , W a t e r S c i e n c e a n d

T e c h n o l o g y , V o l . b2d , N o . 2 , 1 9 9 9 . A s s o c i a t i o n f o r T o x i c s u b s t a n c e s a n d D i s e a s e R e g i s t r y ( A S T D R ) M i n i m u m R i s k L e v e l ( M R L ) f o r c h r o n i c i n o r g a n i c a r s e n i c i n t a k e i s 0 . 0 0 0 3 m g / k g / d a y . I n t e r n e t S i t e : h t t p : / / w w w . a s t d r . c d c . g o v / 9 9 l i s t . h t m l , ( 1 9 9 9 ) . T h e m a x i m u m a l l o w a b l e c o n c e n t r a t i o n ( M A K ) f o r t o t a l a r s e n i c c o m p o u n d s i n 3 3 U l l m a n s E n c y l o p e d i a , G e r m a n y i s 0 . 2 m g / m . F o r a r s i n e ( A s H 3 ) t h e M A K i s 1 . 2 m g / m . I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 8 , 1 9 9 9 .

75

W a t e r q u a l i t y l i m i t s ( V g / L ) f o r t o x i c p o l l u t a n t s f o r t h r e e u s e s - A r s e n i c l e v e l s :

R e f e r e n c e : H a z a r d o u s w a s t e s p g 6 8 6

`¤'" © ©ik ¥¨¡¤'¤© `h¡¤ `

F r e s h w a t e r a q u a t i c l i f e 4 4 0 4 0

S a l t w a t e r a q u a t i c l i f e 5 0 8 -

H u m a n H e a l t h - 0 . 0 0 0 2 – 0 . 0 2 2

T h e U . S . E n v i r o n m e n t a l P r o t e c t i o n A g e n c y ( E P A ) c o n s i d e r e d l o w e r i n g t h e c u r r e n t l i m i t f o r a r s e n i c i n d r i n k i n g w a t e r f r o m 0 . 0 5 p p m t o i n t h e r e g i o n o f 0 . 0 2 0 – 0 . 0 0 2 p p m M N e i l , a n d M . E d w a r d s , “ A r s e n i c r e m o v a l d u r i n g p r e c i p i t a t i v e s o f t e n i n g ” , J o u r n a l o f E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 1 2 3 , N o . 5 , p p 4 5 3 - 4 6 0 , 1 9 9 7 . T h e c o s t i m p l i c a t i o n s o f r e d u c i n g t h e a r s e n i c l i m i t t o 0 . 0 0 2 p p m i n t h e U . S . a r e $ 6 4 0 0 0 0 0 0 0 0 .

T a b l e ? ? A r s e n i c r e g u l a t o r y l i m i t s U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s ,

W i l e y - V C H , N e w Y o r k , V o l . V , p 3 6 2 , 1 9 9 9 . C o m p o u n d C o u n t r y [ A s ] [ A s ] w a t e r b o u r n e [ A s ] i n s o l i d s ( s o i l , a i r b o u r n e m g / L R . L . D r o s t e , T h e o r y r o c k ) m g / k g m g / m 3 a n d P r a c t i c e o f W a t e r a n d W a s t e w a t e r T r e a t m e n t ,

J o h n W i l e y a n d S o n s , N e w Y o r k , p 1 9 9 , 2 0 2 , 1 9 9 7 . .

A s H 3 G e r m a n y 0 . 2 - U . S . A . 0 . 2 T o t a l A s I n d i a 0 . 0 5 A . D e b , A G u p t a , P . B r a n d y o p a d h y a y , R B i s w a s ,

a n d S . R o y , “ A p p r o p r i a t e

t e c h n o l o g y f o r r e m o v a l o f

a r s e n i c f r o m d r i n k i n g w a t e r

o f r u r a l W e s t B e n g a l ” , i n

P r o v i d i n g S a f e D r i n k i n g

W a t e r i n S m a l l S y s t e m :

T e c h n o l o g y , O p e r a t i o n s , a n d

E c o n o m i c s . C o t r u v o , G .

76

E c o n o m i c s . C o t r u v o , G .

C r a u n , a n d N . H e a r n e ( E d s ) ,

W o r l d H e a l t h O r g a n i z a t i o n ,

C R C P r e s s , p p 2 7 3 - 2 7 8 , 1 9 9 9 .

C a 3 ( A s O 4 ) 2 U . S . A . 1 . 0 - A l l o t h e r U . S . A . 0 . 0 1 0 . 0 5 i n o r g a n i c a r s e n i c W . H . O . 0 . 0 1 C a n a d a M A K 0 . 0 5 # 0 . 0 2 5 U . K . 0 . 2 ø B a n g l a d e s h * 0 . 0 5 0 O r g a n i c U . S . A . 0 . 5 a r s e n i c

A s 2 O 3 J a p a n 0 . 5

A s H 3 J a p a n 0 . 2 A s – a l l S w e d e n 0 . 0 5 c o m p o u n d s T o t a l A s B e l g i u m N a t u r a l a r e a 4 5 R u r a l a r e a 4 5 B u i l d i n g - e s t a t e 1 1 0 R e c r e a t i o n a l a r e a 2 0 0 I n d u s t r i a l s i t e 3 0 0 V . D u t r e , C . C h e s t e n s , J . S c h a e p , C . V a n d e c a t e e l e ,

“ S t u d y o f t h e r e m e d i a t i o n o f a

s i t e c o n t a m i n a t e d w i t h

a r s e n i c ” , T h e S c i e n c e o f t h e

T o t a l E n v i r o n m e n t , V o l . a2a2d , 1 9 9 8 .

* A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 .

77

# a 1 5 m i n u t e e x p o s u r e A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . Ø d u e t o b e r e d u c e d t o 0 . 0 5 m g / m 3 p e n d i n g t h e p o t e n t i a l i m p a c t o n i n d u s t r y A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . .

¡=k `¡¤§¡"o¨!$¡¤ \© `

l

]

m

ˆoph(§ˆ! ¡nk `eoqp n!sr ©  n ¨§Z lXt_§ §¡4t,©uovp  !$`¤'¤© § §©Iop `

©¥¨  ¡¤I!$\©`"  ¡eoqp  !$` *k `¤`¤ ¤¡ op©xw ¤¡iop `\©¤ ` 

zy¨¡4t,`¤`¤©kh,{[\uo

T y p i c a l T L V / T W A 0 . 2 m g / m 3 .

|~}€R‚NMƒ8„† R‡,ƒ3‡

ˆ8‰‹ŠLŒŽvŒ,e’‘N“•”L–—e4˜™eš’š’›3ŒNœN‘MN3‘M”eLž Ÿ¡Š’‘M¢[Šqe£’£LŒ’—›¤‘™gŠ’‘ ž¥žZŒ’¢Xg‘ ”e†‘Mž¡“e‘ œ4Œe

¦¨§ª©[«¡¬®­°¯z©,±ª©4¦³²,´µq“Ž¶ “N·¹¸

·Á¸

¦¨§ª©[«¡§u­d‰º©’±K»’¼¾½=¿Àv“Ž¶ “

ÂÄðÅd«¨¬†ÅdÂÆ©’±K»’¼¾½ ¼Žq“µ¶ “€·¹¸ ¦¨§ª©[«¡§ÈÇɉº©’±K»’¼†²’¼Žv“Ž¶ “N·Á¸

T r i v a l e n t a r s e n i c i s 2 5 – 6 0 t i m e s m o r e t o x i c K . R a v e n , A . J a i n , R . L o e p p e r t , “ A r s e n i t e a n d a r s e n a t e a d s o r p t i o n o n f e r r i h y d r i t e : k i n e t i c s , e q u i l i b r i u m , a n d a d s o r p t i o n e n v e l o p e s ” , E n v i r o n m e n t a l S c i e n c e a n d

T e c h n o l o g y , V o l . X2a , p p 3 4 4 - 3 4 9 , 1 9 9 8 . t h a n p e n t a v a l e n t a r s e n i c w h i c h i s m u c h m o r e t o x i c t h a n z e r o v a l e n t a r s e n i c , h o w e v e r z e r o v a l e n t a r s e n i c r e a d i l y f o r m s t h e t o x i c h i g h e r o x i d a t i o n s t a t e s i n a n o r g a n i s m s b o d y . B e n z e n e a r s e n i c c o m p o u n d s h a v e s t r o n g A s - C b o n d s t h u s r e d u c i n g t h e i r t o x i c i t y . U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c

C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 8 , 1 9 9 9 .

S o m e o r g a n i c a r s e n i c c o m p o u n d s s u c h a s w a r g a s e s d o , h o w e v e r , e x e r t a h i g h t o x i c i t y a g a i n s t t h e e y e s , s k i n , r e s p i r a t o r y t r a c t , g a s t r o i n t e s t i n a l t r a c t a n d t h e c e n t r a l n e r v o u s s y s t e m o f h u m a n s . T y p i c a l c o m p o u n d s U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . 1 , p 3 6 1 , 1 9 9 9 . a r e R A s C l 2 , R 2 A s C l a n d

R 2 A s C N ; e . g . C l C H = C H A s C l 2 ( d i c h l o r o - 2 - c h l o r o v i n y l a r s i n e ) , ( C 6 H 5 ) 2 A s C l

( c h l o r o d i p h e n y l a r s i n e ) , a n d ( C 6 H 5 ) 2 A s C N ( c y a n o d i p h e n y l a r s i n e ) r e s p e c t i v e l y .

78

A r s e n i c h a s b e e n k n o w n t o c a u s e s k i n c a n c e r , t u m o r s , b l a c k f o o t d i s e a s e , a n d n e o p l a s m ( f o r m a t i o n o f a b n o r m a l m a s s i n t h e b o d y ) E n c y c l o p e d i a o f E n v i r o n m e n t a l P o l l u t i o n a n d C l e a n u p , J o h n W i l e y a n d S o n s , I n c . , N e w Y o r k , p 1 8 3 8 , 1 9 9 9 . . T r i v a l e n t a r s e n i c c o m p o u n d s t h a t a r e m o r e t o x i c t h a n p e n t a v a l e n t a r s e n i c a r e

A s 2 O 3 , A s F 3 , A s C l 3 , A s H 3 . Z e r o v a l e n t a r s e n i c i s n o t t o x i c b u t b e c o m e s t o x i c w i t h i n t h e o r g a n i s m a s i t c h a n g e s o x i d a t i o n s t a t e s . B e n z e n e a r s e n i c c o m p o u n d s p o s s e s s s t r o n g A s - C b o n d s a n d a r e t h u s l e s s t o x i c . U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 8 , 1 9 9 9 . . N a t u r a l w a t e r s a m l e s t y p i c a l l y c o n t a i n i n g o r g a n i c a r s e n i t e , a r s e n a t e m o n o m e h t y l a r s o n i c a c i d , a n d d i m e t h y l a r s o n i c a c i d ; l i s t e d i n o r d e r o f d e c r e a s i n g t o x i c i t y H . H u a n g , P . D a s g u p t a , “ A f i e l d d e p l o y a b l e i n s t r u m e n t f o r t h e m e a s u r e m e n t a n d s p e c i a t i o n o f a r s e n i c i n p o t a b l e w a t e r ” , A n a l y t i c a C h i m i c a A c t , V o l . X2c2d , p p 2 7 - 3 7 , 1 9 9 9 . .

B e n z e n e a r s e n i c c o m p o u n d s p o s s e s s s t r o n g A s - C b o n d s a n d a r e t h u s l e s s t o x i c . U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 9 , 1 9 9 9 . .

ToxicologyofArsenic L o n g - t e r m e x p o s u r e t o a r s e n i c i n d r i n k i n g w a t e r i s a s s o c i a t e d w i t h l i v e r , l u n g , k i d n e y , a n d b l a d d e r c a n c e r s , a s w e l l a s s k i n c a n c e r . M . M . W u , T . L . K u o , Y . H . H w a n g , a n d C . J . C h e n , “ D o s e - R e s p o n s e R e l a t i o n B e t w e e n A r s e n i c W e l l W a t e r a n d M o r t a l i t y f r o m C a n c e r . ” A m e r i c a n J o u r n a l o f

E p i d e r m i o l o g y , V o l . VTX2d , p p 1 1 2 3 - 1 1 3 2 , 1 9 9 1 . / / / / / / H . H u a n g , P . D a s g u p t a , “ A f i e l d d e p l o y a b l e i n s t r u m e n t f o r t h e m e a s u r e m e n t a n d s p e c i a t i o n o f a r s e n i c i n p o t a b l e w a t e r ” , A n a l y t i c a C h i m i c a A c t , V o l . X2c2d , p p 2 7 - 3 7 , 1 9 9 9 .

U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c I n g e s t i o n o f 0 . 1 g o f A s 2 O 3 c a n b e f a t a l t o a h u m a n

C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 4 4 , 1 9 9 9 .

Sourcesofarsenicpollution T h e f o l l o w i n g a c t i v i t i e s U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H ,

N e w Y o r k , V o l . V , p 3 5 8 , 1 9 9 9 . / / / / / / / / A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . t h a t i n v o l v e a r s e n i c a r e c o n s i d e r e d t o b e h a z a r d o u s i n t h e a b s e n c e o f s u i t a b l e s a f e t y e q u i p m e n t : • M e t a l r e c o v e r y / c o n t a m i n a t i o n b y a r s e n i c • R o a s t i n g o f i r o n p y r i t e s • S m e l t i n g o f n o n - f e r r o u s m e t a l s , e s p e c i a l l y c o p p e r • C l e a n i n g o f l e a d c h a m b e r s i n s u l p h u r i c a c i d m a n u f a c t u r e

79

• P r o c e s s i n g o f a r s e n i c a l m i n e r a l s • P r o d u c t i o n o f a r s e n i c c o n t a i n i n g p h a r m a c e u t i c a l s • U s e i n p y r o t e c h n i c s • B u r n i s h i n g o f m e t a l s u r f a c e s • U s e o f r a w m a t e r i a l s c o n t a i n i n g a r s e n i c i n t h e g l a s s i n d u s t r y • R e p a i r o r c l e a n i n g o f f l u e - d u s t p l a n t s , o r f i l t e r s • U s e i n w o o d p r e s e r v a t i v e s • A p p l i c a t i o n o f p e s t i c i d e s • G o l d m i n i n g • B u r n i n g f o s s i l f u e l s *

* I n 1 9 0 2 , a n e p i d e m i c o f a r s e n i c a l p o i s o n i n g w a s c a u s e d b y d r y i n g b e e r m a l t i n a i r h e a t e b y b u r n i n g c o a l t h a t c o n t a i n e d a r s e n i c J . G u l l e d g e , a n d J O ’ C o n n e r , “ r e m o v a l o f a r s e n i c ( V ) f r o m w a t e r b y a d s o r p t i o n o n a l u m i n i u m a n d f e r r i c h y d r o x i d e s ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l . 021 , I s s u e 8 , p p 5 4 8 - 5 5 2 , ( 1 9 7 3 ) . .

A n t h r o p o g e n i c a c t i v i t i e s t h a t r e l e a s e a r s e n i c i n t o t h e a t m o s p h e r e i n c l u d e b u r n i n g o f f o s s i l f u e l s , p a p e r p r o d u c t i o n , c e m e n t m a n u f a c t u r e r , a n d m i n i n g i n d u s t r y A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . .

O t h e r l e s s a p p a r e n t e x p o s u r e s m a y i n c l u d e A g e n c y f o T o x i c S u b s t a n c e s a n d D i s e a s e R e g i s t r y ( A S T D R ) . 2 0 0 0 . T o x i c o l o g i c a l p r o f i l e f o r a r s e n i c ( U P D A T E ) . A t l a n t a , G A : U . S . D e p a r t m e n t o f H e a l t h a n d H u m a n S e r v i c e s , P u b l i c H e a l t h S e r v i c e s , I n t e r n e t S i t e : h t t p : / / w w w . a s t d r . c d c . g o v / t f a c t s 2 . h t m l • E a t i n g f o o d , d r i n k i n g w a t e r , o r b r e a t h i n g a i r c o n t a i n i n g a r s e n i c • B r e a t h i n g s m o k e o r s a w d u s t f r o m w o o d t r e a t e d w i t h a r s e n i c • L i v i n g n e a r u n c o n t r o l l e d h a z a r d o u s w a s t e s i t e s c o n t a i n i n g g a s e s • L i v i n g i n a r e a s w i t h u n u s u a l l y h i g h n a t u r a l l e v e l s o f a r s e n i c i n r o c k a n d s o i l s

S e a f o o d s c o n t a i n c o m p a r a t i v e l y h i g h a m o u n t s o f a r s e n i c T.Gebel,“ConfoundingVariablesinthe EnvironmentalToxicologyofArsenic”,Toxicology,Vol144,pp155-162,2000. ( f r e s h w a t e r f i s h a r e e x c l u d e d ) . P h i l l i p s a n d B u c h e t e t a l , a s c i t e d b y G e b e l T.Gebel,“ConfoundingVariablesintheEnvironmentalToxicologyof Arsenic”,Toxicology,Vol144,pp155-162,2000.,foundthataportionofseafood-bournearsenicisboundtosugars andproteinsorcanexistasarsenocholineorarsenobetaine;theyestablishedthattheseseafood- bournecompoundsreleaseminuteamountsofinorganicarsenic(themoretoxicforms U l l m a n s

E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 8 , 1 9 9 9 . )thusthese compoundsmaybeconsideredinsignificantlytoxic.Despitethelowtoxicityoftheaforementioned compoundsafewpercentoftheseafood-bournearsenicexistsasdimethylarsinicacid,a

80 compoundoflowbutnotirrelevanttoxicity G e b e l T.Gebel,“ConfoundingVariablesintheEnvironmentalToxicologyof Arsenic”,Toxicology,Vol144,pp155-162,2000..Thehighlytoxicinorganicformsofarsenicprevailinfishand shellfishT.Gebel,“ConfoundingVariablesintheEnvironmentalToxicologyofArsenic”,Toxicology,Vol144,pp155-162,2000..

p © ’r ¡¤§ \£ ¤’r \¡\¥\  ¡¡¤l\©¤ ` o c c u r s m a i n l y t h r o u g h i n g e s t i o n a n d i n h a l a t i o n , b u t m a y i t a l s o b e a b s o r b e d t h r o u g h t h e s k i n . A r s e n i c i s f o u n d i n d i f f e r e n t t i s s u e s 2 4 h o u r s a f t e r i n t a k e ; l i v e r , k i d n e y , l u n g , s p l e e n , b o n e m a r r o w , s k i n , a n d t o a l e s s e r e x t e n t t h e b r a i n , h e a r t a n d u t e r u s . S m a l l q u a n t i t i e s c a n b e f o u n d i n h a i r a n d n a i l s s e v e r a l m o n t h s a f t e r t h e m a j o r p o t i o n h a s b e e n e l i m i n a t e d . U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 9 , 1 9 9 9 . . M e t a b o l i s m o f a r s e n i c m a y r e s u l t i n i n h i b i t i o n o f e s s e n t i a l e n z y m e s i s t h e f i r s t s t e p o f c e l l d a m a g e U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 9 , 1 9 9 9 . . Anumberofworkers(citedbyGebelT.Gebel,“ConfoundingVariablesintheEnvironmentalToxicologyofArsenic”,Toxicology,Vol 144,pp155-162,2000..)haveshownthatthehalf-lifeofarsenicinmanisbrief-ontheorderof3-4days. Thisisafortunatephenomenonhintingthatthebioaccumulationofarsenicinmanisslowas indicatedbyitsrapidlossinurineT.Gebel,“ConfoundingVariablesintheEnvironmentalToxicologyofArsenic”,Toxicology,Vol144, pp155-162,2000... ThompsonD.J.Thompson,“AChemicalHypothesisforArsenicMethylationinMammals”,ChemicalandBiologicalInteraction,Vol88,pp89-114, 1993.ascitedbyGebel,T.Gebel,“ConfoundingVariablesintheEnvironmentalToxicologyofArsenic”,Toxicology,Vol144,pp155-162, 2000.claimsthatmammalsmetabolizearsenateviareductionandglutathione(GSH)conjugationto arsenite,whichissubsequentlymono-ordimethylated;aprocessreferredtoasdetoxicationby MooreM.M.Moore,K.Harrington,andC.L.Doerr,“GenotoxicityofArsenicanditsmethylatedmetabolites”inArsenicExposureandHealth.Science andTechnologyLetters,W.R.Chapell,C.O.Abernathy,andC.R.Cothern(Eds.),Norhtwood,UK,pp191-198,1994.etalM.Vahter,“Methylationof InorganicArsenicinDifferentMamalianSpeciesanPopulationGroups”,ScientificProgress,Vol82,pp62-88,1999.ascitedbyGebelT. Gebel,“ConfoundingVariablesintheEnvironmentalToxicologyofArsenic”,Toxicology,Vol144,pp155-162,2000..

Ê

k `¤©  ¡¡¤ \© ` ] o c c u r s v i a u r i n e , f e c e s , h a i r a n d s k i n U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 9 , 1 9 9 9 . . Airbournearsenic depositedinthelungisrapidlytakenupandsoonapperarsintheurine,howeversomeofthe absorbedarsenicisdistributedintherissuesincludingtheliver,abdominalviscera,bone,skin,and particularlythehairandnails A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . .Theaccumulationinthelattertissuesassisttheanalystin detectingtherecenthistory(6-12monthsAgencyforToxicSubstancesandDiseaseRegistry{ASTDR}.2000Toxicologicalprofile forarsenicAtlanta,GA:U.S.DepartmentofHealthandHumanServices,PublicHealthServicesInternetsite:http://www.astdr.cdc.gov/facts2.html)of arsenicpoisoning.

