Pre-Study on Marine-Completion at Scania Engine Assembly
Total Page:16
File Type:pdf, Size:1020Kb
DEGREE PROJECT IN MECHANICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2021 Pre-study on Marine-completion at Scania Engine Assembly ANDREAS YOUSEF IVAN NAZAR HANNA KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT Pre-study on Marine-completion at Scania Engine Assembly Supervisors, KTH: Ulf Olofsson Students, KTH: Ove Bayard Ivan Nazar Hanna Andreas Yousef Supervisors, Scania: Johan Ling Lauras Vinteris Andreas Eldelind June 6, 2021 Master of Science Thesis TRITA-ITM-EX 2021:xyz Pre-study on the Marine-completion at Scania Engine Assembly Ivan Nazar Hanna Andreas Yousef Approved Examiner Supervisor Ulf Olofsson Ove Bayard Commissioner Contact person Scania Johan Ling Abstract This study has been conducted at Scania Engine Assembly, in particular in an production area that produces Marine Engines. Scania always strives for continuous improvement and the purpose of this study has been to create an overview of the production area Marine-completion, where the marine components are assembled. The goals were to create a current state analysis, propose a future state analysis and propose suggestions of solutions for improvement of Marine-completion. The research question was: How can the strategies for the current state analysis be chosen, used and analyzed in order to accomplish a successful current state analysis?. The research methodology in this study was conducted using qualitative and quantitative research strategies, where both primary and secondary data were collected. The theoretical framework was divided into four subsections: Production systems, project management, technical solutions of today and supporting literature for solutions. The main method of this study was collecting data. The data included layout of the production, assembly times, quality deviations, engine variant classifications, Value Stream Mapping, Safety, Health and Environment related deviations and costs. Based on the current state, a future state was developed. The results of the current state analysis was that there are a total of 20 main variants of marine engines which have different assembly times. The assembly time can vary from approximately 45 minutes to 3 hours and 35 minutes for straight engines and approximately 4 hours to 8 hours for V8 engines. The mean results from Value Stream Mapping concluded a distribution of 40 percentage Value Adding and 60 percentage Non-Value Adding, where the largest waste from Non-Value Adding activities was bringing parts. Most of the quality deviations were caused by the method, where the biggest problem was regarding "tool insufficiency". Safety, Health and Environment related deviations were identified, where the largest problems were "risk". The future state analysis ended up in three cases, which explains the possible savings and future states. The Failure Mode and Effects Analysis resulted in 7 failure modes, where "Engine-card missing tasks/parts" had the largest rating. The suggestion of solutions resulted in a new layout, new routines with the engine-cards with digital screens and some other smaller suggestions. This study concluded in three main suggestions of solutions about "New layout at Marine-completion ", "Digital screens at each station" and "Continuous update of engine cards", which resulted in three assignment directives that Scania can further work with in the future. Keywords: Assembly, Lean manufacturing, Marine Engine, Scania, SPS, TPS Examensarbete TRITA-ITM-EX 2021:xyz Förstudie på marinkompletteringen i Scanias motormontering Ivan Nazar Hanna Andreas Yousef Godkänt Examinator Handledare Ulf Olofsson Ove Bayard Uppdragsgivare Kontaktperson Scania Johan Ling Sammanfattning Detta arbete har utförts på ett produktionsområde i Scanias motormontering i Södertälje, Stockholm. Scania strävar alltid mot ständiga förbättringar och detta arbete uppfyller det genom syftet att skapa en kartläggning över produktionsområdet med fokus i förbättringar. Målen med detta arbete var att kartlägga nuläget i Marinkompletteringen samt skapa ett framtidsläge tillsammans med föreslagna förbättringsförslag. Den forskningsrelaterade frågeställningen för detta arbete var: Hur kan strategierna för nulägesanalysen väljas, användas och analyseras för att uppnå en lyckad nulägesanalys?. Metoden för litteraturstudien som utförts för detta arbete använde kvalititativa och kvantitiva forskningsmetoder där både primär och sekundärdata samlades. Det teoretiska ramverket var uppdelat i fyra delkapitel: Produktionssystem, projektledning, tekniska lösningar idag och stödjande litteratur för lösningar. Huvudmetoden för detta arbete var datainsamlingen som inkluderade aspekter som layout på området, monteringstider, kvalitetsavvikelser, motorvarianternas klassificering, värdeflödesanalys, avvikelser kopplat till säkerhet, hälsa, miljö och kostnader. Utifrån nulägesanalysen utvecklades framtidsläget fram. Resultaten från nulägesanalysen påvisade en total mängd av 20 olika huvudvarianter på marinmotorerna som monteras i marinkompletteringen med olika monteringstider. Monteringstiderna kunde sträcka sig mellan 45 minuter till tre timmar och 35 minuter för raka motorer och ungefär fyra till åtta timmar när det gäller V8 motorer. Medelvärdet på resultatet av värdeflödesanalysen resulterade i en fördelning av 40 procent värdeskapande tid och 60 procent icke-värdeskapande tid där det största slöseriet tillkom vid upphämtning av artikel. De flesta kvalitetsbristerna orsakades av metodiska fel där det mest förekommande metodiska felet var framkomlighet för verktyg. Bristerna kring säkerhet, hälsa och miljö identifierades och den mest förekommande bristen var gällande risker på arbetsplatsen. Analysen av framtidsläget resulterade i tre scenarion som vardera förklarar möjliga kostnadsbesparingar vid utfasning av olika icke-värdeskapande aktiviteter. Failure Mode and Effects Analysis som utfördes resulterade i sju feltyper varav "brist på information i motorkort" hade högst risktal. Rekommenderade åtgärder för Failure Mode and Effects Analysis resulterade i förslag om ny layout, nya rutiner gällande motorkort med digitala lösningar samt ett flertal mindre lösningar. De föreslagna lösningar som gavs till Scania i detta arbete var tre konkreta huvudförslag angående "ny layout på marinkompletteringen", "digitala skärmar på vardera station" och "kontinuerlig uppdatering av motorkort" vilket i sin tur resulterade i tre uppdragsdirektiv som Scania fortsatt kan jobba med i framtiden. Nyckelord: Lean, Marinmotor, Montering, Scania, SPS, TPS Foreword This Master thesis has been conducted by two students at KTH from two different Master programs, Engineering Design and Production Engineering and Management. The project has been executed at Scania CV AB, Sodertalje, Sweden. We are very thankful for having this opportunity to perform our Master thesis at a world leading company for transport solutions, Scania. We want to