Ê

f

m

©©\§ ©§ˆ h nn©`" 

A r s e n i c h a s l o n g s e r v e d a s a c h o i c e p o i s o n a n d i s o f l e g e n d a r y t o x i c i t y . M . E d w a r d s , “ C h e m i s t r y o f a r s e n i c r e m o v a l d u r i n g c o a g u l a t i o n a n d F e - M n o x i d a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s

A s s o c i a t i o n , V o l . U , p p 6 4 - 7 7 , ( 1 9 9 4 ) .

81

H e a l t h e f f e c t s a r e n o r m a l l y c h a r a c t e r i z e d a c c o r d i n g t o t h e d o s e o f t h e c o m p o u n d i n q u e s t i o n . T h e d o s e s m a y b e a o n c e o f f o r i n t e r m i t t e n t e x p o s u r e ( a c u t e ) o r a r e g u l a r d o s e ( c h r o n i c ) . T h e l a t t e r i s u s u a l l y o f r e l a t i v e l y l o w c o n c e n t r a t i o n a s m a y b e e x p e r i e n c e d t h r o u g h c o n s u m p t i o n o f c o n t a m i n a t e d w a t e r o r p e r h a p s i n h a l a t i o n o f c o n t a m i n a t e d a i r d u r i n g r e g u l a r w o r k s h i f t s i n a s m e l t i n g m i n e .

U l l m a n s A c u t e p o i s o n i n g - A f a t a l d o s e o f A s 2 O 3 t o a h u m a n i s 7 0 – 1 8 0 m g E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 9 , 1 9 9 9 . .

`¤' ¨© S y m p t o m s o f a r s e n i c p o i s o n i n g U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d

P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 9 , 1 9 9 9 . , A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . / / / / / H . H u a n g , P . D a s g u p t a , “ A f i e l d d e p l o y a b l e

i n s t r u m e n t f o r t h e m e a s u r e m e n t a n d s p e c i a t i o n o f a r s e n i c i n p o t a b l e w a t e r ” , A n a l y t i c a C h i m i c a A c t , V o l . X2c2d , p p 2 7 -

3 7 , 1 9 9 9 . Thesymptomshavebeenclassifiedaccordingtotheroutofexposure U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 9 , 1 9 9 9 . . • I n g e s t i o n - v o m i t i n g , d i a r r h e a , c r a m p s , f a c i a l e d e m a , c a r d i a c a b n o r m a l i t i e s , d e h y d r a t i o n , a n d s h o c k . • I n h a l a t i o n - c o u g h , d y s p n o e a , c h e s t p a i n , r e s p i r a t o r y t r a c t d a m a g e , h e a d a c h e , g e n e r a l w e a k n e s s , n a u s e a , v o m i t i n g , c o l i c d i a r r h e a , g i d d i n e s s , e x t r e m e g e n e r a l w e a k n e s s , a n d e p i g a s t r i c p a i n . • S k i n c o n t a c t – i r r i t a t i o n o f s k i n a n d m u c o u s m e m b r a n e s , b r o n c h i t i s , c o n j u n c t i v i t i s , l a r y n g i t i s , a n d d e r m a t i t i s .

`¤h(\¡¤ ` S y m p t o m s o f a r s e n i c p o i s o n i n g U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d

P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p 3 5 9 , 1 9 9 9 . / / / / / / A . D e b , A G u p t a , P . B r a n d y o p a d h y a y , R B i s w a s , a n d S . R o y ,

“ A p p r o p r i a t e t e c h n o l o g y f o r r e m o v a l o f a r s e n i c f r o m d r i n k i n g w a t e r o f r u r a l W e s t B e n g a l ” , i n P r o v i d i n g S a f e D r i n k i n g

W a t e r i n S m a l l S y s t e m : T e c h n o l o g y , O p e r a t i o n s , a n d E c o n o m i c s . C o t r u v o , G . C r a u n , a n d N . H e a r n e ( E d s ) , W o r l d H e a l t h

O r g a n i z a t i o n , C R C P r e s s , p p 2 7 3 - 2 7 8 , 1 9 9 9 . C h r o n i c e f f e c t s m a y b e d i v i d e d i n t o t h r e e p h a s e s A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . . A r s e n i c i n t a k e t h r o u g h c o n t a m i n a t e d f o o d , w a t e r a n d a i r i n s m e l t i n g p l a n t s , i n s e c t i c i d e f a c t o r i e s , a n d v i n e y a r d w o r k e r s – s y m m e t r i c a l p a l m e r a n d p l a n t a r h y p e r k e r a t o s i s , w h i t e s t r i a e o f f i n g e r n a i l s , c a r d i o v a s c u l a r m a n i f e s t a t i o n s ,

82 d i a b e t e s , m y o r c d i a c i s c h e m i a , h y p e r t e n s i o n , l i v e r d y s f u n t i o n s , h e m a t o l o g i c a l c h a n g e s , a n d v a s c u l a r d i s o r d e r s r e s u l t i n g i n g a n g r e n e s o f t h e l o w e r e x t r e m i t i e s ( b l a c k f o o t d i s e a s e ) .

C h r o n i c e f f e c t s m a y b e d i v i d e d i n t o t h r e e p h a s e s A r s e n i c P o i s o n i n g i n B a n g l a d e s h / I n d i a , I n t e r n e t s i t e : h t t p : / / w w w . s o s - a r s e n i c . n e t / e n g l i s h / c o n t a m i n / 1 . h t m l , M a y 2 0 0 0 . : F i r s t p h a s e : w o r k e r s o r e x p o s e d p e r s o n s e x p e r i e n c e w e a k n e s s , l o s s o f a p p e t i t e , n a u s e a , o c c a s i o n a l v o m i t i n g , s o m e d i a r r h e a , a n d a s e n s e o f h e a v i n e s s i n t h e s t o m a c h ; S e c o n d p h a s e : s y m p t o m s i n c l u d e c o n j u n c t i v i t i s , a c a t a r r h a l s t a t e o f t h e m u c o u s m e m b r a n e s o f t h e n o s e , l a r y n x , a n d r e s p i r a t o r y p a s s a g e s . C o r y z a , h o a r s e n e s s , a n d m i l d t r a c h e o b r o n c h i t i s m a y o c c u r . P e r f o r a t i o n o f t h e n a s a l s e p t u m i s c o m m o n , a n d i s p r o b a b l y t h e m o s t t y p i c a l l e s i o n o f t h e u p p e r r e s p i r a t o r y t r a c t i n o c c u p a t i o n a l e x p o s u r e t o a r s e n i c a l d u s t . S k i n l e s i o n s o f t h e e c z e m a t o i d a n d a l l e r g i c t y p e c o m m o n l y o c c u r . T h i r d p h a s e : S y m p t o m s s u c h a s p e r i p h e r a l n e u t r i t i s , i n i t i a l l y o f t h e h a n d s a n d f e e t , w h i c h i s e s s e n t i a l l y s e n s o r y . M o t o r p a r a l y s i s o c c u r s i n t h e m o r e s e v e r e c a s e s – t h e f i r s t m u s c l e s t o b e a f f e c t e d a r e u s u a l l y t h e t o e e x t e n s o r s a n d t h e p e r o n e i . I n o n l y t h e m o s t s e v e r e c a s e s w i l l p a r a l y s i s o f t h e f l e x o r m u s c l e s o f t h e f e e t a n d t h e e x t e n s o r m u s c l e s o f t h e h a n d s o r t h e f e e t o c c u r .

N o w t h a t t h e a c u t e a n d c h r o n i c p o i s o n i n g e f f e c t s h a v e b e e n d i s c u s s e d f r o m a c h r o n o l o g i c a l p o i n t o f v i e w i s a l s o a p t t o c o n s i d e r t h e s p a t i a l ( b o d i l y ) s y m p t o m s o f a r s e n i c p o i s o n i n g a s r e p o r t e d b y B r o w n i n g ( c i t e d b y G u l l e d g e J . G u l l e d g e , a n d J O ’ C o n n e r , “ r e m o v a l o f a r s e n i c ( V ) f r o m w a t e r b y a d s o r p t i o n o n a l u m i n i u m a n d f e r r i c h y d r o x i d e s ” , J o u r n a l o f t h e

A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . 021 , I s s u e 8 , p p 5 4 8 - 5 5 2 , ( 1 9 7 3 ) . ) : A r s e n i c p o i s o n i n g i n v o l v e s f o u r m a j o r a r e a s : • T h e d i g e s t i v e s y s t e m : s y m p t o m s i n c l u d e v o m i t i n g o f b l o o d s t a i n e d o r b i l e - s t a i n e d m u c o u s a n d c o n s t i p a t i o n , a c c o m p a n i e d b y i n c r e a s e d p u l s e • T h e s k i n : e r u p t i o n s c h a r a c t e r i z e d b y r e d n e s s a n s s w e l l i n g o f t h e e y e l i d s a n d s c r o t u m , e r y t h e m a o v e r t h e e n t i r e b o d y , a n d l o s s o f n a i l s a n d h a i r • D i s t u r b a n c e s o f s e n s i b i l i t y : h e a d a c h e , n u m b n e s s , s t i f f n e s s : c r a w l i n g a n d p r i c k l i n g s e n s a t i o n s i n t h e t o e s , f e e t , a n d l e g s ; a n d p a i n f u l c r a m p i n g o f t h e m u s c l e s • M o t o r p a r a l y s i s , d e a t h u p o n p a r a l y s i s o f t h e h e a r t .

83

T a b l e ? ? A r s e n i c p o i s o n i n g d i s o r d e r s a n d t h e i r r e l a t e d o c c u p a t i o n s o r `¤'" © a c t i v i t i e s . S y m p t o m s o f a r s e n i c p o i s o n i n g U l l m a n s E n c y l o p e d i a , I n d u s t r i a l I n o r g a n i c C h e m i c a l s a n d P r o d u c t s , W i l e y - V C H , N e w Y o r k , V o l . V , p p 3 6 0 - 3 6 1 , 1 9 9 9 . D i s o r d e r O c c u p a t i o n / A c t i v i t y S k i n d i s o r d e r s : l e s i o n s , w a r t s , I n s e c t i c i d e p r o d u c t i o n , c o p p e r o r e m e l a n o s i s , c o n t a c t d e r m a t i t i s , s m e l t i n g e c z e m a t o u s f e a t u r e s , d e p i g m e n t a t i o n .

M u c o u s m e m b r a n e d e f e c t s : I n s e c t i c i d e e x p o s u r e - C a 3 ( A s O 4 ) 2 c o n j u n c t i v i t i s w i t h s w e l l i n g a n d p a i n ,

P e r f o r a t i o n o f t h e n a s a l s e p t u m C o p p e r s m e l t e r w o r k e r s P e r i p h e r a l n e u r i t i s : s y m p t o m s s u c h a s L o n g - t e r m e x p o s u r e t o a r s e n a t e p a i n , d i f f i c u l t i e s i n w a l k i n g , b u r n i n g d u s t s s e n s a t i o n s , t e n d e r n e s s i n a f f e c t e d l i m b s , a n d l a t e r o n s e v e r e w e a k n e s s i n l e g s a n d f e e t .

H e a d a c h e , a p h a s i a , d r o w s i n e s s , S e v e r e c h r o n i c i n t o x i c a t i o n s d i s o r i e n t a t i o n , a n d c h a n g e s i n p e r s o n a l i t y . C i r c u l a r s y s t e m : C h r o n i c a r s e n i c p o i s o n i n g A b n o r m a l i t i e s i n e l e c t r o c a r d i o g r a m i n d i c a t i n g m y o c a r d i a l e f f e c t , p e r i p h e r a l v a s c u l a r d i s t u r b a n c e s , g a n g r e n e o f e x t r e m i t i e s , a t r o p h i c a c r o d e r m i t i s , e n d a o n g i t i s , a n d b l a c k f o o t d i s e a s e L i v e r d a m a g e s : C i r r h o s i s , h e p a t i t i s , V i n t a g e s u s i n g a r s e n i c a l h e r b i c i d e s a s c i t e s , e n l a r g e d l i v e r a n d a f t e r l o n g t e r m c o n s u m p t i o n o f a r s e n i c c o n t a i n i n g w i n e . G a s t r o i n t e s t i n a l d i s t u r b a n c e s : C h r o n i c i n t o x i c a t i o n b y i n g e s t i o n n a u s e a , v o m i t i n g , l o s s o f a p p e t i t e H e m a t o l o g i c a l c h a n g e s : a n e m i a , C h r o n i c a i r b o r n e e x p o s u r e l e u c o p o e n i a , t h r o m o c y t o p o e n i a ( t h e s e s y m p t o m s d i s a p p e a r e d 2 - 3 w e e k s a f t e r i n g e s t i o n w a s t e r m i n a t e d )

84

C a n c e r : O r a l a n d p h a r y n g e a l c a n c e r s W o o l f i b e r w o r k e r s – s h e e p h a d b e e n d i s i n f e c t e d u s i n g a r s e n i c a l a g e n t s

S k i n c a n c e r w i t h m u l t i f o c a l l e s i o n s A r s e n i c c o n t a m i n a t e d w a t e r i n A r g e n t i n a , C h i l e a n d T a i w a n M u a t g e n i c i t y : s i g n i f i c a n t i n c r e a s e i n C o n t a c t w i t h a r s e n i c a l c o m p o u n d s c h r o m o s o m a l a b e r r a t i o n s T e r a t o g e n i c i t y : S p o n t a n e o u s a b o r t i o n s E m p l o y e e s o f a s m e l t e r a n d n e a r i n h a b i t a n t s

H i g h A r s e n i c l e v e l s i n s t i l l b o r n A r s e n i c i n g e s t i o n i n f a n t 1 1 h o u r s a f t e r a r s e n i c i n g e s t i o n b y m o t h e r I n g e s t i o n o f d i s o d i u m a r s e n a t e E f f e c t s o b s e r v e d i n h a m s t e r f e t u s e s : e x e n c e p h a l y , c l e f t p a l a e a n d l i p , m i c r o a n o p h t h a l m i a , g e n i t o u r i n a r y a b n o r m a l i t i e s , e a r d e f o r m i t i e s a n d r e n a l a g e n e s i s

Teratogenicity,mutagenicityandcarcinogenicity

Ë~ÌÎÍÏ,Ð3ÑRÒeÌÉÓeÔÕNÔMÐ8Ö

ޒßHà¡Ý Úà¡Ü¦Ý Üá’Ý Ü

:Somevariationsinteratogeniceffectshavebeenshown ×ÙØ ÚۡܦÝ

âäã ã¦æ æ ãHê ã ã¡ñ ñ êNóZã¦ô4õ¦öö¦ö

ܤá¡å Û¦Ú¦çgèjé Ü Ý é Üë Û¨ØÜÛ¦ëÚ¤Ý ë ÛHì çë ëMí¨ì è è î îXîLï Úà¦Úð Ø ÚÛ¡Ü¦Ý Þ¡ï ÜÛ¦ë èMÛ¡Üá¡å Ý Ú¦çgè Þà¡Ü¤ë Ý Ügè'òï çë å ï¦÷MøeùLúeû3øNü8úeû8ýþø—ÿ¡ £¢qøe÷¥¤

¦¨§¡© ¦¡ ¦ ¦ ¦ ¦¡¨¦ ¦ ¦ ¦¦ ¦ ¦ ¦

ú¡¤ ü8ú  ¤ ÿe÷ ú¡¤ ¤ Lø û ÿ[ü3÷ ý¤ Lú¨¡ÿ™ü ûOø€ü ú¡ ÿ¡  Xü Zý ü’ü! ,û

¦ ¦  ¦¦§¡© ¦¡ ¦ ¦¡ ¦ ¦§¨¦©

 ÿ û3øNü" úeÿ¤¡ú ¢# ¥ ú¡¤ ü8ú•ø—û¤ ÿ¡ $¤ Lú ÿLú†øeù’ÿLúeû%¢qøe÷& ü" ¤ üeø#¤[÷&  [ü

âäã ã¦æ æ ãHê

¦¡ ' ¦

û Xü! Múeÿ ÿ¤ ( × ØMÚÛ¡ÜÝ Þ,ßHà¡Ý Úà¨Ü¦Ý Üá’Ý Ü Üá¡å Û¦Ú¦çgèaé Ü Ý é Üë Û¡ØÜÛ¦ë¦Ú¦Ý ë Ûì çë ë í¨ì è è îXî îNï ÚàÚð

ã ã¡ñ ñ êNóZã¦ô[õ¦ö¦ö¦ö

 ¦ ¦ ¦ ¦ ¦

ØMÚÛ¡Ü¦Ý Þ¨ï ܤۦë èMÛ¡Üá¨å Ý Ú¦çgèMÞà¡Üë Ý Üè òï çë å ï¥)¡*

¢vø—ÿ øNü ø†øeû û3øeû  Lú¨  û+  ÿLúeû!’øeÿ ¥øeû!¤ ÿ¡ 

âäã ã¦æ æ ãHê

¦.© ¦

çë ë í¨ì è è îXî îNï ÚàÚ𠥤,ZÿNú¡ÿ™ü8ú#[û3ú¡¤-¤®ü" ÷ ø¡ ÿ4ü ø × ØMÚÛ¡Ü¦Ý Þ,ßhà¨Ý Úà¡ÜÝ Ü¤á€Ý Ü Üá¡å Û¦Ú¦çgèaé Ü Ý é Üë Û¡ØÜÛ¦ë¦Ú¦Ý ë Ûì

ã ã¡ñ ñ êNóZã¦ô[õ¦ö¦ö¦ö

 ¦  ¦ ¡¦ ¦ ¦ ¦

)

ØMÚÛ¡Ü¦Ý Þ¨ï ܤۦë èMÛ¡Üá¨å Ý Ú¦çgèMÞà¡Üë Ý Üè òï çë å ï Zü! ¤¡øeû!¤ ÿ $¤ Lú ÷ ù Zú—ÿ¨¤ û ø ¤¡ø¨ü û3øNü ú  ÿ

 ¦ ¦§¡©  ¦

)

ÿ ¢qøeÿ¨¤/0 Lú. Lø1 Nø ¡  ú ¤ û

85

243LÐ3ÏeÒRÌÎÓeÔ Õ€ÔMÐ8Ö6587

¦ ¦ ¦ ¦ ¦¦ 

û ø—û ÿ Zø€ü! Múeÿ¨¤ ü" LøNüeøeû!¤ ÿ¡  Lø¡¤¥øeÿ XüRúeÿ ¢qøeÿ

¦ ¦§¡©¦ ¦ ¦ ¦ ¦¡¦

)6:

 ,ûOú'¢vú ¤Zú¢ ¤ NùLúNü"  ÿ ügû% úe÷ ø—ÿ ÿ9 4ú ÿ û% £¢ ÿ4ü8øe÷;¤Xý9¤Xü ¢¤¡øeû!¤ ÿ  Lø¡¤vù ÿ

 ¦ ¦ ¦ ¦ ¦§ ¦

¤ Nú¡ÿ™ü8ú ÿ   ’û3ú¢qú¡¤Zú'¢ øeù’ù û3øNü! Múeÿ¨¤Zøeÿ ¤ ¥¤Xü û' ’û3ú¢qøNü"  Lø—ÿ¨ ¤u× ØMÚÛ¡Ü¦Ý Þ

ã ã¡ñ ñ êNóZã¦ô[õ¦ö¦ö¦ö âäã ã¦æ æ ãHê

7

¦ ¦

))

çë ëMí¨ì è è î îXîNï Úà¦Úð ØMÚÛ¡Ü¦Ý Þ¨ï ܤۦë èMÛ¡Üá¨å Ý Ú¦çgèMÞà¡Üë Ý Üè òï çë å ï û ¥¤ ßHà¡Ý Úà¡Ü¦Ý Üá’Ý Ü Üá¡å ÛÚ¤çèaé Ü Ý é Üë Û¡Øܤۦë¦Ú¦Ý ë ÛHì

¦ ¡¦ ¦ ¦ ¦ ¦ ¦ ¦¦!¦ ¦ ¦ ¦ © ¦

ÿNú  ÿ ø14ø ÷Møeù’÷ ü8úZúeûû ÷ øNü ü" ¤ Xü<¤/0 ü! †÷  ÷ ¤¥øNü’ü"  ú—û , ÷ ø¡ × ØMÚÛ¡Ü¦Ý Þ

âäã ã¦æ æ ãHê ã ã¡ñ ñ êNóZã¦ô[õ¦ö¦ö¦ö

ßHà¡Ý Úà¡Ü¦Ý Üá’Ý Ü Üá¡å ÛÚ¤çèaé Ü Ý é Üë Û¡Øܤۦë¦Ú¦Ý ë ÛHì çë ëMí¨ì è è î îXîNï Úà¦Úð ØMÚÛ¡Ü¦Ý Þ¨ï ܤۦë èMÛ¡Üá¨å Ý Ú¦çgèMÞà¡Üë Ý Üè òï çë å ï¥)

=

ÏÎÍÕNÔjӒÑRÒeÌÎÓRÔÕNÔÕ€Ô Ð8Ö56>

© ¡¦  ¦ ¦ ¦ ¦§¡©  ¦ ¦

û ¢ ÷ ú¡ ¥Zøe÷;¤Xü ¤$[÷ øeû÷ ý? ÿ ¥ZøNü ü" LøNü ú¡¤ û ü8ú•ø—û¤ ÿ¡ 

¦ ¦ ¦ ¡¦ ¦   ¦ © ¦ 

)CB

ÿ¨[û ø¡¤ ¤®ü" ÿ¨ ÿ¨ ú ¤,- ÿ6 N÷ ÿ¨@ N÷&  ûÉøeÿ ÷ ý¢ Lú' Zøeÿ¨ ûA ÿ ¢qøeÿ¤ ÿ¡ &¢vø—÷

¨ ¦ ¦ ¦  ¦ ¦ © ¦  ¦

¤Xü ¤  Lú¨  û+ ÿLúNü6Zú—ÿ û ¢ ü! Zø—û ÿLú¡ ÿ¡  úNü ÿ4ü" øe÷ ú øeû!¤ ÿ¡ ¥¡øeÿ ü@ Lø¡¤

¦¡¦ © © ¦ ¦ ¦ ¦ © ¦

ù ÿ û3ú ú¡¤ ü" LøNüeøeû!¤ ÿ¡  ¤¥øeû!¤ ÿ¡ ¥¢qøNý¨ù øZú¡D û3ú¢qúNü ú—û—úeûÉø#Zú D Zø—û ÿLú¡ ÿ

âäã ã¦æ æ ãHê êNóZã¦ô4õ¦öö¦ö ã ã¡ñ ñ

× Ø ÚÛ¨Ü¦Ý Þ’ßHà¡Ý Úà¡Ü¦Ý Üá’Ý Ü Ü¤á¡å Û¦Ú¦çgèjé Ü Ý é Üë Û¨ØÜÛ¦ë¦Ú¦Ý ë ÛHì ï¥) çë ë íhì è è îXîXîLï Úà¦Úð Ø ÚÛ¨Ü¦Ý Þ¡ï ÜÛ¦ë èMÛ¡Üá¡å Ý Ú¦çgè Þà¡Ü¤ë Ý Ügè'òï çë å

7

¦  ¦ ¦ ¦  ¦ ¡¦ ¦ © ¦ ¦ ¦ ¦ #¦¨§¡©  ¦ ¦

úŽû  ü!  Nøeÿ¨ ¤¥ú Zøeÿ û  ÷ ú ¢ ÿ[ü’ü! &¢  ' 4ü ú¡¤ û ¤ Lø

¦¡¦ ¦  ¦  ¦ ¦ ¦GF ¦  ¦

ù ÿ¤ ü úeû¤÷Múeÿ¨¨ü û%¢EZúeÿ4ü8ø¡Xü$ ü" vø' ûùLú ûÿ øeû!¤ ÿ  Zü"  Løeÿ ú  üÁü! ÿ¨

7

¦ ¦  ¦ ¦ ¦ ¦¡ ¦  ¦ ©¨¦  ¦ 

)

 Nøeÿ¨ ¤¥ú  ü¹ü" ÿ¨ Zø—ÿ¨ ûH ¥¤™û ÷MøNü ü ú¨ü" ¢vø ¤-¤¡ú ø—û¤ ÿ¡  û4úe÷ ¢ ú ø' û

¦ ¦ ¦ ©¨¦ ¦K K FN©¨¦  ¦ K ¦ 

)8L )8M B

Zø—ÿ¨ û—ú1 û—øI¡J¨ý øeû û% ú ø—û D ûAOP ¤RQ ¢ST [øeÿ ø ü û@U ý øeû!¤¥ú

âäã ã¦æ æ ãHê

¦¨§¡©  ¦ FN©¨¦

B

ú¡¤ û J ûHOP ¤RQ%¢ × ØMÚÛ¡ÜÝ Þ,ßhà¨Ý Úà¡ÜÝ Ü¤á€Ý Ü Üá¡å Û¦Ú¦çgèaé Ü Ý é Üë Û¡ØÜÛ¦ë¦Ú¦Ý ë Ûì çë ë í¨ì è è îXî îNï ÚàÚð

S

ã ã¡ñ ñ êNóZã¦ô[õ¦ö¦ö¦ö

ØMÚÛ¡Ü¦Ý Þ¨ï ܤۦë èMÛ¡Üá¨å Ý Ú¦çgèMÞà¡Üë Ý Üè òï çë å ï¥) I n o r g a n i c a r s e n i c i n h i b i t s r e p l i c a t i o n o f D N A a n d i n t e r r u p t s t h e r e p a i r m e c h a n i s m s . A p o s s i b l e c a u s e i s t h e b l o c k a g e o f D N A p o l y m e r a s e b y t h e l i n k a g e o f a r s e n a t e t o s u l p h i d e g r o u p s J . G u l l e d g e , a n d J O ’ C o n n e r , “ r e m o v a l o f a r s e n i c ( V ) f r o m

w a t e r b y a d s o r p t i o n o n a l u m i n i u m a n d f e r r i c h y d r o x i d e s ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . 021 , I s s u e 8 , p p 5 4 8 - 5 5 2 , ( 1 9 7 3 ) . . A t t h e c u r r e n t m a x i m u m c o n t a m i n a n t l e v e l ( M C L ) f o r a r s e n i c o f 0 . 0 5 0 m g / L , t h e e x p e c t e d h u m a n i n c i d e n c e o f c a n c e r , d u e t o t h e p r e s e n c e o f a r s e n i c , i s e x p e c t e d t o b e 1 3 p e r s o n s p e r t h o u s a n d . M . E d w a r d s , “ C h e m i s t r y o f a r s e n i c r e m o v a l d u r i n g c o a g u l a t i o n a n d F e - M n o x i d a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . U , p p 6 4 - 7 7 , ( 1 9 9 4 ) .

Aluminium

86

T o x i c o l o g y o f a l u m i n i u m : I n t a k e o f a l u m i n i u m i s l i n k e d t o A l z h e i m e r s d i s e a s e a n d d i s c o l o u r a t i o n R . A . M e y e r s , a n d D . K . D i t t r i c k ( E d i t o r s ) , E n c y c l o p e d i a o f E n v i r o n m e n t a l P o l l u t i o n a n d C l e a n u p , , J o h n W i l e y a n d S o n s , I n c . , N e w Y o r k , p 1 8 3 8 , 1 9 9 9 .

Iron

A l t h o u g h i r o n h a s n o h e a l t h e f f e c t s , i t m a y i m p a r t a n u n a t t r a c t i v e t a s t e a n d c o l o u r t o w a t e r , i n a d d i t i o n i t p r o d u c e s s t a i n s a n d d e p o s i t s a n d p r o m o t e s g r o w t h o f i r o n b a c t e r i a R . A . M e y e r s , a n d D . K . D i t t r i c k ( E d i t o r s ) , E n c y c l o p e d i a o f E n v i r o n m e n t a l P o l l u t i o n a n d C l e a n u p , , J o h n W i l e y a n d S o n s , I n c . , N e w Y o r k , p 1 8 3 8 , 1 9 9 9 .

Experimentaldesignandmethodology

T h e u s e o f m o d e l i n g p r o g r a m s h a s b e e n u s e d M . E d w a r d s , “ C h e m i s t r y o f a r s e n i c r e m o v a l d u r i n g c o a g u l a t i o n a n d F e - M n o x i d a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . U , p p 6 4 - 7 7 , ( 1 9 9 4 ) . / / / / / b u t t h e s e a r e n o t f a c t o r i a l l y d e s i g n e d , b u t r a t h e r b a s e d o n s i n g l e v a r i a b l e s t u d i e s w h i l e h o l d i n g t h e r e m a i n d e r c o n s t a n t . E d w a r d s M . E d w a r d s , “ C h e m i s t r y o f a r s e n i c

r e m o v a l d u r i n g c o a g u l a t i o n a n d F e - M n o x i d a t i o n ” , J o u r n a l o f t h e A m e r i c a n W a t e r W o r k s A s s o c i a t i o n , V o l . U , p p 6 4 - 7 7 , ( 1 9 9 4 ) . C o m p i l e d c o n t o u r d i a g r a m s d e p i c t i n g p e r c e n t a g e a r s e n i c r e m o v a l a s a f u n t i o n o f p H a n d c o a g u l a n t d o s e . T h e s e d i a g r a m s w e r e b a s e d o n t h e M i n t e q a 2 ( U S E P A s o f t w a r e ) a n d d a t a w a s t a k e n f r o m a d a t a b a s e .

Advantagesoffactoriallydesignedexperiments

87

CHAPTER1

INTRODUCTION 1.1 General The future of the chemical industry is closely tied to waste reduction. It is rare that a process does not generate one or more by-products. Some of these effluents contain catalysts orothercompoundsthatcan be recovered and reused. However, not all by-products orothercompoundsintheseeffluentscanberecovered orreused,andthe“part”thatremainsistermedaswaste. Waste therefore includes streams or materials that are ventedtoair,dischargedtowater,landfilled,incinerated or sent to a biological treatment facility.1 The problem with waste is that once it hasbeengenerated,itcannot be destroyed. Waste can be concentrated or diluted; its physical properties can be changed as well as its chemical form, but it cannot be destroyed. Waste is frequently relocated rather than treated. For example, solutions containing heavy metals can be treated by chemical precipitation to remove the metals. After the

88 metals are removed, the stream can continue to further treatmentorbedischargedintoriversortheocean.The precipitatedmetals(orsludge)maythenbelandfilled. The waste problem is best dealt with by not producing waste at all, i.e. waste elimination. However, it is impossible to produce no waste at all, and so the best alternative is the reduction of the amount of waste produced. Pollution prevention is defined as all those activitiesthatreducethegenerationofhazardouswaste.2 Many other terms are used to describe these activities: waste minimization, waste reduction, source reduction, waste diversion, pollution prevention, recycling and reuse.Ifwastecanbeeliminatedatthesource,nowaste treatmentisnecessaryandnowastedisposalinanyform isnecessary. 1.1.1 Historicalwastedisasters Whilethechemicalindustrywasexploringandgrowing, theirinnovationsintonewprocessesandresearchwere notwithoutdanger.Alonglistofmajorhistoricalwaste disasters exists and, with the exception of the many oil spillsintothesea,mosthappenedatchemicalindustries. Below are some important dates and facts about historicalwastedisastersinthe1900’s. In May 1928, a poison gas (phosgene) incident at the Stolzenberg chemical factory in Hamburg (Germany) caused10deathsand150severepoisonings.3 From 1938, wastewater containing mercury was discharged into the bay of Minimata in Japan. As a consequence,severalhundreddeathsfromtheso-called “Itai-Itai”disease(literally“ouch-ouch”disease)resulted in the following decades due to consumption of fish

89 contaminated with mercury. The end of 1972 saw 292 provencasesofillnesswith92fatalcasesandatotalof several thousands victims.3 In 1951, a factory discharged, with government permission, some 200 t of radioactive uranium dust into the environment. In July 1976, the largest dioxin accident ever took place in the northernItaliantownofSeveso:approximately2.5kgof 2,3,7,8-TCDD(dioxin)werereleasedfromthereactorofa chemicalfactoryproducingtrichlorophenol.Itresultedin 183casesofchlorinepoisoning,3000deadpetsandfarm animals,and70000animalswereslaughteredafterwards. The long term consequences of this disaster remain uncertain. Two very serious and long lasting disasters are respectively the Bhopal disaster4 and the Love Canal disaster.5,6Atmidnightof2-3December1984,over40tof deadly methyl isocyanate, hydrogen cyanide and other gases leaked from a poorly designed and recklessly managedpesticidefactory(CarbideAE)inBhopal(India). Over500000men,womenandchildrenwereexposedto thepoisoncloudsandatleastsixthousandpeopledied withinthefirstweekofthedisaster.4Thehealthsituation in Bhopal continues to be affected by this tragedy. According to the latest reports of the Indian Counsel of Medical Research (ICMR), nearly one quarter of the exposedpopulationischronicallyillwithdiseasesofall kinds, such as those affecting the neurological and respiratory systems. Exposure to CarbideAE gases has made people vulnerable to secondary infections. According to the ICMR, the figure for tuberculosis patientsismorethanthreetimeshigherthanthenational figurefortheurbanpopulation.TheInternationalMedical Commission visited Bhopal in January 1994 and their report showed that more than 50 000 people in Bhopal

90 were suffering from total or partial disability because of theirexposuretothetoxicchemicalsofUnionCarbide.3 The future of the people in Bhopal is not certain, and therearehopesthatatleasthealthychildrenmaysoon bebornfollowingthisdisaster. AsimilarsituationoccuredintheLoveCanaltragedy.In the beginning of 1942, the Love Canal landfill site was usedbyHookerChemicalsandPlasticsforthedisposal ofover21000tonsofvariouschemicalwastes,including halogenated organics, pesticides, chlorobenzenes and dioxin.5Dumpingceasedin1952,andin1953thelandfill was covered. The area near the covered landfill was extensively developed, including the construction of an elementary school and numerous homes. The first reportsofodorsandproblemswithresidueswereheard in1960,andthenumberofsuchreportsincreasedduring the1970’sasthewatertablerose,bringingcontaminated groundwatertothesurface.5By1979,ascientistclaimed to find a high rate of birth defects and miscarriages amongLoveCanalresidentsandheurgedanevacuation. 6Asaresult,approximately950familieswereevacuated froma10squareblockareasurroundingthelandfill.On 21December1995,aconsentdecree,asacostrecovery settlement between the United States and OCC (former Hooker Chemicals and Plastics), was lodged with the United States district court. As part of the settlement, OCC and the United States Army have agreed to reimburse the federal government’spostresponsecost, related directly to response activities taken at the site. The primary portion of OCC was $129 million. OCC has also agreed to reimburse certain other federal costs.5 This is just a small portion of the money spent on this disaster.

91

As this and previous examples show, no risks can be taken when working in the chemical industry, and good care must be exercised when dealing with waste handling, treatment and storage. It must be emphasized thatthebestwaytodealwithwasteisnottoproduceitat all.Wasteminimizationandeliminationarethereforevery important considerations in every part of the chemical industry. 1.2 Wasteminimization 1.2.1 Historicaloverview Waste minimization has been going on for quite some timealready.Therearenumerousexamples,somedating from as early as the nineteenth century, of industrial factories that reduced waste generation.2 Also, early twentieth century history contains many examples of wastereductionefforts.Abookonwasteutilizationwas publishedinLondonin1915.2Someindustrieshavelong since adopted the “prevention is better than cure” approach as exemplified by the following quote from RocheleauandTaylorofE.I.DuPontdeNemours&Co.: Emphasishasbeenplacedonin-plantcontrolmeasures, because operation of a wastewater treatment works is only part, often a small part of industrial control problems… It is now standard policy with nearly all chemical companies to apply effective wastewater controlsassoonaspossibleinthedevelopmentofanew orimprovedprocess.Ifapotentialwasteproblemcanbe recognizedearlyenough,itcanoftenbepreventedfrom becomingaproblem,oratleastitcanbeminimized.2 An ironic observation is that industries that were early pioneers in waste reduction are now being “penalized”

92 for being too forward in their thinking. As an example, “save-alls” were originally installed in paper mills to recover fibers. They became so effective that they are now considered as being part of the manufacturing process and no credit is given tothedeviceasawaste minimizationtechnique.2 1.2.2 Strategiesforminimizingwaste Awasteminimizationprocedurebeginswiththeneedto minimize waste. The best place to start waste minimization is at the source. The U.S. Environmental Protection Agency (EPA) has published a waste minimizationprocedure,7whichcanbesummarizedinto thefollowingphases: 1. planningandorganizationphase 2. assessmentphase 3. feasibilityanalysisphase 4. implementationphase. 1.2.2.1 PlanningandOrganization To develop a successful waste minimization program, support from management is necessary. Management will only agree with such a procedure if the benefits obtained from the procedure, such as economic advantages, compliance with regulations, reduced environmental impact and improved public image, will outweighthecoststhathavetobespentonimplementing thesystemorprocedure. If management is convinced, a policy about the waste minimizationprogramshouldbegiventotheemployees. They can apply the policy by identifying the tasks they have to carry out while striving to minimize waste. An employee from every area of the factory should then be involvedinacommitteetosettasksandobjectives.This

93 employee from each area will know specifically what is necessaryinhis/herpartofthefactoryandsuchaperson willbeveryusefulforplanningpurposes. 1.2.2.2 Assessmentphase After setting the tasks and objectives, the assessment phasebeginswithidentifyingthedifferentwastestreams in the company. Every chemical- producing company obviouslyhasadifferentsetupofcircumstancesbutin general, two classes of waste from chemical processes can be identified, namely process waste and utility waste.8 Processwasteconsistsbasicallyofthreetypesofwaste. First is the reactor waste, which is waste created in reactorsthroughtheformationofwasteby-productsetc. Secondiswasteproducedfromseparationandrecycling systems.Thisiswasteproducedthroughtheincomplete recovery and recycle of valuable products in waste streams.Thelastsourceofprocesswasteisthewaste fromprocessseparations.Thisbasicallycoverswastes such as those obtained during the start-up and shut- down of continuous processes, tank-filling and equipmentcleaningformaintenance. Utility waste is associated with hot and cold utilities. Furnaces, diesel engines, gas turbines etc. all produce gaseous combustion products. These combustion productscontaincarbondioxides,ofsulphurand nitrogen and particulates, which contribute to the greenhouse effect.8 In addition to the gaseous waste, steamgeneration,forinstance,producesaqueouswaste fromboilerfeedwatertreatmentetc.

94

Oncethewasteshavebeenidentified,thewasteshaveto beplacedinorderofgreatestpotentialrisk.Assessment teams have to be selected to classify individual waste streams or processes. The team should include personnel from the relevantplantsastheyshouldknow theprocessesandthewastestreamsproduced.Outside consultants may also be used to add their experience aboutaspecificprocess.Thevarioustaskforcesshould then compile a set of options for each specific waste stream.Theoptionsmustbescreenedtodecidewhichof these options are real possibilities in minimizing the waste. 1.2.2.3 Feasibilityanalysisphase During the feasibility analysis phase, the list of the options produced has to be evaluated from not only a technicalpointofview,butalsotodetermineiftheoption for the specific application is workable. Economic considerations such as the payback period, return on investmentetc.willalsobeaddressed.Anotherobstacle hereisofcoursethefunding,andsofinancialteamshave to be formed, together with technical personnel, to evaluate the proposed plan. The plan can be implementedifitisfinanciallyviable. 1.2.2.4 Implementationphase If the evaluation indicates that the plan is feasible, it should be moved to the fourth and final phase, the implementation phase. After implementation, re- evaluation should continuously be performed. The ultimate goal will be maximization of the reduction of waste. 1.2.3 Proceduresforminimizingwaste

95

Theprocedureswhichexistinawastereductionprogram covers a very broad area.9 This procedure includes employeetraining,changingcurrentmethods,preventing spillsandinventorycontrol.Themostimportantaspect of these is employee training. Not only is management commitmentcrucialtoawasteminimizationprogram,but alsothecommitmentthroughoutthewholeorganization iscrucial.Bonuses,awards,plaquesandotherformsof recognitionarethebestwaytoprovidemotivationandto boost employee cooperation in waste minimization.10 Withoutthese,employersmaymaintainthestatusquo. Somecontrolmethodsthatcanbeimplementedare: • Minimizingthenumberofrawmaterials,suppliesused and other materials such as cleaning fluids, oils etc. This helps to clear up shelf-life problems of products exceeding their date of final use, and reduces the numberofpartiallyfilledcontainersrequiringdisposal. Purchasing quantities of materials that are more appropriate to amounts actually used in the process. It can also be less expensive to not buy bulk quantities, especially if materials are often discarded because they arenotusedbeforetheexpirydate. • Reducing the inventory of hazardous materials to a minimum,andensuringthatoldestmaterialsareused firsttopreventtheseexceedingtheirshelf-life. 1.3Wastetreatment 1.3.1 Introduction The objectives of treating hazardous waste or waste streamsinSouthAfricaare:11 • Toreducethetoxicityoftheharmfulcomponentsso as to minimize the impact of the waste on the environment,and

96

• To comply with relevant acts and to meet the minimumrequirementsfortreatmentanddisposal. The environmental health risk, be it natural or anthropogenic(ofhumanorigin),isanongoingdangerto mankind. As modern industry has grown over the past years, so the human health risks arising from human activityhasgrowntoo,andtoaconsiderableextent.The focusonthesehumanriskshasalsochanged.12Initially theinfectiousdiseaseswerethemainfocus.Withmore industries being born, more people were drawn to one place, resulting in sanitary problems and higher potentials of epidemics stemming from drinking water and food.Asmicrobiologicalknowledgehasadvanced, the infectious diseases could be monitored, and so the health risk caused by chemical exposure and radiation became the more major issue. At first, these chemical and radiation problems were considered only in places withhighexposure,butnowadayspublichealthconcerns are investigated in all places having human activities. Currently, industry has such a major influence on mankind’shealththataseriousenvironmentalproblemis arising,resultinginconcernformankind’shealthinevery part of society. This problem is partly caused by the amountofwaste,especiallyhazardouswastes,generated by industry and disposed of in still waters, rivers, seas and landfills. Therefore, waste treatment is essential to protect human health against the enormous amount of waste produced every day, as well as to protect the environmentingeneral. 1.3.2Preliminarystepsforwastetreatment Waste generated by an industry has to be classified according to what kind of waste it is, e.g. hazardous waste, recycled waste etc. Once the waste has been

97 classified, the minimum allowable requirement for the waste has to be determined.13 On the basis of these requirements, it is decided whether or not waste treatment is required. An important factor for waste treatment is to choose the exact treatment that is required. The choice of which technology to use is dependent on the natureofthewaste,theavailabilityof treatment and disposal facilities, and the cost effectiveness of the treatment. The technology chosen for the treatment of a hazardous waste is highly influenced by its chemical and physical properties. Properties such as state (solid, liquid, gas or vapor), nature (inorganic or organic), the concentration of hazardous and non-hazardous components and, of course, toxicity, mobility etc. are very important considerationswhenchoosingthetreatment. 1.4 andPesticides 1.4.1History Any chemical used to destroy or inhibit plant growth, especially of weeds or other undesirable vegetation, is calleda.Theuseofchemicalstokillpestsisa very old process. In about 70 A.D., Pliny the Elder suggestedthatarseniccouldbeusedtokillinsects;the Chineseusedarsenicsulphideasaninsecticideasearly asthelatesixteenthcentury.14During1896–1908,metal salts and mineral acids were introduced as selective sprays for controlling broad-leafed weeds in cereals. During 1915 – 1925, acid arsenical sprays, sodium chlorate and other chemicals were recognized as herbicides, and in 1933 – 1934, sodium dinitrocresylate becamethefirstorganic-selectiveherbicidetobeusedin cereals, flax and peas. Since the discovery of 2,4-

98 dichlorophenoxyacetic acid in 1942,15,16 a growth regulator type of herbicide, a wide variety of organic herbicides have been developed and have enjoyed wide usageinagriculture,forestryandotherindustries. 1.4.2Problemsrelatedtoherbicidesandpesticides During the 1950’s and early 1960’s, the first reports of largeresiduesofherbicidesinsoil,andsmallquantities inwaterandatthebottomofstreamsbegantoappearin literature.14Deadbirdsandfishwerefoundnearsprayed fieldsandintreatedwater.Moreandmorereportswere publishedaboutherbicidesnotonlykillingpests,butalso concentrating in upper levels of the food chain. The discoveriesstartedtocauseconcernaboutpossiblelong term ecological effects. There is now little doubt that certain herbicides are major long term contaminants of theentireenvironment.Oneoftheproblemsisthatnot allofthechemicalsremainintheareaoftreatment.The physico-chemical properties of the substance, together with environmental transport processes, result in a portion of the chemical moving elsewhere in the environment. Traces of certain of the more persistent chemicals have been found well removed from areas of treatment.17Severalhundredmilesofaerialtransporthas beenreportedtohaveoccurredincertaincases.In1980, about3000toftheherbicide2,4,5-trichlorophenol(2,4,5- T)wasusedintheUnitedStatesand1000tintheUnited Kingdom, chiefly to control weeds and bushes in plantations of young conifers. An impure form of this herbicide, known as “Agent ”, was used by the Americans in the Vietnam war to remove forestry cover which could conceal enemy troops. Agent Orange appeared to contain dioxin as impurity, which has teratogenic (foetus-deforming) effects. Experiments in

99 theUnitedStatesshowedthattheuseof2,4,5-Tonfood cropsresultedinteratogeniceffectsonratsandmicethat had consumed the treated crops.15 It seems inevitable thattheultimatesolutiontoourenvironmentalpesticide problem must encompass a compromise, one in which thesmallestpossiblequantitiesofpesticideisused,and this needs to be combined with other control measures sothatenvironmentalpollutionbypesticidesiskeptata minimum.Thereseemslittlelikelihoodofbeingableto dispense with the use of pesticides in the foreseeable future,butintelligentuseofthemwillgreatlyreducethe hazardsimplicitintheircontinueduse.14 1.4.3Benefitsofherbicidesandpesticides Freeing agricultural crops from weeds has resulted in higher food production, reduced harvesting costs, improved food quality, et cetera. These factors have all contributed to reduced costs in labor, energy, irrigation andinsectanddiseasecontrol.Additionalbenefitswhen appropriate herbicides are used include that millions of people are relieved of allergies to pollens andexposure to poisonous plants. Recreational areas, roadsides, forests and parks have been largely freed from weeds and gardens improving their aesthetic appeal. Modern herbicidesevenbenefittheconstructionindustry,where chemicalsappliedunderasphaltextendpavementlifeby preventingweedpenetrationofthesurface.16 1.4.4Herbicidalandpesticidalclassification There are well over a hundred compounds in use as herbicides. Many of these have different names or formulations. The variety of materials is classified according to the properties of the active ingredient as eitherselectiveornon-selective.Selectiveherbicidesare

100 thosethatkillcertainmembersofaplantpopulationwith no injury to others. Non-selective herbicides are those thatkillallvegetationtowhichtheyareapplied.Theyare commonlyusedtokeeproadsidesweed-free. 1.4.4.1Examplesofherbicidesandpesticides Awidevarietyofherbicidesarecurrentlyavailablethese days. Not all of them are harmful to human beings or animals.,carbamateandtriazineherbicidesactby interferencewithphotosynthesisinplants,causingthem to starve to death. Humans do not photosynthesize and are therefore not directly affected. The described chemicalshavelowmammaliantoxicityanddonotbuild up in food chains. Dithiocarbamate fungicides such as Zineb, Maneb and Mancozeb are also widely used and have relative low mammalian toxicities.15 Two natural insecticides were introduced in the nineteenth century, thesebeingrotenonefromthederrisplantandpyrethrum extractedfromaspeciesofchrysanthemum.Bothwere very safe insecticides, but were also very expensive. Newer synthetic organic insecticides now replace these insecticides, mainly because of the cost factor. These synthetic insecticides fall into three major classes: organophosphorous, organochlorine and the synthetic pyrethroids.15 1.4.4.1.1Organophosphoruscompounds Organophosphorus compounds were developed after World War II in the search for nerve gases. These compounds were therefore very toxic to man and other mammals. Parathion [1] was the first such insecticide used, followed by tetraethyl pyrophosphate (TEPP) and Schradan[2].TEPPwasthemosttoxicmaterialeverto beusedonfarms.15 Organophosphorusinsecticidesact by disrupting effective nervous transmissions in the

S C2H5O P O NO2 C2H5O 101 insect,andintheorytheywouldworkinasimilarwayin mammals. [1]

O O

(CH3)2N P O P N(CH3)2 (CH3)2N N(CH3)2 [2] Table 1.1: Lethal doses of certain organophosphorous compounds * Name LD50 inrats (mg/kg) schradan 5-55 parathion 13 *LD50=(lethaldose).Thisvaluerepresentstheamountof poison per unit weight, which will kill 50% of the particularpopulationoftheanimalspeciesemployedfor thetests.18 1.4.4.1.2Organochlorinecompounds Organochlorine compounds such as DDT [3], HCH and Dieldrin[4]alsoactontheinsect’snervoussystem.The first and most widely used organochlorine compound H

Cl Cl

CCl3 102 was DDT, which was introduced in 1942.14,15 A very serious feature of organochlorine compounds is their ability to become concentrated along food chains, causingdeathtoorganismsattheendofthechain.14 [3]

Cl Cl Cl Cl

Cl Cl

O [4] Table1.2:Lethaldosesofcertainorganochlorinecompounds Name LD50inrats (mg/kg) DDT 250 dieldrin 60 TEPP 1 1.4.4.1.3Syntheticpyrethroids Thesyntheticpyrethroidsgenerallyhavelowmammalian toxicity combined with very high levels of insecticidal potency.Theycanhencebeusedinverylowdoses.The pyrethroids do not concentrate along food chains

103 because they readilydegrade.Allethrin[5]wasthefirst synthetic pyrethrin analogue.18 The synthetic pyrethrins are more stable than the natural pyrethrins due to the lowerreactivityofthesidechains.

CH3 H H CH2CH CH2 (CH ) C CCOO 3 2 O (CH3)2C CHC H2 H [5] Table1.3:Lethaldosesofcertainpyrethrins Name LD50inrats(mg/kg) Naturalpyrethrins 1500 Allethrin 680–920 Phtalthrin 1000 1.5 Theproductionof4-methyl-3-thiosemicarbazide(MTSC) 1.5.1General 4-Methyl-3-thiosemicarbazide [6] (MTSC) is an intermediate in the synthesis of 5-tert-butyl-2- methylamino-1,3,4-thiadiazole (BTDA), the precursor of tebuthiuron,abroadspectrumherbicide.19 H H

N N C CH3 NH2

S

MTSC 104

[6] 1.5.2SynthesisofMTSC The synthesis of MTSC [6] at Dow Agrosciences in Sasolburgconsistsoftworeactions.Thefirstreactionis the synthesis of N-methyldithiocarbamate [9] by the reactionofmethylamine[7],carbondisulfideandabase. This base may be a primary amine, tertiary amine or an alkali metal hydroxide.20,21 Dow Agrosciences first used ammoniaasthebase,butwitheverykilogramofproduct produced, 5 kg of waste resulted. Research was performedtofindabasethatcouldberecoveredsothat a minimum of waste was produced. N,N- diisopropylethylamine [8] (DIPEA) was found to be a suitable base for the reaction.19 Initially N- methyldithiocarbamic acid is formed, which then reacts with the base to form the corresponding N- methyldithiocarbamatesalt(DTC)[9].22

H H CS2 +H3C N + N N S-+NH H H3C C

S [7] [8] [9] Scheme1.1:SynthesisoftheN-methyldithiocarbamatesalt

105

The main impurity formed during the production of N- methyldithiocarbamate [9] is N,N-dimethylthiourea [10] (DMTU) (see scheme 1.2). This product is formed when methylisothiocyanate[11],thedecompositionproductof N-methyldithiocarbamate, reacts with unreacted H H H N N H3C N C S+ H3C N H3C CH H C 3

S methylamine[7].21 [11] [7] [10] Scheme1.2:TheformationofDMTUinthesidereaction MTSC[6]isformedbyreactingN-methyldithiocarbamate [9]withhydrazinehydrate.Methylisothiocyanate[11]is presumably formed in-situ by the base-catalysed decomposition of the N-methyldithiocarbamate [9]. Hydrazinehydratethenreactswithmethylisothiocyanate [11]toformMTSC[6].23

106

H H -+ H2NNH2 N S NH H3C N C S + H2S + R N H C C 3 12 11 H S

9

H H

N N H3C C NH2

S [6] Scheme1.3:SynthesisofMTSC 1.5.3Startingmaterials 1.5.3.1Methylamines Monomethylamine[7],dimethylamineandtrimethylamine are all produced by the reaction of methanol and ammoniaoversolidacidcatalysts.24Monomethylamines arethesimplestmembersoftheaminefamily.Theyare valuable in medicines, agriculture, rubber, plastics and syntheticfibers.Monomethylamine[7]isanintermediate in the synthesis of pharmaceuticals, pesticides, surfactants,photographicdevelopers,explosivesetc.24 1.5.3.2 Carbondisulfide

107

Lampadius discovered carbon disulfide in 1796 while heatingamixtureofironpyriteandcarbon.25Industrial interest grew with the use of carbon disulfide for the extraction of oil and fats and, in 1984, 1.1 million t of carbon disulfide was produced worldwide. Carbon disulfide reacts with ammonia and, depending on the ammonia concentration and temperature, forms ammoniumdithiocarbamate,ammoniumtrithiocarbamate andammonium 1.5.3.3N,N-diisopropylethylamine[8](DIPEA) Hünig’s base (DIPEA) can be used in most applications that require a hindered tertiary amine as a proton acceptor.ThelownucleophilicityofDIPEAensuresthat itdoesnotreactwithreagentsandintermediatestoform by-products.19 SomepropertiesofDIPEAinclude:19 • Protonspecific,“non-nucleophilic”base • Auxiliaryreagentinorganicsynthesis • Protonacceptor/scavenger • Replaces triethylamine and dimethylaniline as protonacceptors • Lowself-alkylation • Lowwater(0.4%w/w) • Recyclable • Increasesprocessefficiency • Reducesprocesscost DIPEA is easily recovered from the reaction mixture because of its low solubility in water. DIPEA can be recovered by azeotropic distillation. After the MTSC is formed, the azeotropic distillation separates the DIPEA- water mixture from the reactor. After cooling, the

108 azeotrope separates as DIPEA with 99.8% purity and a waterphasecontaining0.4%DIPEA.19 1.5.3.4 Hydrazine EmilFischerpredictedtheexistenceofhydrazinein1875 butitwasfirstisolatedin1887byCurtius.26Hydrazineis produced by variations of the Raschig process, the oxidationofammoniabyhypochlorite.Itisavailableas anhydrous hydrazine, as an aqueous solution and as a soliddihydrazinium.Mosthydrazineissoldasan aqueous solution. The only application for anhydrous hydrazine isasarocketfuelorasamonopropellantfor satellitesandspacecraft. The most important uses for hydrazine are as blowing agents for foamed plastics and the production of herbicides.Itisalsousedintheproductionofhydrazine- based pesticides. Maleic hydrazide was the first such pesticideused.26 1.5.4IntermediatesformedduringMTSCsynthesis 1.5.4.3Dithiocarbamates The reaction of carbon disulfide with primary or secondary amines, both aliphatic and aromatic, affords dithiocarbamate salts. The free dithiocarbamate acids are unstable and very few of them have been isolated. The best way to isolate the acid is to convert them into thesalt.Dithiocarbamatesderivedfromprimaryamines are unstable and, in the presence of a base (B-), are convertedtothecorrespondingisothiocyanates(Scheme 1.4).20,27 B- RHNCSS- RNCS+SH- Scheme1.4:Conversionofdithiocarbamatetotheisothiocyanate

109

1.5.4.4Isothiocyanates Aliphatic and aromatic isothiocyanates are important starting materials for the production of thiourea derivatives such as substituted thiosemicarbazides20,21,23(seescheme1.5)

S R N C S+NH3 R NH C NH2

S R N C S+H2NNH2 R NH C

NHNH2 (Scheme1.5:Isothiocyanatesusedfortheproductionofsubstitutedthiosemicarbazides) Isothiocyanates can be formed using several methods andthemostimportantofthesearelistedbelow:27 1.Reaction of alkyl and acyl halides with salts of thiocyanicacid 2.Isomerisationofestersofthiocyanicacid 3.Reaction of dithiocarbamates with hydrogen peroxide, cyanogen chloride, cyanuric chloride, chloroformates,alkalihypochloriteoralkalichloride, phosgene, heavy metal salts, atmospheric oxygen andphosphorousoxychloride 4.Reactionofprimaryamineswiththiophosgene 5.Reaction of thiourea derivatives with mineral acids, aceticanhydrideorbyheating 6.Addition of thiocyanic acid to unsaturated compounds. Methyl isothiocyanate is commercially produced by the followingtwoprocesses:

110

1.Rearrangementofmethylthiocyanate 2.Oxidation of sodium N-methyldithiocarbamate with hydrogenperoxide.27 Methyl isothiocyanate may be reacted with hydrazine to form 4-methyl-3-thiosemicarbazide [6] in high yield (>90%)withalmostanalyticalpurity.28 1.5.5 TheMTSCproduct 1.5.5.1 General A wide range of thiosemicarbazides are known, and Jensenet.al.havepublishedthepreparationprocedures foralargenumberofthem.23Becauseofthewidevariety ofthiosemicarbazides,atraditionalnumberingsystemof thecompoundhasbeenintroduced.

4 3 2 1 H2N CS NH NH2 Figure1.1:traditionalnumberingofthethiosemicarbazides. Eightmethodshavebeenusedtoproducedifferenttypes ofthiosemicarbazides:23 1 Isomerisationofhydrazinium 2 Reductionofthiosemicarbazones 3 Reaction of isothiocyanates with hydrazine or hydrazines 4 Reaction of hydrazine or hydrazines with reactive thiocarbamicacidderivatives 5 Ammonolysisoraminolysisofmonothiocarbazatesor dithiocarbazates 6 Hydrazinolysis of monothiocarbazates or dithiocarbazates

111

7 Reactionofcyanohydrazineswithhydrogen 8 Special methods for preparing 1-methyl derivatives suchas: • hydrolysis of 1-acylthiosemicarbazides, obtained fromacylhydrazinesandisothiocyanates • reduction of formaldehyde-2- phenylthiosemicarbazonewithdiborane 1.5.5.2Thiosemicarbazides For thiosemicarbazides monosubstituted in the 4– position, two important methods are mentioned. The generalmethodfortheproductionofthesederivativesis the reaction between alkyl isothiocyanate and hydrazine or substituted hydrazines.23 The reaction proceeds very rapidly with monoalkylhydrazines, irrespective of the substituents on the hydrazine, and the yields are very satisfactory. The reaction between isothiocyanates and hydrazineisnotsignificantlyinfluencedbystericfactors. The radical of the isothiocyanate seems to have little affect on the course of the reaction. Normally the 2- isomerisobtainedastheonlyproduct. The second method discussed by Jensen et. al. for the synthesis of thiosemicarbazides monosubstituted in the 4-position is the hydrazinolysis of N- alkyldithiocarbamates.23 It was found that methyl N- methyl dithiocarbamate, CH3NH-CS-SCH3, which reacts rapidly with alkylhydrazines, always gave 2,4- dialkylthiosemicarbazides. The reason is that the hydrazinesinduceabase-catalyzeddecompositionofthe alkyl dithiocarbamate to form an isothiocyanate. The formation of the thiosemicarbazide actually proceeds through the reaction between the hydrazine and an isothiocyanate. The yields are comparable to those

112 obtained in the reactions between hydrazines and isothiocyanates so that an S-alkyl N-alkyl dithiocarbamatecanbeusedinsteadofanisothiocyanate to prepare 4-alkylthiosemicarbazides. The monothiocarbamates on the other hand reacted only slowly with hydrazines, and the yield of 4- alkylthiosemicarbazide was low because of side reactions. Some 4-alkylthiosemicarbazides were obtained by aminolysis of S-methyl dithiocarbazate, CH3S-CS-NHNH2,buttheyieldswerealsolow(10–40%). From alkoxythiocarbonylhydrazines andprimaryamines, it has only been possible to obtain 4- alkylthiosemicarbazidesinverylowyieldsinsomecases. Another method that has been investigated is the aminolysis of thiosemicarbazones to produce 4- alkylthiosemicarbazides,butthatmethodcannotcompete withtheuseofanisothiocyanateasstartingmaterial. 1.5.6By-products 1.5.6.1Thioureas The main by-product obtained when preparing the dithiocarbamate (DTC) salt is N,N-dimethylthiourea (DMTU).AtypicalthioureasystemisshowninFigure1.2.

R' R''' 1 2 3 N CS N R'' R'''' Figure1.2:Atypicalthioureasystem The reaction to prepare 1,3-disubstituted thioureas is very similar to the preparation of the DTC, the only real differenceistheheatappliedtothereaction. Themostreasonablecourseofthethioureareactionis:

113

S

RNH2+CS2 RHNCSH S S

- RHNCSH+RNH2 + RHNCS NRH3 S

- +heat RHNCS NRH3 RNCS+RNH2+H2S

RNCS+RNH2 RHNCSNHR

2RNH2+CS2 RHNCSNHR+H2S Scheme1.6:Reactionschemeforthioureasynthesis As can be seen from Scheme 1.6, 3rd reaction, the application of heat will initiate the production of thioureas.Thisisalsothemainproblemwhenproducing the DTC salt. The temperature should be maintained below30oCtopreventDMTUforming. 1.5.6.2Hydrazides Carboxylic acid hydrazides are generally prepared by reactions of hydrazine hydrate with the corresponding methyl or ethyl ester. Hydrazine carboxamide and carbohydrazideareproducedfromhydrazinehydrateand urea,dependingontheamountofureaused.26 Hydrazine carbothioamide (thiosemicarbazide) is made fromthereactionofcarbondisulfidewithhydrazineand thiocarbohydrazide (TCH), a by-product formed during

114 the MTSC synthesis, is produced from carbon disulfide, ammoniaandhydrazine. 1.6 Objectivesofthisstudy 1.6.1 Introduction Dow Agrosciences was producing MTSC as an intermediate for the production of Tebuthiuron. During the synthesis of MTSC, an effluent was obtained with a very high Chemical Oxygen Demand (COD) level. The levelistoohighfortheeffluenttobedisposedofintothe Sasol waste stream. As a result Dow Agrosciences diluted the effluent about 20 000 times, to decrease the COD level to such an extent that the effluent could be disposedoffintotheSasolwastestream. Thedilutionwasaveryexpensivemeasure,whichdidnot reallysolvetheproblem.Researchhadtobepeformed,to determineifitwaspossibletotreatthewastesothatthe effluent could be disposed off. Research had to be performedtoinvestigatethesynthesisreactionaswellto determine whether the synthesis could be performed whilstproducinglesswaste. 1.6.2Objectivesofthisstudy Twoobjectiveswereinvestigated: • Develop a waste treatment protocol, that would improve the effluent to the extent that it meets the requirementsfordisposalintotheSasolstream,and

115

• Use waste minimization techniques to improve the MTSCsynthesisinsuchaway,thatlesswastewas producedandacleanereffluentwasobtained. CHAPTER2 EXPERIMENTAL 2.1 Materials

116

The reagents and methods described here were used for the synthesis of 4- methyl-3-thiosemicarbazideandthetreatmentoftheresultingeffluent. 2.1.1 Reagentsforsynthesis All material used for the synthesis of 4-methyl-3-thiosemicarbazide, with their sourcesandrespectivegrades,arelistedinTable2.1andwereusedasreceived. Table2.1:Reagentsusedforsynthesis Formula Source Grade Chemicalname

Monomethylamine CH3NH2 Aldrich Industrialgrade (40 wt % solution in water) Diisopropylethylamine [(CH3)2CH]2NCH2CH3 Whyte >98% Chemicals Carbondisulfide CS2 Saarchem CP . HydrazineHydrate N2H4 H2O Saarchem CP 2.1.2 Analyticalstandards The reagents used as standard materials for High Performance Liquid Chromatography(HPLC)andtheChemicalOxygenDemand(COD)determination arelistedinTable2.2.Allstandardmaterialswereusedasreceived.

117

Table2.2:Reagentsusedforanalyticalwork Chemicalname Formula Source Grade

4-Methyl-3- CH3NHCSNHNH2 Aldrich 99% thiosemicarbazide N,N-Dimethylthiourea (CH3NH)2CS Aldrich >98% Thiocarbohydrazide (NH2NH)2CS Aldrich >98% Potassiumdichromate K2Cr2O7 NT laboratory AR supplies sulphate Ag2SO4 MandB Ferrous ammonium NH4Fe(SO4)2 NTlabsupplies AR sulphate Ferroinindicator Merck Sulfuricacid H2SO4 Merck AnalaR Acetonitrile CH3CN BDH HiPerSolv 2.2 Apparatus used for the synthesis of 4-methyl-3- thiosemicarbazide Thesynthesisof4-methyl-3-thiosemicarbazidewasperformedina250mLglass reactorequippedwithanoverheadstirrer,condenser,andthermometer.ALabcon circulatorwasusedtopumpglycerinethroughtheoutsidemantelofthereactorto heatthesystemtotherequiredtemperature(seeFigure2.1). When the reaction was complete, the diisopropylethylamine was removed using azeotropic distillation. For this distillation, the condenser was replaced by a distillation set-up, connected to a separating funnel which was used as the receivingflask(seeFigure2.2).

118

Figure2.1:Reactionset-upforthesynthesisof4-methyl-3-thiosemicarbazide

119

Figure2.2:Reactionset-upfortheazeotropicdistillationofdiisopropylethylamine 2.3 Synthetic procedure for the synthesis of 4-methyl-3- thiosemicarbazide Thesynthesisof4-methyl-3-thiosemicarbazidewasperformedaccordingtoatwo step procedure. Firstly, the dithiocarbamate salt is made using diisopropylethylamineasabase.Thedithiocarbamatewasthenusedasastarting materialforthesynthesisof4-methyl-3-thiosemicarbazide. 2.3.1 Synthesisofthedithiocarbamatesalt(DIPEA-DTC) Methylamine (MMA) (40%) (38.75 g; 0.50 mol) and N,N-diisopropylethylamine (DIPEA)(71.5g;0.68mol)waschargedtoa250mLglassreactorequippedwitha refluxcondenserandanoverheadstirrer.Carbondisulfide(38.0g;0.50mol)was added dropwise, using a dropping funnel, while stirring the solution. The temperaturewasmaintainedbelow30oC.Water(32.4g)wasthenaddedandthe reactionmixturewasleftstirringforanadditional3hours. 2.3.2 Synthesisof4-methyl-3-thiosemicarbazide The distillate (distillate was obtained together with the DIPEA after azeotropic distillation)(30.0g)fromapreviousreactionwasaddedtotheDTCmixture,and

120 hydrazinehydrate(30.05g;0.60mol)wasintroducedovera5minuteperiodata flow rate of 5.8 mL/min, using a Beckman110B solvent delivery module (HPLC pump). The reaction mixture was heated to 90 oC using a Labcon circulator pumping glycerine, for heating up the reactor (Figure 2.1). The reaction was allowedtorefluxfortwohoursand20minutesafterwhichtimetherefluxapparatus was replaced by a distillation apparatus(Figure2.2).Diisopropylethylaminewas recoveredbyazeotropicdistillationat95oC.Thereactionmixturewascooledwhile stirring. The solid 4-methyl-3-thiosemicarbazide crystals were removed from the solution using vacuum filtration and dried in a vacuum oven at 60 oC for three hourstoyieldalightproduct. 2.4 Analyticaltechniques Theanalyticalmethodsusedfortheanalysisof4-methyl-3-thiosemicarbazide,as wellasthemethodtodeterminethechemicaloxygendemand,wereobtainedfrom Karbochem.Anymodificationsmadetothesemethodsarespecificallymentioned in the relevant sections. The other methods described are according to the standardoperatingproceduresofthespecificapparatusused. 2.4.1 HighPerformanceLiquidChromatography(HPLC) Analysisof4-methyl-3-thiosemicarbazideobtainedaftersynthesis The analysis of the obtained 4-methyl-3-thiosemicarbazide by HPLC was performed using an Agilent 100 series High Pressure Liquid Chromatograph equippedwitha3.9x300mmubondapackC18columnandaUVdetector. Theexternalstandardmethodwasemployedandaninjectionvolumeof10uLwas used.Theexternalstandardwaspreparedbyaccuratelyweighingapproximately 0.01 g of 4-methyl-3-thiosemicarbazide standard and 0.001 g of each of thiocarbohydrazide(TCH)andN,N-dimethylthiourea(DMTU),andmakinguptoa volume of 250 mL with mobile phase. The sample was prepared by weighing

121 approximately0.01gofdrysampleandmakingupto250mLwithmobilephase. The samples were eluted with an isocratic mobile phase consisting of 6.4 % acetonitrileand93.6%deionisedwaterataflowrateof1mL/min.Thedetector wassetatafixedwavelengthof240nm. Analysis of the composition of 4-methyl-3-thiosemicarbazide effluent HPLC analysis was performed on a Beckman System HPLC system equippedwithaprogrammablesolventmodule126,a250x4.00mm10-micron Lichrosorb 10 rp-18 column and programmable detector module 166 with an ultravioletdetector.Datawereacquiredfromthedetectorbymeansofapersonal computerequippedwiththeSystemGoldDataAcquisitionsoftware,version810. The external standard method was employed and an injection volume of 20 uL (manual loop injector) was used. The external standard was prepared by accuratelyweighingapproximately0.1gof4-methyl-3-thiosemicarbazidestandard and0.1gofeachofthiocarbohydrazide(TCH)andN,N-dimethylthiourea(DMTU), and making up to a volume of 250 mL with mobile phase. The sample was prepared by diluting the 4-methyl-3-thiosemicarbazide effluent 1000 times. The dilutedeffluentwasusedforanalysis. The samples were eluted with an isocratic mobile phase consisting of 6.4 % acetonitrile and 93.6 % de-ionised water containing 30 g of phosphoric acid

(H3PO4)ataflowrateof1mL/min.Thedetectorwassetatafixedwavelengthof 240nm. Thestandardswerestoredinarefrigaratorat3oC.(Thestandardswerenotstable attemperaturesabove20oC).Oncestoredinthefridge,noreactionoccuredand thestandardsremaineduseableforupto1month. 2.4.2 ChemicalOxygenDemand

122

The analysisoftheCODvalueofthe4-methyl-3-thiosemicarbazideeffluentwas performedusingapotassiumdichromaterefluxmethod.Analiquotof4-methyl-3- thiosemicarbazideeffluent(1.00mL)andde-ionisedwater(49mL)werepipetted into a 250 mL round-bottomed flask. De-ionised water (50 mL) was used as a blankdetermination.Potassiumdichromate(0.25N;25.00mL)wasaddedtothe round-bottomed flask. Sulfuric acid reagent (40 mL) was slowly added while coolingthemixture,afterwhichthemixturewasrefluxedfortwohours.Themixture was cooled to room temperature and five drops of ferroin indicatorwereadded. Themixturewastitratedwithferrousammoniumsulphate(0.25N)untilthecolorof themixtureturnedfromblue-greentoreddishbrown.Thefollowingequationwas usedtocalculatetheCODvalueinpartspermillion: (A − B)N COD = ×8000 V With A=volumeofferrousammoniumsulphateusedforblank B=volumeofferrousammoniumsulphateusedforsample N=normalityofferrousammoniumsulphate,and V=Volumeofsample 2.4.3 DifferentialScanningCalorimetry(DSC) Differential Scanning Calorimetry was used for the determination of the composition of the “stone-like” precipitate obtained after the oxidation of the 4- methyl-3-thiosemicarbazide effluent (see Chapter 4). Differential Scanning CalorimetrywasperformedusingaMettlerDSC820calorimeter.Analysiswas performed using standard aluminium pans, into which approximately 10 mg of sample was accurately weighed, and the pan hermetically sealed. An empty aluminiumpanwithapuncturedlidwasusedasareference.Theprocessorwas usedinthescreenmodeandtheheatflowwasmonitoredbetween80oCand130 oCataheatingrateof2oC/min.Thistechniquewassuccessfullyusedtodetermine

123 themeltingpointoftheprecipitatedsamplesobtainedafteroxidationoftheeffluent intheParrhighpressurereactor(seeChapter4). 2.4.4 X-rayFluorescenceSpectroscopy(XRF) XRFAnalysiswasusedtodeterminethecompositionofthestone-likeprecipitate obtained after the oxidation of the 4-methyl-3-thiosemicarbazide effluent (see Chapter 4). XRF analysis was performed using an Oxford 2000 instrument equipped with Link ISIS Software. of the X-rays generated in the samplestakesplacebymeansofanEnergyDispersiveX-rayanalyzer(EDX).The samplesweremountedinplasticholderswithaMylersheetatthebottom.General vacuumconditionswereusedforXRFanalysis.Thepeakintensityisindicativeof thequantityoftheelement.XRFwassuccessfullyusedtodeterminequalitatively, themajorelementalcontentoftheprecipitateobtainedafteroxidationoftheMTSC effluentintheParrhigh-pressurereactor(seechapter4). CHAPTER3 Thesynthesisof4-methyl-3-thiosemicarbazide 3.1Introduction DowAgrosciencesstartedtheproductionof4-methyl-3- thiosemicarbazide(MTSC)withammoniaasabase.The useofammoniaresultedinlargeamountsofammonium salts.Thesesaltscouldnotberecoveredafterthe reaction,resultinginasituationwhereforeverykgof product5kgofwastewasproduced.WhenMTSCwas producedatindustrialscale,averylargeamountofwaste wasproduced,resultinginahugewasteproblem. Naturally,researchwasperformedintothesynthesisof MTSC,toallowthereactiontoproducethesamequantity

124

ofproduct,butlesswasteperkgofproduct.N,N- diisopropylethylamine(DIPEA)wasintroducedasthe newbaseinsteadofammonia.AbigadvantageofDIPEA istheabilitytorecovertheDIPEAalmostcompletelyafter thereaction.WhenperformingreactionsusingDIPEA,the amountofwastedecreasedalmostthreetimes.However, becausethevolumeofwastedecreased,the concentrationofthewasteincreased,causingamajor wastedisposalproblem.Awastetreatmentprotocolhas beenestablished(Chapter4)totreattheeffluentresulting fromthesynthesis.However,atreatmentprocedureafter thesynthesismeansextracostandexpansionofthe planttoaddthewastetreatment.Idealconditionswould betoreducetheamountofwasteandwaste concentrationduringthesynthesisoftheMTSC.This chapterdescribedthesynthesisofMTSCandthe evaluationofthesynthesisasperformedatDow Agrosciences. 3.2Objectives From the preceding discussion, it is clear that the waste obtained during the synthesisofMTSCisamajorconcern.Anotherpointofinterestistheoptimization of the synthesis. Effluent qualities could be improved by optimizing the reaction andthusreducetheamountofeffluentbytreatingatsourcethroughimprovingthe reaction yeilds and selectivity. The objectives of this chapter may thus be summarizedasfollows:

125

• To synthesize MTSC on laboratory scale as performed at Dow Agrosciences. • Toevaluateandadjustthelevelsofreactionvariablessuchasthereaction temperature and the amount DIPEA used by means of a statistical experimentaldesign,withtheviewtooptimizetheyieldofMTSC. • Toevaluatethewasteproducedduringthesynthesisbyusingastatistical experimental design to optimize reaction conditions so less concentrated wasteisproduced. 3.3Thesynthesisof4-methyl-3-thiosemicarbazide The synthesis of MTSC consists of two reactions. The first one involves the reactionofmonomethylamineandN,N-diisopropylethylaminewithcarbondisulfide. Carbondisulfide is added by means of a dropping funnel also containing water. Whileaddingthecarbondisulfide,thereactiontemperaturewasmaintainedbelow 300C.Directlyaftertheadditionofthecarbondisulfidethewaterisaddedandthe reaction was left stirring overnight. The next morning hydrazine hydrate and distillatefromapreviousreactionwasaddedandthereactionwasallowedtoreact at900C.TheDIPEAwasrecoveredbymeansofazeotropicdistillation.Table3.1 shows the results of the synthesis of MTSC performed in a similar manner as performedatDowAgrosciences. Table 3.1: Results of MTSC synthesis performed similar to Dow Agrosciences Reaction YieldMTSC RecoveryDIPEA 1 74.88% 67.3%

126

2 68.80% 91.7% 3 68.25% 89.0% 3.4 Selection of reaction variables and the determination of the experimental domain. 3.4.1General The synthesis of MTSC was evaluated using a full rotatable central composite design.Itshouldbenotedthattheoptimumpointsobtainedfromthisdesignare onlytheoptimumpointsforthisspecificreactionunderthesespecificconditions. Theseoptimumpointsthereforeprovidenoinformationaboutprocessdetailsand possibleup-scalingofthereaction,butitcanonlygiveanideaaboutthebehavior ofthisspecificreaction. 3.4.2Identificationofexperimentalvariables Theoptimizationofchemicalreactionsrequiresthatallexperimentalvariablesthat mayaffectthereactioninanyway,beidentifiedandinvestigated.29Suchvariables wouldnormallyincludemanychemicalengineeringfactors,suchasreactordesign, heattransfer,feedofmaterialsetc.fortheinvestigationoflargescaleproduction processes.Inthiscase,however,theprimaryaimwastoestablishifthechosen variableshadasignificanteffectonthedesignresponsesonlaboratoryscale,and anattemptwasmadetomoveascloseaspossibletotheoptimumconditions.For thisreason,chemicalengineeringfactorswerenotincludedinthisdesign. For the present design, the following variables could have an impact on the synthesisofMTSC:excessofDIPEAused,reactiontemperature,additionrateof hydrazine hydrate, concentration of dithiocarbamate (DTC) before the second reactionandexcessofhydrazinehydrateused.Inordertoreducethenumberof variables to be investigated, it was decided to use DIPEA loading together with reactiontemperatureasreactionvariables,astheexcessofhydrazinehydrateand

127 the concentration of DTC have already been investigated previously at Dow Agrosciences.30 The addition of hydrazine hydrate was not considered very importantasthereactiononlystartedathightemperaturewhenallthehydrazine hydratewasalreadyadded. ThestirringrateduringthesynthesisofMTSCprovedtobeaveryimportantfactor inthereactionkineticsbyinfluencingthefrequencyof“collisions”ofthereactive species.Forbestresultsofthissynthesis,thestirringrateshouldthereforebeas high as possible, but should not be varied between the different reactions. The stirringspeedwasthereforemaintainedat700rpmforallreactionsinthisdesign. 3.4.3Selectionoftheexperimentaldomain

Table3.2:Factorsandfactorlevelsfortheexperimentaldesign Code Variable Unit Variablelevel Low(-) Centre(0) High(+) T Temperature oC 80.0 85.0 90.0 D DIPEA g 75.0 82.5 90.0 Fixedvariables Variable Unit Level Rateofstirring rpm 700 MMAloading gram 38.75g

CS2loading gram 38.0g Hydrazinehydrateloading gram 30.1g 3.5Designandresponses Theresponsevariableselectedforthisdesignwasthe yieldofMTSC,asoptimizationofthisyieldisthevery purposeofthewholeexperiment.ThisyieldofMTSCis

128 dependentonthefixedvariablesandinthisdesignhighly dependentonthetwovariablesinvestigated. Table3.3illustratestheexperimentaldesignandtheresponsesobtained.Afull, rotatablecentralcompositedesignwasusedforthedeterminationofthesecond- orderresponsesurfacemodel.Allreactions,includingthereplicatedexperiments atthedesigncenterwereruninrandomorder. ThefactorlevelsshowninTable3.3werecodedusingequation3.1: u − u x = 1 o (3.1) i δ u where xi =codedvalueofvariableXi, ui =naturalvalueofvariableXiatafactorial δ point, u0 =thenaturalvalueofXiatthedesigncenter,and u =stepsizeinthe naturalvaluesofvariableXi.

Table3.3:Designandexperimentalresponses Variablesettingsa

129

Variablesettingsa

YieldMTSCb

V XW?Y RunNo. £¡§

1 T-1((o8C0).0) D-1((g7)5.0) 65.30 2 +1(90.0) -1(75.0) 73.33 3 -1(80.0) +1(90.0) 70.30 4 +1(90.0) +1(90.0) 64.58 5 -1.414(77.9) 0(82.5) 69.42 6 1.41492.07) 0(82.5) 63.62 7 0(85.0) -1.414(71.9) 60.00 8 0(85.0) 1.414(93.1) 66.90 9 0(85.0) 0(82.5) 65.60 10 0(85.0) 0(82.5) 60.20 11 0(85.0) 0(82.5) 64.19 12 0(85.0) 0(82.5) 69.70 13 0(85.0) 0(82.5) 64.50 a–Naturalvaluesaregiveninparentheses;b–YieldbasedoninitialMMA 3.6Statisticalanalysis 3.6.1Calculationofresponsesurfacemodel Themodelparametersofthesecond-orderresponsesurfacemodelwascalculated bymeansoflinearleastsquaresregression.Thesecalculationsarebrieflyoutline below.Amodelmatrix,X,wasfirstconstructedbyaugmentingthedesignmatrix β (Table3.4)withacolumn,I,fortheconstantterm( 0 ),columnsforthesquared β β modelparameters( ii ),andcolumnsforalltwo-factorinteractionterms( ij )inthe model.Themodelmatrix,X,fortheexperimentwillthereforebeasshowninTable 3.4.(Forthisdiscussion,itwillbeassumedthattheexperimentalsettingsofthe reactionvariableswereexactlyasspecifiedbythedesign,i.e.,either+1,or–1).

130

Table3.4:Modelmatrixfortheyieldresponse 2 2 Run I X1 X2 X1X2 X1 X2 1 1 -1 -1 1 1 1 2 1 1 -1 -1 1 1 3 1 -1 1 -1 1 1 4 1 1 1 1 1 1 5 1 -1.414 0 0 1.9996 0 6 1 1.414 0 0 1.9996 0 7 1 0 -1.414 0 0 1.9996 8 1 0 1.414 0 0 1.9996 9 1 0 0 0 0 0 10 1 0 0 0 0 0 11 1 0 0 0 0 0 12 1 0 0 0 0 0 13 1 0 0 0 0 0 Theoverallcalculationmaybesummarizedbythematrix equation(eq.3.2)(illustratedinfullbyeq.3.3) Y=Xb+e(3.2) (y=thecolumnvectoroftheexperimentalresponses,X=themodelmatrix,b= thecolumnvectorofmodelparameters,ande=thecolumnvectoroferrorterms associatedwitheachmodelparameter).

131

_ _

\ \

] ] Z

63.22 Z 1 −1 −1 1 1 1

] ] Z

Z − −

] ] Z

71.61 Z 1 1 1 1 1 1

] ] Z

68.63 Z 1 −1 1 −1 1 1

] Z ] Z

e

b

] ] Z

63.25 Z 1 1 1 1 1 1

` c k

β h

] ] Z

Z o

i f `

− c

64.08 1 1.414 0 0 1.9996 0 e1

] Z ] Z i

β f `

c 1

] Z ] Z i

66.21 1 1.414 0 0 1.9996 0 e2 f `

c β

] ] Z

Z 2

i f ` − c

69.25 = 1 0 1.414 0 0 1.9996 + e12 ] Z ] Z i

β f `

c 12 2

] Z ] Z i

67.17 1 0 1.414 0 0 1.9996 e f `

c β 2 1

] Z ] Z

j g `

c 1 2 a

64.83 1 0 0 0 0 0 d e

] ] Z Z β 2 2

2

] ] Z

64.83 Z 1 0 0 0 0 0

] Z ] Z

] ] Z

64.83 Z 1 0 0 0 0 0

] Z ] Z

Z Z ]

] 64.83 1 0 0 0 0 0

^ ^ [ 64.83 [ 1 0 0 0 0 0

( 3 . 3 )

Theprocedureusedduringtheleastsquare’sfitofthedataissummarizedbyeq. 3.4andillustratedinfullineqn’s3.5to3.7. (X’X)-1X’Y=b (3.4) The second order response surface model calculated for the yield responses is summarized below (eq 3.8 – 3.9). In these models x1 = temperature and x2 = DIPEAloading.

132 q n o 1 −1 −1 1 1 1 l o − − l o 1 1 1 1 1 1 l o 1 −1 1 −1 1 1 l o l q n o 1 1 1 1 1 1 l o 1 1 1 1 1 1 1 1 1 1 1 1 1 l o l

o l 1 −1.414 0 0 1.9996 0 o − − − l

o 1 1 1 1 1.414 1.414 0 0 0 0 0 0 0 l o 1 1.414 0 0 1.9996 0 l o − − − l o 1 1 1 1 0 0 1.414 1.414 0 0 0 0 0 l X ’ X = o l 1 0 −1.414 0 0 1.9996 o − − l o 1 1 1 1 0 0 0 0 0 0 0 0 0 l o 1 0 1.414 0 0 1.9996 l o l o l

o 1 1 1 1 1.9996 1.9996 0 0 0 0 0 0 0 l

p m 1 0 0 0 0 0 o 1 1 1 1 0 0 1.9996 1.999 0 0 0 0 0 l o 1 0 0 0 0 0 l o l o 1 0 0 0 0 0 l o l o 1 0 0 0 0 0 l p 1 0 0 0 0 0 m

n q l o 13 0 0 0 7.999 7.999 l o l o 0 7.999 0 0 0 0 l o 0 0 7.999 0 0 0 l = o l o 0 0 0 4 0 0 l o l o 7.999 0 0 0 11.997 4 m p 7.999 0 0 0 4 11.997 (3.5)

133 q n q n

o 0.2 0 0 0 − 0.10001 − 0.10001 l o 1 1 1 1 1 1 1 1 1 1 1 1 1 l o l o − − − l

o 0 0.125 0 0 0 0 l o 1 1 1 1 1.414 1.414 0 0 0 0 0 0 0 l

o l o − − − l -1 0 0 0.125 0 0 0 1 1 1 1 0 0 1.414 1.414 0 0 0 0 0 (X’X) X’= o l o l − − o 0 0 0 0.25 0 0 l o 1 1 1 1 0 0 0 0 0 0 0 0 0 l

o − l o l

o 0.10001 0 0 0 0.144 0.0187 l o 1 1 1 1 1.9996 1.9996 0 0 0 0 0 0 0 l p − 0.10001 0 0 0 0.0187 0.144 m p 1 1 1 1 0 0 1.9996 1.999 0 0 0 0 0 m q n

o −1.8E − 5 −1.8E − 5 −1.8E − 5 −1.8E − 5 1.8E − 5 1.8E − 5 1.8E − 5 1.8E − 5 0.2 0.2 0.2 0.2 0.2 l o − 0.125 0.125 − 0.125 0.125 − 0.177 0.177 0 0 0 0 0 0 0 l o l

o − 0.125 − 0.125 0.125 0.125 0 0 − 0.177 0.188 0 0 0 0 0 l = o l 0.25 − 0.25 − 0.25 0.25 0 0 0 0 0 0 0 0 0 o l − − − − − − − o 0.0625 0.0625 0.0625 0.0625 0.188 0.188 0.0625 0.0625 0.10001 0.10001 0.10001 0.10001 0.10001 l p m 0.0625 0.0625 0.0625 0.0625 − 0.0625 − 0.0625 0.188 0.188 − 0.10001 − 0.10001 − 0.10001 − 0.10001 − 0.10001

( 3 . 6 )

134

w t

u − 1.8E − 5 − 1.8E − 5 − 1.8E − 5 − 1.8E − 5 1.8E − 5 1.8E − 5 1.8E − 5 1.8E − 5 0.2 0.2 0.2 0.2 0.2 r u − 0.125 0.125 − 0.125 0.125 − 0.177 0.177 0 0 0 0 0 0 0 r u − − − r

u 0.125 0.125 0.125 0.125 0 0 0.177 0.188 0 0 0 0 0 r ( X ’ X ) - 1X’y= u 0.25 − 0.25 − 0.25 0.25 0 0 0 0 0 0 0 0 0 r u r

u 0.0625 0.0625 0.0625 0.0625 0.188 0.188 − 0.0625 − 0.0625 − 0.10001 − 0.10001 − 0.10001 − 0.10001 − 0.10001 r v s 0.0625 0.0625 0.0625 0.0625 − 0.0625 − 0.0625 0.188 0.188 − 0.10001 − 0.10001 − 0.10001 − 0.10001 − 0.10001

q n o 63.22 l o l o 71.61 l o 68.63 l o l } z o 63.25 l { b x o l o

64.08 { x o l

{ b1 x o 66.21 l { x o l b2 X 69.25 = { x (3.7) o l

{ b12 x o 67.17 l { 2 x o l { b1 x

64.83 | y o l 2 b2 o 64.83 l o l o 64.83 l o l o 64.83 l p 64.83 m

135

Theresponsesurfacemodelobtainedfortheyieldofthe reactionis: 2 2 Yield=64.838+0.751x1–0.737x2–3.438x1 +0.154x2 +1.690x1x2(3.8) 3.6.2Statisticalevaluationofresults Severalstatisticaltestshavebeendevelopedtotestifthe obtainedresponsesurfacemodelisindeedagood descriptionoftheactualresponsesurface.Manyofthese testshavebeenappliedtotheresponsesurfacemodel givenineq.3.8,andaredescribedbelow. 3.6.2.1AnalysisofVariance(ANOVA) Animportantpartofanyexperimentaldesignistheanalysisofvariance.Thisisa powerful statistical technique that can be used to separate variances during the deliberatevariationofexperimentalvariablesfrompureexperimentalvariance.The analysisofvarianceinvolvesdeterminingthesumofsquaresforeachcomponentin themodelandthedegreesoffreedomassociatedwitheachsumofsquares.31To construct appropriate test statistics, the expected mean squares must also be calculated.

Calculationofthetotalsumofsquares(SST) Fromtheseriesofnexperimentsusedtodeterminearesponsesurfacemodel,the sumofsquaredresponses,calledthetotalsumofsquares(SST),canbecalculated by obtaining the sum of the squared responses (eqn’s 3.9 and 3.10). The values

~ 2 obtainedcanbecorrectedforthemeanbysubtractingthequantity( (xi yi ) / n )to givethe total sum of squares correctedforthemean.Thetotalsumofsquaresis calculatedwith(n-1)degreesoffreedom,wherenisthetotalnumberofexperiments inthedesign. = ~ 2 = SST yi y' y (3.9)

136

SSTCorr= [65.302+70.302+73.332+64.582+60.002+66.902+69.422+63.622 +65.602+60.202+64.192+69.702+64.502]–{(65.30+70.30+73.33+64.58+ 60.00+66.90+69.42+63.62+65.60+60.20+64.19+69.70+64.50)2/12} =181.90(3.10) Calculationsofthesumofsquaresduetoregression(SSR) The sum of squares due to regression is calculated by first calculating predicted responsesforeveryexperimentintheoriginaldesignbysubstitutingtheindividual model elements into theexperimental responsesurface model (eq. 3.8), and then findingthesumofthesquaredpredictedresponses(eq.3.11and3.12).Thesumof squaresduetoregressioniscalculatedwith(p-1)degreesoffreedom,wherepisthe numberofparametersintheresponsesurfacemodel.AsinthecaseofSST,thesum ( )2 ofsquarescanbecorrectedforthemeanbysubtractingthequantity, xi yi / n . = ~ pred = SSR yi Xb (3.11) SSRCorr= [63.232+71.612+68.632+63.262+64.082+66.212+69.262+67.172 +64.842+64.842+64.842+64.842+64.842]–{(63.23+71.61+68.63+63.26+ 64.08+66.21+69.26+67.17+64.84+64.84+64.84+64.84+64.84)2/12} =76.02(3.12) Thesumofsquaresduetoregressioncanbebrokendown intothreecomponents,namelythesumofsquares resultingformthelinear,interactionandsquared componentsoftheresponsesurfacemodel.Thesumof squaresduetothelinearcomponentoftheregressionmay befoundfromeq.3.13,theinteractioncomponentfromeq. 3.14,andthesquaredcomponentfromeq.3.15.

2 2

 ( )  LinearSS= xi y j / xi (3.13)

2 2  ( )  ( ) InteractionSS= xi y j yi / xi y j (3.14)

137

SquareSS=RSS–(linearSS+InteractionSS)(3.15) Calculationoftheresidualsumofsquares(RSS) Theresidualsumofsquaresiscalculatedbyfindingthe sumofthesquareddifferencesbetweentheexperimental responsesandthepredictedresponses(eq.3.16). Alternatively,theresidualsumofsquarescanbeobtained fromthedifferencebetweenSSRandSST(eq.3.17).The residualsumofsquaresiscalculatedwith(n-p)degreesof freedom,wheren=thenumberofexperimentsandp=the numberofparametersintheresponsesurfacemodel.

= € ( Pr ed )2 RSS yi _ yi (3.16) RSS=SST–SSR(3.17) Theresidualsumofsquarescanbedividedintotwo components,namelythesumofsquaresduetolack-of-fit andthesumofsquaresduetopureerror.Theresidualsum ofsquaresduetopureerrorisobtainedasthesumofthe squareddifferencesbetweentheexperimentaland predictedresponsesatthedesigncenter(eq.3.18),while theresidualsumofsquaresduetolack-of-fitisobtainedas thesumofthesquareddifferencesbetweenexperimental andpredictedresponsesforthefactorialexperiments. Alternatively,theresidualsumofsquaresduetolack-of-fit maybeobtainedasthedifferencebetweentheresidual sumofsquares(RSS)andtheresidualsumofsquaresdue topureerror(eq.3.19).

PureError = € ( Pr ed )2 RSS yi0_ yi0 (3.18) RSSLack-of-fit=RSS–RSSPureError(3.19)

138

Statisticalevaluation–significanceofindividualmodelparameters Thesignificanceoftheindividualmodelparametersintheresponsesurfacemodel canbeestimatedbyeithercomparingthevalueofeachparameterwithitsstandard error,orbymeansofanF-test.32,33Thefirstmethodwasusedhere.Thestandard errors of the individual model parameters are calculated by multiplying the mean square error (MSE) (eq. 3.20), with the dispersion matrix ((X’X)-1) (eq. 3.21) and findingtherootsofthediagonaloftheresultingproductmatrix(eq.3.22). MSE=RSS/(n-p)=181.9–76.02(13-1-5)=15.13(3.20)

†

ƒ „

0.2 0 0 0 − 0.10001 − 0.10001 

„  „

0 0.125 0 0 0 0  „

0 0 0.125 0 0 0  „

MSE=15.13x  „

0 0 0 0.25 0 0  „

−  „

0.10001 0 0 0 0.144 0.0187 

− 0.10001 0 0 0 0.0187 0.144 ‚

Œ

− − ‰ Š

3.02 0 0 0 1.513 1.513 ‡ Š

0 1.891 0 0 0 0 ‡

Š ‡ Š 0 0 1.891 0 0 0 ‡

= (3.21) Š

0 0 0 3.783 0 0 ‡

Š ‡ Š

−1.513 0 0 0 2.174 0.284 ‡

Š ‡ ‹ −1.513 0 0 0 0.284 2.174 ˆ

RootMSE= S(β0)= 3.023 =1.74

S(β1)= 1.891=1.375

S(β2)= 1.891=1.375 (3.22)

S(β12)= 3.783 =1.945

139

S(β11)= 2.174 =1.474

S(β22)= 2.174 =1.474

Statisticalevaluation–Model The degree of fit of the experimentally determined response surface model is determined with an F-test by comparing the mean squares for lack-of-fit with the meansquaresforpureerror.Forthemodeltogiveanadequatedescriptionofthe actualresponsesurface,thecalculatedF-valueshouldbesmallerthanthecriticalF- valuefromthestandardF-tableforthecorrespondingdegreesoffreedom. TheanalysisdescribedaboveissummarizedinTable3.5.

Table3.5:ResponsesurfaceRegression Yield Term Symbol Value StdDev

Constant β0 64.84 1.74

140

MassDIPEA β1 0.75 1.38

Temperature β2 -0.74 1.38

2 (MassDIPEA) β11 0.15 1.47 2 (Temperature) β22 1.69 1.47

DIPEAxTemp β12 -3.44 1.94 ANOVA Source DF SS MS F-value P Total 12 181.90 Regression 7 76.02 15.20 1.00 0.4792 Linear 2 8.85 4.43 0.26 0.7792 Square 3 67.14 22.38 1.48 0.3007 ResidualError 7 105.91 15.13 LackofFit 3 59.64 19.88 1.72 0.3005 PureError 4 46.26 11.57 3.6.2.2Graphicalanalysis Afittedresponsesurfacemodelisnormallyusedtogiveagooddescriptionofthe actualresponsesurfacebymeansofananalysisofvariance,butthisisnormallynot sufficient.Tobecompletelytrustworthy,aresponsesurfacemodelshouldbeableto withstandallpossiblediagnosticteststhatcouldindicateinadequaciesinthemodel. Inthiswork,onlythetwomostimportantdiagnostictests,namelyanormalprobability plot of the residuals, and a plot of residuals versus predicted response, will be considered.

Normalprobabilityplotofresiduals Thestatisticalteststhathavesofarbeencarriedout,were donewiththeassumptionthattheexperimentaldatathat wasusedwasnormallydistributed.Normalityofdatacan beverifiedbymeansofanormalprobabilityplotofthe residuals,sincetheresidualscanbeexpectedtobethe resultofrandomexperimentalerror.Sincerandomerroris alwaysnormallydistributed,aplotoftheresidualson

141 normalprobabilitypapershouldalwaysgiveastraightline. Deviationfromastraightline,likeacurvature,canbe interpretedasnon-normallydistributedexperimentalerror. Insuchcases,careshouldbetakenindrawingany conclusionsfromfittedresponsesurfacemodels.The residuals,calculatedasthedifferencebetweenthe predictedandexperimentalresponses,areshowninTable 3.6,whileFigure3.1illustratesthenormalprobabilityplot oftheresiduals.Thefigureshowsgoodnormality.

Table3.6:Calculatedresiduals Experimental Predicted Residuals responses responses e=Robs–Rpred 65.30 63.23 2.07 70.30 71.61 -1.31 73.33 68.63 4.70 64.58 63.26 1.32 60.00 64.08 -4.08 66.90 66.21 0.69 69.42 69.26 0.16 63.62 67.17 -3.55 60.20 64.84 -4.64 69.70 64.84 4.86 65.60 64.84 0.76 64.50 64.84 -0.34 64.19 64.84 -0.65

142

99

95 90 80 70 y t i l i 50 b a

b 30 o r

p 20 %

l 10 a 5

m r o N 1

-5.77231 -2.11792 1.53647 5.19087 8.84526

Residual Figure3.1:Normalprobabilityplotofresiduals Plotofresidualsversuspredictedresponses A second diagnostic test, which is always recommended, is to plot the residuals fromoneexperimentagainstthepredictedresponsefromthesameexperiment.34 An adequatemodel should give a plot in which the pointsshow a random scatter such that the upper and lower bands of the pattern in the plot form two parallel horizontallinesatapproximatelyequaldistancefromthezeroline.Certainfeatures that can indicate problems with fitted response surface models include instances when: • Theupperandlowerbandsdivergesuchthatapatternappearsfunnel-like. This is normally an indication that the experimental error differsin different partsoftheexperimentaldomainand,hence,theassumptionofconstanterror varianceisviolated. • Theupperandlowerbandsareparallel,butnothorizontal.Thisisnormallyan indicationofthepresenceofasystematicerror. • Theupperandlowerbandsarecurvedsoastogiveapatternthatresultsin anarch.Thiscouldindicatethatasecond-ordertermhasbeenleftoutofthe responsesurfacemodel. PlotoftheresidualsagainstthepredictedresponseisgiveninFigure3.2.

143

8.84526

5.19087 s l 1.53647 a u d i s e R

-2.11792

-5.77231

64.48 65.23 65.97 66.72 67.46

Predicted Figure3.2:Plotofresidualsversuspredictedresponse Theplotofpredictedresponseversusresidualsdoesnotshowanyabnormality. 3.7Analysisofthefittedresponsesurfaces Having produced and evaluated the validity of a second-order response surface model, it becomes necessary to analyze this surface with the aim of finding the optimum,orstationarypoint,ontheresponsesurface.Thestationarypointisdefined asthepointwheretherewillbenochangeintheresponsewithavariationinanyof ∂y thefactorlevels,i.e.,thepointwhereforanyfactorxi,thepartialderivative = o . ∂xi For a second-order response surface model in two experimental variables of the type:

     y= + x + x + x x + x 2 +  x2 (3.23) 0 1 1 2 2 12 1 2 11 1 22

144

Partial derivation with respect to x1 and x2, respectively, gives the following two simultaneousequations:

Ž Ž Ž

1 + 2 11x1 + 12x2 = 0 (3.24)

Ž Ž Ž 2 + 2 22x2 + 12x1 = 0 (3.25) Sincethevaluesofβ1,β11,β2,β22andβ12areknownfromTable3.5,thepositionof the stationary point on the response surface can readily be determined. The experimentallydeterminedresponsesurfacemodel(eq.3.8)was: 2 2 y=64.838+0.751x1–0.737x2–3.438x1 +0.154x2 +1.690x1x2(3.8) Partialderivationwithrespecttox1andx2,respectivelygives:

0.751–6,876x1+1.690x2=0 (3.26)

-0.737+1.690x1+0.308x2=0 (3.27) Thesetwosimultaneousequationsmaybewritteninmatrixformatasineq.3.28:

Œ ‰ ‘ Œ ‰



Š ’“” Š ‡

6.876 1.690 ‡ X 1 0.751

‹  ‹ ˆ ˆ = 1.690 0.308 X 2 0.737 (3.28)

Solvingforx1andx2(eq.3.29)gives:

—

Œ Œ ‰

− −1 ‰

˜™š •

Š Š ‡

6.876 1.690 0.751 ‡ 0.2969

–

‹ ‹ ˆ ˆ = 1.690 0.308 0.737 0.7673 (3.29)

Thevaluesofx1andx2areincodedformandmaybedecodedusingeq.3.1togive: x1: Temperature=0.2969x5+85=86.48 x2: DIPEAloading=07637x7.5+82.5=88.23

145

The nature of the experimentally determined response surface model (eq. 3.8) is suchthatoneofthesquaredtermsisnegativeandtheotherpositive.Thisisaclear indication of a saddle-shaped responsesurface.Thethree-dimensionalplotofthe responsesurfacewithintheexperimentaldomaininvestigatedisshowninFig.3.3, clearlyindicatingthesaddle-shapednatureoftheresponsesurface.

80 78

P 76

r

e d 74 i

c

t e 72

d

r

e 70

s p 68 o

n s 66 2 e

64 A 1 E 62 IP 0 D 60 f o 1 s -1 s 0 a -1 M Te -2 -2 mper ature Figure3.3Three-dimensionalresponsesurfacefortheMTSCyield

Optimumconditionsforthesetypesofresponsesurfacesmaybeapproachedintwo ways,namelybyanalyzingthecanonicalformoftheresponsesurfaceequation,33or bymeansofgraphicalmethods.33,34Thelattermethodwasusedasitallowsoneto obtain an idea of the actual shape of the response surface by plotting contour diagrams in two or three factors, the third being kept constant at its centre-point

146 value.Figure3.4showsthecontourdiagramobtainedbythismethodfortheMTSC yield.

70 72 68 66 62 64 1 70 68 66

64 66 e r u t a r 66 e 0 64 p

m 66 e

T 68 64

66 68 70 72 -1 62 70 74 64 68 66 72 76 78 -1 0 1 MassofDIPEA

Figure3.4:ContourdiagramfortheMTSCyield

ThecontourdiagramshowninFigure3.4confirmsthe existenceofasaddle-likeresponsesurface,anditalso showsveryclearly,thatoptimumconditionsmustbe soughttowardsthetwohighcornersofthesaddle-like surface.Thus,higheryieldscanbeobtainedusingahigh DIPEAloadingincombinationwithalowtemperatureor

147

withahightemperatureandalowDIPEAloading.This graphshowsthatbothtemperatureandDIPEAloadingare ofessentialimportancetotheMTSCyield. 3.8ConfirmatoryExperiments Table3.7summarizestheresultsofanumberof experimentscarriedoutinordertoprovethereaction conditionclosertoandattheoptimum.

Table3.7:Reactionconditionsclosertotheoptimum DIPEAloading Reactiontemp yield yield HPLC Isolated 90g 600C 7.36% 90g 800C 40.90% 100g 900C 73.83% 74.10% 100g 900C 66.27% 67.03% 100g 900C 64.75% 88g 870C 82.26%* *Atthepredictedoptimum 3.9Discussion 3.9.1Statisticalevaluationofindividualresponsesurfacemodels In order for a fitted response surface model to adequately describe the actual response surface, the residuals at the design points (obtained by subtracting the predictedresponses,usingthefittedresponsesurfacemodel,fromtheexperimental responses) should not be significantly larger than the residuals at the replicated center points. In addition, the variation in the predicted responses at the design points should be adequately described by the fitted response surface (i.e. the regression).ThevariationcanbeevaluatedbymeansofF-test,andinorderforthe fittedresponsesurfacemodelstobegood,theF-valuescalculatedfor“regression” and“lack-of-fit”shouldnotexceedthecriticalF-valuesforthecorrespondingnumber ofdegreesoffreedom.Thereforewehave:

148

MS Re gress Re gress 15.20 F7,7 = = = 0.993 (3.30) MSRe sidual 15.30

lof MSlof 19.88 F3,4 = = = 1.718 (3.31) MSpe 11.57 TheP-valuefor“regression”intheANOVAtableshouldbeassmallaspossible(atP =0.05,theconfidencelevelthatthemodelisgoodwillbe95%),whiletheP-valuefor “lack-of-fit”intheANOVAtableshouldbeashighaspossible. From the analysis summarized in Table 3.5, it can be deduced that the fitted responseshowsasignificantlack-of-fit,astheF-valuesarelowerthanthetabulated F-valuesfortheabovementioneddegreesoffreedom.Thereforethefittedresponse surfacemodelfallswithinthe95%confidencelevel. Theobservedlackoffitoftheexperimentalresponsesurfaceismostlikelytheresult of the lack of leak* in the reactor discovered during confirmatory experiments. Nevertheless,theobservedtrendsweresuchthattheexperimentalyield,albeitan unisolated yield could be increased significantly compared to those in the design experiments.Theseexperimentsalsoclearlyshowtheimportanceofmixingduring this reaction where a viscous proton-acceptor (DIPEA) has tobe mixed intimately withanaqueoussolutionofreagents. *Thestirrerrodenteredthereactionvesselthroughaseal whichbecamewornwithuseandmayhavepermitted leakageofaportionofthevaporizedreactionmixture.

149

Chapter4

WASTETREATMENTPROTOCOL

4.1Historyofwastemanagement As far back as 8000 to 9000 B.C., people learned to dispose of their waste outside of their own settlements.37Wastewascomposedoffoodscraps,musselshells,bones,brokenhouseholditems, and clay shards. It may be assumed that those people established dump sites to escape the nuisancesofvermin,odourandwildanimals.InmanycitiesinEuropeandAsia,wastewascollected inclaycontainersandhauledaway,whileinotherareas,pitswereusedtocollectwasteandfaeces, which were emptied and cleaned periodically. There are also records of regulations (Athens, 320 B.C.)forthedailysweepingofstreetsbyresidents,eventhoughatthattimetherelationshipbetween hygieneandthescourgesofmankindsuchastheplague,smallpox,choleraandthelike,werenot known.37 PhysicianssuchastheGreekscholarHippocrates(around400B.C.)andtheArabAvicenna(around 1000A.D.)wereperhapsthefirsttosuspectthelinkbetweenhygiene,contaminatedwater,spoiled foodandepidemics.37 Notuntilthe15thcenturydidcitycouncilsrequirethepavingofstreets,sothatnoonewouldhaveto wade through faeces and waste. After that, garbage containers were introduced, the streets were cleanedregularly,animalcarcasseswerecollected,etc. Between 1850 and 1890, a breakthrough in “Waste management” occurred when researchers revealedbacteriaandvirusesasthecauseofdiseases.Theirresearchdemonstratedthatthespread ofdiseasescouldbecontrolledbythepresenceorabsenceofpublichealthmeasures.Theneedfor publichealthmeasureswasdramaticallyhighlightedin1892inthecityofHamburg,whenabout9000 peoplefellvictimtoacholeraepidemic.Thecityhadbeenpumpingwatercontaminatedwithwaste and faeces from the ElbeRiver intothecity’swatersupplysystem,encouragingthespreadofthe epidemic.37 Tothisday,thedirectrelationshipbetweenenvironmentalhygieneandlife-threateningdiseasesis observableinthedevelopingworld.Whereverwaterwaysareusedforwastedisposal,wherepeople areforcedtoekeoutalivingingarbagedumps,andwheresanitarywastedisposal,waterandsewage treatmentarenonexistentbecauseofnaturalcatastrophes,warsorunderdevelopment,epidemicscan spreadvirtuallyunchecked,eventoday.

150

4.2Wastetreatmenttechnologies 4.2.1 Wastewatertreatment Development of an effective wastewater treatment system for an industrial plant involves characterizing all of the plant’s wastewater streams and evaluating the treatmentneedsofeachstreamwithrespecttotheapplicableregulatorystandards.35 Waste streamsrequiring the same type oftreatmentarecombinedandtreatedas composite streams. This approach improves the cost-effectiveness of the overall treatmentscheme. 4.2.1.1 Wastewatercharacterization Waste water canbe characterizedbased onits bulk organic parameters,physical characteristicsandspecificcontaminants(Table4.1):35

151

Table 4.1 Characterisation of wastewater contaminants and their correspondinghazards Parameter Concern Bulkorganic TOC(TotalOrganicCarbon) Canbetoxic;depletesoxygen COD(ChemicalOxygen Canbetoxic;depletesoxygen Demand) BOD(BiologicalOxygen Depletesoxygeninreceivingwaters Demand) Oil&Grease/TPH(TotalPetroleum Damagesvegetationandwildlife Hydrocarbons) Physical TSS(TotalSuspendedSolids) Turbidity;toxictoaquaticlife pH Acidityoralkalinityistoxictoaquaticlife Temperature Harmfulltoaquaticlife Color Aesthetic Odor Canbetoxictoaquaticlifeand humans;aesthetic Redoxpotential Canbetoxictoaquaticlife ContaminantSpecific

NH3/NO3 Toxictoaquaticlife;eutrophication Phosphates Eutrophication Heavymetals Toxictoaquaticlifeandhumans Surfactants Toxictoaquaticlifeandhumans;aesthetic Toxictoaquaticlifeandhumans;aesthetic Phenol Toxictoaquaticlifeandhumans;aesthetic Toxicorganics Toxictoaquaticlifeandhumans Cyanide Toxictoaquaticlifeandhumans Table4.2Typicalindustrialwastewatereffluentlimitations35

152

Parameters Concentration(mg/L) COD 300–2000 BOD 100–300 Oil&Grease 15–55 TSS 15–45 pH 6.0–9.0 Temperature Lessthan400C Color 2colorunits

NH3/NO3 1.0–10 Phosphates 0.2 HeavyMetals 0.1–5.0 Surfactants(total) 0.5–1.0 Sulfides 0.01–0.1 Phenol 0.1–1.0 ToxicOrganics(total) 1.0 Cyanide 0.1 4.2.2 Wastetreatment Wastetreatmentisgenerallyclassifiedintothreemajorlevels.36Eachtreatmentlevel isaimedatremovingamorespecificclassofcontaminants: 1) Primary treatment involves simple physical processes that remove suspended solids and entrained oils from a waste stream. It is generally regarded as preparation for further treatmentalthoughitcanresultintheremovalofby-productsandreductionofthequantityand hazardofthewaste. 2) Secondarytreatmentisdesignedtoremovesolublematerialfromwastestreamsthatcannot be removed by simple physical means. Secondary treatment detoxifies, destroys and/or removeshazardousconstituents. 3) Tertiary and quaternary treatment is used to polish an effluent and to remove a specific contaminantthatwasnotremovedinthefirsttwosteps.Polishingusuallyreferstotreatment ofwaterthatisremovedfromwastessothatitmaybesafelydischarged. Majorphasesofwastetreatment:36

153

PrimParirmyatrreyatmreeanttment Dissolution Blending Disposal,resource,recovery Slurrying Phaseseparation

Secondarytreatment

Neutralization Oxidation/Reduction Precipitation Adsorption Extraction Emulsionbreaking Coagulation Disposal,resource,recovery Sedimentation Centrifugation Airflotation Sludgedewatering

Polishing

Filtration Discharge,recycling Activatedcarbon sorption ecycling Reverseosmosis

Fig4.1:Majorphasesofwastetreatment 4.2.3Treatmenttechnologies Therearemanywaystodefinewastetreatment.Oneofthedefinitionsmentionedintheliterature describes waste treatment as follows: ‘waste treatment is any method, technique or process that changes the physical, chemical or biological character of any hazardous waste in a way that neutralizesthewaste,orrenderssuchwastenon-hazardous,lesshazardous,safertomanage,ableto berecovered,abletobestoredorreducedinvolume.37Thisdefinitionmakesmentionofthreeclasses oftreatmenttechnologies,butinfacttherearefourclasses.Thesearephysicaltreatment,chemical treatment, biological treatment and thermal treatment.35,36 Each of the treatment strategies are discussedinmoredetailbelow.

154

4.2.3.1Physicaltreatment Physical treatment processes bring about a physical change in the propertiesof the contaminants while the chemical nature of the compounds remain unaffected.1 Physical treatment of waste dependsuponthephysicalpropertiesofthematerialtreated.Thesepropertiesincludestateofmatter, solubilityinwaterandorganicsolvents,density,volatility,boilingpointandmeltingpoint.Knowledge of the physical behaviour of wastes has been used to develop various unit operations for waste treatment that are based upon physical properties.36 The physical treatment processes typically employed in industrial wastewater treatment are gravity separation, air flotation, oil coalescence, evaporation,filtration,activatedcarbonadsorption,airorsteamstrippingandliquid/liquidextraction. 4.2.3.2Chemicaltreatment Theapplicabilityofchemicaltreatmenttowastesdependsuponthechemicalpropertiesofthewaste constituents.ThesepropertiesincludepH,reactivity,precipitationandcomplexationbehaviour,redox potential,flammability/combustibility,corrosivityandcompatibilitywithotherwastes.36Thechemical treatment processes most often employed in industrial wastewater treatment are chemical precipitation and coagulation, electrolytic recovery, ion exchange, reverse osmosis and chemical oxidationsorreductions.35 Chemicalreactionsofvarioustypesareusedforthetreatmentanddestructionofhazardouswastes. Anattractivefeatureofchemicaltreatmentistheopportunitytotreatwasteswithotherwastes. 4.2.3.3Biologicaltreatment Biological treatment processes utilize biological and biochemical mechanisms to bring about a chemical change in the properties of the contaminants of interest. The chemical properties are changed under the action of a wide variety of microorganisms to cause the decomposition of the compoundwithinthebulkwastestream.Themajorobjectiveofbiologicaltreatmentistostabilizethe organic matter in a waste stream so that biological degradation does not occur in the wastewater distributionsystemorinthereceivingwaterbody.Theidealendproductsofmicrobialdegradationare more cell mass, carbon dioxide, water, halides, elemental nitrogen and sulphur, heat and excess energy.Thebiologicaltreatmentprocessestypicallyencounteredinindustrialwastewatertreatment includeactivatedsludgeprocesses,aeratedlagoonsorstabilizationponds,tricklingfiltersorfixed-film reactorsandanaerobicprocesses. 4.2.3.4Thermaltreatment Thermal treatment processes utilize elevated temperatures to bring about the decomposition of contaminants. Thermal treatment of hazardous wastes can be used to accomplish most of the commonobjectivesofwastetreatment.Forexample,areactive,combustiblematerialcanbeburned toproduceamuchlowervolumeofashwithrecoveryofheatfromthewaste.Volatile,mobileorganic

155

materials can be eliminated and toxic compounds and pathogens can be destroyed. The thermal treatment processes employed in industrial wastewater treatment are wet-oxidation, supercritical oxidationandliquidinjectionincineration. 4.2.4 TreatmentstrategiesusedonMTSCeffluent The MTSCeffluentobtainedaftertheMTSCsynthesisisenvironmentallyunfriendlyandhastobe treatedbeforeitcanbedisposedof.Thissectiondescribesthetreatmentproceduresusedtotreatthe effluent.Thetreatmentinvolvesreducingthechemicaloxygendemand(COD)valueoftheeffluent, becausetheCODvalueistoohighforsafedisposal. COD(ChemicalOxygenDemand) The Department of Water Affairs and Forestry, South Africa,38 defines COD as a measure of the oxygen equivalent of the oxidizable matter in a sample that is susceptibletooxidationbyastrongchemicaloxidant.TheCODmeasurements, therefore,representeverythinginthesamplethatcanbeoxidised.Itis,however, non-specific and does not indicate what proportion is biodegradable, nor does it distinguishbetweenorganicandinorganicmatter. 4.2.4.1CoolingProcedure Preliminaryinvestigationsshowedthatbycoolingtheeffluentdowntoatemperature ofzerodegrees(orlower),aprecipitateisformed,containingMTSCandsomeby- products formed during the MTSC production process.43 The COD value of the effluent is expected to decreasebecause of theformation of theprecipitate. The explanationforthedecreaseinCODvalueoftheeffluentliesinthedefinitionofthe COD: the measure of the oxygen equivalent of theoxidisable matter in a sample. Thismeansthatalloxidizablecompoundsdissolvedintheeffluentareresponsible fortheCODvalue.Whentheeffluentiscooled,acertainamountofthecompounds dissolved in the effluent precipitate out of this solution. These precipitated compounds now do not contribute to the COD value any longer and so the COD valuedrops.Theoretically,thegreaterthemassofprecipitateformedbycoolingthe effluent,themoretheCODvalueoftheeffluentwilldrop. 4.2.4.2WetAirOxidation Wetairoxidationreferstotheaqueousphaseoxidationofdissolvedorsuspended organic and inorganic substances at elevated temperatures andpressures.39 The oxidation process requires oxygen from compressed air or pure oxygen as the oxidisingagent.Theenhancedsolubilityofoxygeninaqueoussolutionatelevated

156 pressure (even though temperature is high) provides a strong driving force for oxidation.39 Typicaloperatingpressuresforthewetoxidationsystemvaryfrom100to3000psig (690 to 20700kPa),39 andare dependent on theoperatingtemperature.Wetair oxidationsystemsthatareusedforindustrialwastewatertreatmentgenerallyoperate attemperaturesrangingfrom150oCto320oC.39 4.3Problemdescription Dow Agrosciences produced 4-methyl-3-thiosemicarbazide (MTSC) as an intermediatefortheproductionofherbicides.TheproductionprocessoftheMTSC used ammonia, resulting in large amounts of ammonium salts that could not be recovered after the reaction, resulting in five tonnes of waste being produced per tonneofproduct.Analternate,recoverablebase,diisopropylethylamine(DIPEA)was then used for the reaction. This resulted in a fourfold decrease in theamount of waste produced. Although the waste production was decreased four times, the wastewasmoreconcentrated,becausealotofliquidwasremovedwiththerecovery of the base, but not the actual waste products. Serious wastedisposal problems resulted, because the COD value of theeffluent has tobelessthan1000ppmto complywiththewaterregulationsofWaterAct54of1956(amended1996).The COD value of the MTSC effluent was 240000 ppm. Other compounds such as sulphidealsohavemaximumpermissibleconcentrationspriortotheirdisposalinto the Sasol waste stream. The restriction for compounds such as sulphides, or substancesfromwhichhydrogensulphidecanbeformedis5mg/L. After introducing this new base, the effluent generated contained 5 - 8% MTSC, whichalsomeantasubstantiallossofproduct.Analysisoftheeffluentshowedtotal sulphurrangingfrom7-9%,totalsulphide0.3-0.35%,andaCODvalueof24%. Theeffluent,besidesbeingwastefulofproduct,isalsoenvironmentallyunacceptable (hightotal[S],[S2-],andCOD).Althoughtheeffluentgeneratedusingthisprocess was free of ammonium salts, the high COD and sulphur content presented an

157 environmentaldisposalproblem.Inlightoftheabove,objectivesweresettoclean uptheprocessandmakeitenvironmentallyfriendly. 4.3.1 WasteTreatmentObjective Themainwastetreatmentobjectivewastoproduceenvironmentally acceptableeffluentbycleaninguptheeffluent,i.e.,decreasingtheCODvalue intheeffluent, removingsulphideandreclaimingproduct. 4.3.1.1Strategyusedtoachievetheobjective - Cooling the effluent and maintaining a low temperature in order to precipitate solidsfromthesolutionandtodeterminetheoptimumworkingtemperatureand theoptimumcoolingtimewouldpossiblylowertheCODvalue. - WetairoxidationwouldpossiblyfurtherreducetheCODleveloftheeffluent.A high-pressure reactor would be used to determine the optimum temperature, pressure,oxidisingagentandperhapscatalystfortheoxidationreaction. 4.4Experimental 4.4.1CoolingMethod The cooling of the MTSC effluent was performed using crushed ice to cool the effluentdownandmaintainaconstantlowtemperature.Withthislowtemperature, thesolubilityofthecompoundsintheeffluentdecreased,causingsomeofthemto precipitate out. The compounds in the precipitate contribute to the COD value causing a decrease in COD value of thesolution. The precipitate was recovered usingvacuumfiltration,andanalysedbymeansofHPLCanalysis.MTSC,DMTUand TCHstandardswereusedtodeterminetheexactcompositionoftheprecipitate.By means of GC-MS, IR andUV-VIS spectrometry, thecomposition of the precipitate was also verified. The remaining solution after removal of the precipitate was analysedforCOD. 4.4.1.1Set-upofcoolingsystem A 30 litre cooler box was filled with crushed ice. Seven sample bottles, each containing100mLofeffluent,werecooledinthecoolerboxtogetherwithonelarger bottlecontaining500mLofeffluent.Theiceinthecoolerboxwasrefilleddailyto maintainaconstanttemperature.Thesamplebottlesremainedinthecoolerboxuntil theywereremovedfromtheboxtobeanalysed.Theentirecoolingprocedurelasted tendays.

158

Sampling: One small sample bottle was removed daily from thecooler box. A precipitate of yellowcrystals had formed a cakeof interlockedcrystalsinallthebottles.Itwas broken up and vacuum filtered through a 30mL,porosity4vacuumfiltercrucible. Theprecipitatewasdriedinavacuumovenforthreehoursat60oC,andweighedto constantmass.Daily,a1.00mLaliquotofeffluentwaspipettedoutofthe500mL sample bottle into a 50.00 mL volumetric flaskand madeup to the mark with de- ionisedwater.A1.00mLaliquotofthisdilutedsolutionwasusedtodetermineCOD values.

The rationale behind this methodology was that the samples had to be cooled independently of one another,to preventinterference due to volume change asa resultofaliquotremoval.Topreventcomplications,a500mLbottlewasusedfor COD determinations andsmallaliquots,1.00mL,wereremovedfromthebottleto studythechangeinCODeachday.Thesmallbottlescontaining100mLofeffluent wereonlyusedtomonitorprecipitation.Everysampleprecipitatedindependentlyof oneanother,thustheycouldnotinfluenceeachother. 4.4.1.2AnalysisofMTSCeffluent CODofsupernatant Themotherliquor(remainingafterthefiltration)wasdilutedbypipetting1.00mLinto a 50.00 mL volumetric flask and making up to volume with de-ionised water. A volumeof1.00mLofthisdilutedsolutionwasusedfortheCODdetermination.The sampletakenoutofthelargebottlewasanalysedforitsCODinthesamemanner. HPLCCharacterisationoftheprecipitateformedoncooling EachofthesevenprecipitatesampleswereanalysedforMTSCandreaction by-productsthatmayhaveformedintheproductionprocess.Amassof0.100 gofeachprecipitatewasweighedinto250.00mLvolumetricflasksandmade uptovolumewithde-ionisedwater.Astandardsolutionwaspreparedby weighing0.100gofeachoftheby-productsintoa250.00mLvolumetricflask andmadeupwithde-ionisedwater.Thestandardandthesampleswere injectedthreetimes.Thestandarddeviation8wascalculatedusingthepeak areasofthechromatograms.Theconcentrationsofunknownswere determinedbydirectcomparisonofpeakareasofstandardsandunknowns. Thesamplesandstandardswerestoredat3oCinarefrigeratorinorderto preventdecomposition(withoutcooledstoring,thestandardschangedcolour andsomeadditionalpeaksappearedonthechromatogram).

159

4.4.2Oxidationmethod Initial experiments involving the oxidation of the MTSC effluent sample42,43were performed.Thesamplewasheatedinaroundbottomedflaskandoxygen/airwas bubbledthrough.TheresultsoftheseexperimentslookedpromisingsincetheCOD valueoftheeffluentdecreasedsubstantially.Theseinitialresultswereobtainedat atmospheric pressure, because the apparatus would only allow for atmospheric pressure.Accordingtotheseexperiments,highertemperaturesandpressureswould reduce the COD value and convert someorganicsulphur (and sulphide) toeither 2- elementalsulphur,SO2orSO4 . OxidationoftheeffluentwasthenperformedusingaParrhighpressurereactor.To thisreactorwasconnectedagascylindercontainingairoroxygenwitharegulator thatwascapableofdeliveringamaximumpressureof700Kpa.Oncompletionofthe oxidation in the reactor, a ‘stone-like’ precipitate was formed, and a melting point analysiswasperformedtoconfirmtheassumptionofitsconstitution.Theremaining solutionwasanalysedforCOD.

4.4.2.1Reactorfeatures WetoxidationwasperformedonaParr4522BenchTopHighPressurereactorwith a4841controller.Thisreactorcontainsa2000mLglass-linedreactionvessel.The temperatureupperlimitis350oCandthemaximumpressureis14000KPa. Thefollowingreactionconditionswereusedforoxidation: • Temperature: 120oC • Pressure: 7bar • Time: 5hrs 4.4.2.2Oxidationreactions A200.00mLeffluentsamplewaspipettedintothevessel.Thereactorvesselwas lowered down onto the heating mantle and the reactor closed. The heater was switched on and thetemperaturecontrollerwassetto120 oC.Apressureof700 KPawasappliedthroughtheregulatorusingthepure(medicalgrade)oxygen,this beingthemaximumpressurepermittedthroughtheregulator.Amechanicalstirrer wasusedtostirthesolutionataconstantspeedduringthefive-hourreaction.The stirrer was cooled by tap water running constantly inside thestirrertube. After5 hours, the reactor was switched off and left to cool overnight. The sample was

160 pouredoutofthereactorvesselintoa250.00mLvolumetricflaskanddilutedupto volume with de-ionised water. The sample was analysed for COD. The oxidation reactionswereinitiallyperformedusingairastheoxidant.Becauseaironlycontains 20% oxygen, the air was replacedwith pureoxygento prove theassumption that oxygenwouldhaveahigherimpactontheoxidation. 4.5Results 4.5.1Coolingprocedure The MTSC effluent was cooled for five days in a cooler box using ice water to maintain a constant temperature. The decrease in COD value was monitored to determinethetimenecessaryforcooling.Figure4.2depictsthedecreaseinCOD value during the cooling process. The first day of cooling had the largest effect, wheretheCODvaluefelltoalmosthalfofitsinitialvalue.Thisreducedalittlemore afterthenextthreedaysofcooling,wheretheCODvaluewas10.22%andwhereit remainedconstant. Figure4.3showsacoolingcurveofeightdays,wherethesametrendwasobserved. The first day showed the largest decrease in COD, and after day 2, only small decreaseswereseen.Inbothcases,theultimateCODvaluewaslessthanhalfits initialvalue,fallingfromover24%(240000ppm)to12%orlower.

161

EffectofcoolingonCODvalue

30

25

) 20 % (

D 15 O

C 10

5

0 0 1 2 3 4 5 Days

Figure4.2:DecreaseinCODvalueaftercoolingtheMTSCeffluentfor4days

DecreaseofCODvalueineffluent

30 25

) 20 % (

D 15 O

C 10 5 0 0 2 4 6 8 10 Days

Figure4.3:DecreaseinCODvalueaftercoolingtheMTSCeffluentforeightdays TheprecipitateobtainedafterfiltrationofthecooledsampleswasanalysedbyHPLC todetermineitscomposition.Itwasobservedthatapproximately83%ofthesolid

162 was MTSC. Also small amounts of DMTU, TCH and TSC were observed which accountsfortheother17percent. 4.5.2OxidationofMTSCeffluent Boththecooledeffluent(treated)andtheuntreatedeffluentwereusedforthewetair oxidationintheParrreactor.Experimentswereperformedusingairandoxygenas theoxidant.Table4.3showstheresultsobtainedafterfivehoursofoxidationata pressureof700KPaand120oC.

Table4.3:Oxidationofeffluentunderdifferentconditions Sample Oxidant Treated/untreated Initial CODvalue COD effluent COD after reduction value oxidation (%) (%) (%) 1 Air untreated 24.23 11.23 53.7 2 Air treated 10 8.5 15.0 3 Oxygen untreated 24.23 6.35 73.8 4 Oxygen untreated 24.23 6.20 74.4 5 Oxygen treated 12.20 <0.5 95.9 6 Oxygen treated 12.20 0.4 96.7 Itisapparentfromtheresultsthattheuseofoxygenishighlyfavouredovertheuse ofair.Theairoxidationoftreatedeffluenthasalesssignificanteffect(15%COD reduction) than the oxygen oxidation of the same effluent (96%). These results additionally implythat when the effluent istreated with both cooling andoxidation withoxygen, a total COD reductionof98%canbeobtained,whichassumesthat almosteverycompoundpresentintheeffluenthaseitherbeenremovedoroxidized. OncetheoxidationoftheeffluentintheParrreactorwascomplete,aporous,yellow, stone-like precipitate was obtained. The precipitate was analysed using X-Ray Fluorescence (XRF) and Differential Scanning calorimetry (DSC). The XRF spectrum showed the main component to be sulphur. The melting point of the obtainedprecipitatewas109oC,whiletheDCSscanshowedameltingpointat112 oC.Themeltingpointofsulphuris112.8oC.46Thesubstancedepositedinthereactor vesselwasthereforeimpureelementalsulphur.

163

4.6Discussion 4.6.1Cooling ThecoolingoftheeffluentwasausefulmethodtosignificantlyreducetheCODvalue oftheeffluent.Theprecipitateobtainedduringthecoolingprocesscontained84% MTSC, implying that a significant amount of product was lost in the waste. The remainingmaterialwasconfirmedtobeallormostlyby-products(TCH,DMTUand TSC)oftheMTSCsynthesis.

To confirm the obtained HPLC results, a comparison was made between the precipitateobtained,andpureMTSCbymeansofIRandUV-VISspectrometry.The IRspectraoftheprecipitateformedduringcoolingoftheeffluent,andthepureMTSC showednosignificantdifference.UV-VISscansshowedtwoidenticalspectrawhen awavelengthscanwasperformedonboththeprecipitateandthepureMTSCand thetwoabsorptionpeakwavelengthswerethesame,indicatingthatthesamemajor functionalgroupswerepresent. 4.6.2Oxidationofthesample The final reduction in the COD value was 98 %, but further reduction may be possible. The regulator hadpressurelimitations,soreactionscouldonlybedone with a maximum pressure of 7 bar. The pressure automatically increased as the temperatureinsidethereactorroseabove100oC.Thetemperaturecouldtherefore notberaisedhigherthan120oCasthepressureatthattemperaturewasalready700 KPa.Atthispressure,nomoreoxygencouldbeaddedtothereactoreither,asthe pressureinsidethereactorwasthesameormaybeevenhigherthanthepressure fromtheregulator.Pressurewasthusdependentontemperature. 4.6.3 Economicconsiderations Beforethestartofthisproject,theeffluentobtainedfromtheproductionprocesswas dilutedtoobtainitsCODvaluebelowtherequiredlevelof1000ppm.Threetonnes of MTSC waste per day were diluted into 11000 tonnes of total waste per day. Dilution is relatively cheap,but it is of course more environmentally acceptable to

164 cleanuptheeffluent,priortodilution.Itmaybeanadvantage,fromapublicrelations pointofview,tocleanuptheeffluentasmuchaspossibleandthentopublishthis achievement.Naturallythecostofthecleanupwouldhavetobetakenintoaccount.

The COD requirementfor the effluent waste to bedisposed ofintheSasolwaste streamis1000ppm.Theresultsobtainedfromthisresearchapproachthisvalue, reaching4000ppm(0.4%).ItisnowpossibleforDowAgrosciencestodiluteand disposeof it. It may be financially advantageous to use only thecoolingstepand thendilutetheeffluent.Figure4.4summarizestheentireprocessinamassbalance, withtheresultsachievedfortheCODvalueandallothervalues. AfterdilutingthreetonnesofMTSCwastein11000tonnesoftotalwastestream,the CODvalueofthetotalwastestreamwas1051ppm.Theresultsobtainedfromthe treatment investigation werethen projected ontothe total Sasol wastestreamand thisisshowninFigure4.5.Thefollowingpossibilitiesarehenceasummaryofthese findings: 1.Coolingaffordsa49.6%reductionontheMTSCwasteanda3.5%improvementin CODofthetotalSasolwastestream. 2.Wetoxidationusingairat7barand120oCduringafivehourreactionresultsina 3.2%improvementinCODofthetotalSasolwastestream.Thesamereactionusing oxygeninsteadofairwillresultina74.4%reductioninCODontheMTSCwasteand a4.5%improvementintheCODofthetotalSasolwastestream. 3. A combination of cooling and oxidation provides the best results. The improvementinCODoftheMTSCwasteis98%andthatofthetotalSasolwaste streamis6%.Themaximumimprovementpossible,i.e.acompleteremovalofCOD oftheMTSCwaste,resultsina6.1%improvementofthetotalwastestream.

165

4.6.3.1Productrecovery TheamountofMTSCintheprecipitateobtainedbycoolingwasapproximately83%. IfthisMTSCcouldbepurifiedaftercooling,themassofMTSCrecoverableperday wouldbe70.5kg,andthetotalrecoverablemassofMTSCperyearwouldthenbe 26tonnes.ThemarketvalueofMTSCis$9.50/kg,whichmeansthat26tonnesof MTSCisworthR1.48million.

The amount of sulphur obtained during the oxidations was 14.6 kg per 1000 L effluent; the total recoverable mass of sulphur per year would then be 16 tonnes. TheretailpriceforsulphurisR2/kg.ThissulphurmaybesoldforR32000ayear. TheseeconomicbenefitsresultingfromproductrecoveryarealsoshowninFigure 4.5.Itshouldbementionedthatnoconsiderationhasbeengiventothecoststhat havetobemadetoperformthetreatment(coolingandoxidation)oftheeffluent.

MTSCeffluent(100g esstt).)est) COD=24.23%

Cooling

Solid Liquid(95g est.) Mass=4.5ge st. COD= 12.20%

HPLC Pressureoxidationwith O2

MTSC=83.3%(3.75ge st.)

TCH=5.40%(0.24ge st.) Liquid Solid DMTU=10.1(0.45g) Mass=93.0ge st. Mass=1.43gest. % est.)

COD=0.4% S ulphur r

Fig4.4:Flowdiagramsummarisingresultsoftreatmentinvestigation est=estimated–basedonthewastehavingadensityof1.00g/L,thoughitis slightlyhigher

166

Overallview

3tonnesofMTSCeffluentisdilutedin11000tonnesofwaste.TheCODvalueof thistotalwastestreamis1051ppm

Air:3.2% MTSC Cooling 3.5%improvementin improvementin Wet COD COD effluent 26TMTSCperYear O2:4.5% Ox. improvementin Cooling Wetoxidation COD Financial 13tsulphur@ COD=? R2/kg 6%improvementin MTSC=R1.5m COD 16tSulphur@R2/kg

Financial(O2) Energy=? COD=? Financial O =? Sulphur=R26500 COD=? 2 MTSC=R1.5m Equipment=? Sulphur:R32000

Figure4.5:Environmentalimpactsandeconomicalbenefitsfromwastetreatmentprotocol

167

4.7 Conclusions A method has been developed to decrease the COD valueof the MTSCeffluent. Thismethodiscomprisedoftwosteps.Thefirststepistocooltheeffluentto0oCin ice-water.ThisdecreasestheCODvaluefrom24%to12.20%.Afterthecooling,a wetoxidationwithpureoxygeninahighpressurereactormaybeperformed,andthe finalresultisaCODvalueof0.4%,a98%reductionoftheinitialvalue. DowAgrosciencesmayusetheseresultstoimprovetheCODvalueoftheireffluent and, in so doing, develop a reputation for being environmentally aware and concerned.Inmonetaryterms,theprocessmayonlybecost-effectiveifthecooling step alone was carried out followed by dilution anddisposal into theSasolwaste stream. Furthermore,productrecoveryfromtheprecipitateformedduringcooling,and containingapproximately84%ofMTSC,mayalsobeconsidered.TheMTSCmay thenberecoveredandpurifiedandtheby-productsremoved.

168

CHAPTER5 SUMMARYANDCONCLUSIVEREMARKS 5.1 Treatmentversuswasteminimization Several technologies for the treatment of waste are available: • Physical treatment; to remove, separate and concentratehazardousandtoxicmaterials. • Chemicaltreatment;toassistintheapplicationofthe physical treatment, and to lower the toxicity of a hazardouswastebychangingitschemicalnature,for example,neutralizationofanacid. • Biologicaltreatment;microbesareusedtodestroyor atleastreducethetoxicityofawastestream. • Immobilization, solidification and encapsulation; the primeobjectiveistoconvertthehazardouswasteinto aninert,physicallystablemass. • Incineration; this is an option for both treatment and disposal. These different treatment technologies are used to solve theproblemofhighconcentratedwastewaterortoxicand hazardous by-product andeffluentstreamsfrom industry. Waste treatment however only solves the problem of the specific waste water stream, but it doesn’t solve the problematthecause. Wasteminimizationhoweverdealswiththeproblematthe source as can be seen by the waste minimization procedurementionedbeforesummarizedintothefollowing phases: 5. planningandorganizationphase 6. assessmentphase 7. feasibilityanalysisphase 8. implementationphase

169

The procedures which exist in a waste minimization programcoveraverybroadarea.9Thisprocedureincludes employee training, changing current methods, preventing spillsandinventorycontrol Somecontrolmethodsthatcanbeimplementedare: • Minimizing the number of raw materials, supplies used andothermaterialssuchascleaningfluids,oilsetc. • Reducing the inventory of hazardous materials to a minimum, and ensuring that oldest materials are used firsttopreventtheseexceedingtheirshelf-life. While waste treatment is necessary to treat the effluentif theconcentrationofcertaincompoundsistoohigh,itcan be considered unnecessary if a waste minimization is established. As waste minimization deals with all kind of factorsthroughouttheprocess,itwillcleanuptheprocess and it will save a lot of money as the use of certain chemicalswillbereducedandthetotalamountandtoxicity of the effluent will be reduced. Therefore no additional money has to be spend on a treatment procedure as additionalcoststotheproductionprocess. 5.2Wasteminimization The evaluation of the synthesis of 4-methyl-3- thiosemicarbazide on lab-scale has shown a number of interestingpoints: • Multi-factorial analysis showed that the two significant variables for the optimum conditions for the MTSC synthesis were the excess of DIPEA used and the temperatureofthesecondreaction.Optimumconditions must be sought towards the two high corners of the saddle-likesurfaceinthe3dgraph(seefigure3.3).Thus, higher yields can thus be obtained using ahigh DIPEA loadingincombinationwithalowtemperatureorwitha

170

high temperature and a low DIPEA loading. These graphs (figure 3.3 and 3.4) show that both temperature and DIPEA loading are of essential importance to the MTSC yield. A yield of 64.66 % was predicted by the statisticaldesignunderoptimumconditions. • Practically,thepredictedyieldcouldeasilybeobtained. Duetoaleakduringthereactions,theyieldwasnotas high as expected. A mass of on average30gramswas lostduringthereactions.Asaresult,theyieldcouldnot be at its optimum as the reagents needed for the productionofMTSC,mighthavedisappearedduringthe reaction. The highest yield obtained during the reactions was 82.26%. The chromatograms however, indicatedthatayieldof90%shouldbeobtained,asthe amount of by-products is minimal, as shown by the relative peak areas. It is assumed that no starting material is leftafter thereaction,whichindicatesthata muchhigheryieldcanbeobtainedifalltheinitialbegin productstakepartinthereaction. 5.3Wastetreatment A method has been developed to decrease the COD valueof the MTSCeffluent. Thismethodiscomprisedoftwosteps: • Thefirststepistocooltheeffluentto0oCinice-water.ThisdecreasestheCOD valuefrom24%to12.20%asaprecipitateoccurs,thatconsistmostlyofMTSC still present in the effluent. Thus, product recovery from theprecipitate formed during cooling, and containing approximately 84% of MTSC, may also be considered.TheMTSCmaythenberecoveredandpurifiedandtheby-products removed. • Afterthecooling,awetoxidationwithpureoxygeninahigh-pressurereactormay beperformed,andthefinalresultisaCODvalueof0.4%,a98%reductionofthe initial value. During this reaction a precipitate containing mostly sulphur is recovered.Productrecoverycouldagainbeconsideredandthesulphurmightbe purified.

171

DowAgrosciencesmayusetheseresultstoimprovetheCODvalueoftheireffluent and, in so doing, develop a reputation for being environmentally aware and concerned.Inmonetaryterms,theprocessmayonlybecost-effectiveifthecooling step alone was carried out followed by dilution anddisposal into theSasol waste stream. 5.4Overallconclusion The optimum solution would be a combination of waste minimization and waste treatment;ahighyieldofMTSCandanenvironmentallyfriendlyeffluent.Optimally thereshouldbeessentiallynoMTSCintheeffluentduetotheoptimizedsynthesis, resultinginacleanereffluentastheMTSCispredominantlyresponsibleforthehigh COD of the effluent. Therefore itis very important that thesynthesis of MTSC be carriedoutinasealedreactor,resultinginallthestartingmaterialtakingpartinthe reaction and therefore a higher yield. An isolation step needs to bedeveloped to isolatealltheMTSCoutofthereactionmixture,astheamountofMTSCstillpresent intheeffluentindicatesthattheisolationstepisnotveryefficient.Acombinationof the isolation used during the synthesis and the isolation used during effluent treatmentmightbeanoptionalthoughitwillbetimeconsuming.IfalltheMTSCis isolatedfromthereactionmixtureanessentiallycleaneffluentwillbeleftbehindand minimal treatment will be required prior to disposal. Implementation of the above mentionedstepswouldresultinanenvironmentallyfriendlyprocesswithhighMTSC yeilds.

172

REFERENCES

1. DonaldTSawyer,ArthurEMartell,“Practicaltechniquesforreducingwaste”in IndustrialEnvironmentalChemistry,PlenumPress,NewYork,1992 2. LaGrega,Buckingham,Evans,“Pollutionprevention”inHazardouswaste management,USA,p355–358,1994 3. Environmentaldisasters,http://www.umweltbundesamt.de/uba-info-daten- e/daten-e/environmental-disasters.htm 4. 13thanniversaryoftheCarbideincidentinBhopal, http://www.mnet.fr/aiindex/i_aii/13thanniv.html 5. LoveCanalNPLFactsheet, http://www.epa.gov/region02/superfnd/site_sum/0201290c.htm 6. LoveCanal:HealthTypevsHealthFact, http://www.a.csh.org/press/editorials/lovecanal/122399.html 7.CliffordWWalton,KevinSBriggsandKevinJLoos,“Wasteminimizationand remediationinthemetalfinishingindustries”inIndustrialEnvironmental Chemistry,PlenumPress,NewYork,1992 8.RobinSmith,ChemicalProcessDesign,McGraw-Hill,Ch10,1995 9. WasteMinimizationOpportunityAssessmentManual,U.S.EPA,Washington, DC,EPA/625/7-88/003/July1988 10.DonaldTSawyer,ArthurEMartell,“Wasteminimizationandremediationinthe metalfinishingindustries”inIndustrialEnvironmentalChemistry,PlenumPress, NewYork,1992 11.MinimumrequirementsfortheHandling,Classification,andDisposalof hazardouswaste,secondedition,1998,section7 12.Clark.W.Heathjr.,Healtheffectsofhazardouswaste,InStandardhandbookof Hazardouswastetreatmentanddisposal 13.MinimumrequirementsfortheHandling,Classification andDisposalofHazardouswaste,secondedition,1998, section6. 14.C.A.Edwards,Environmentalpollutionbypesticides, Plenumpress,NewYork,1973

173

15.R.J.Cremlyn,Agrochemicals,preparationandmodeofaction,WileyandSons, England,1991 16.McGraw-HillEncyclopediaofScience&Technology,5th edition,McGraw-HillUSA,1982 17.Environmentaldynamicsofpesticides,FreedandHaque,p1-3,1975 18. FumioMatsumura,ToxicologyofInsecticides,PlenumPress,NewYork,1975 19.ColettedeKlerk,Thesynthesisof4-methyl-3-thiosemicarbazide,Dipeabased method,DowAgrosciences,30October2000 20.G.D.Than,R.A.Ludwig,Thedithiocarbamatesandrelatedcompounds,Elsevier, Amsterdam,1962 21.Thioureas,Chemicalreviews,1955,55:189 22.DimitriCoucouvanis,ThechemistryoftheDithioacidand1,1-dithiolate complexes,UniversityofIowa 23.JensenAnthoni,Studiesofthioacidsandtheirderivatives,ixthiosemicarbazides, In:ActaChemicaScandinavica,22(1968)1-50 24.Methylamines,In:Ullman’sEncyclopediaofIndustrialChemistry,5thedition,A16: 535 25.Carbondisulfide,In:Ullman’sEncyclopediaofIndustrialChemistry,5thedition, A5:185 26.Hydrazines,In:Ullmann’sEncyclopediaofIndustrialChemistry,5th edition,A13:177 27.ThiocyanatesandIsothiocyanates,Organic,In:Ullmann’sEncyclopediaof IndustrialChemistry,5thedition,A26:749 28.GaryMorrisDugmore,Acommercialprocessfortheproductionof5-t-butyl-2- methylamino-1,3,4-thiadiazole,Dowagrosciences,January2000 29.R.Carlson,Datahandlinginscienceintechnology8:Designandoptimizationin organicsynthesis,Amsterdam,Elsevier,p201–205,1992 30.ColettedeKlerk,Thesynthesisof4-methyl-3-thiosemicarbazide,Dipeabased method,DowAgrosciences,30October2000. 31.D.C.Montgomery,DesignandAnalysisofExperiments,2ndedition,Wileyand sons,1984 32.B.J.Winer,D.R.Brown,K.M.Michels,StatisticalPrinciplesinExperimentaldesign, 3rdedition,McGraw-Hill,1991

174

33. R.Carlson,Designandoptimizationinorganicsynthesis,Elsevier, Amsterdam,1992 34. L.Davies,EfficiencyinResearch,DevelopmentandProduction:The StatisticalDesignandAnalysisofChemicalExperiments,RoyalSocietyof Chemistry,1993 35. “Wastewatertreatment:chooseappropriatewastewatertreatment technologies”inChemicalengineeringprogress,p32–51,August1995 36. StanleyEManahan,Hazardouswastechemistry,toxicologyandtreatment, LewisPublishers,USA,1990 37. Bilitewski,Hardtle,Marek,Springer,Wastemanagement,Berlin,1994 38. SouthAfrica,Departmentofwateraffairsandforestry,SouthAfricanwater qualityguidelines,vol.3:Industrialuse,Pretoria:GovernmentPrinter,1993 39. Momont,Copa,Randall,TheDestructionofPesticidesbyWetAirOxidation 40. MaterialSafetyDataSheet:MTSC/4-methyl-3-Thiosemicarbazide/243 41. Skoog, West, Fundamentals of Analytical Chemistry, seventh edition, USA, 1996 42. GletwynRubidge,ProgressReporttoDowAgrosciences,November,1998 43. Wilroy Bennen, MTSC, onderzoek naar mileuonvriendelijke componenten, Emmen,1998 44. McMurray, Castellion, Fundamentals of General, Organic, and Biological Chemistry,secondedition,NewYersey,p189–192,1996 45. McMurray,Fay,Chemistry,NewYersey,p515–522,1995

46. Merck,TablesfortheLaboratory,64271Darmstadt,Germany

175

176

177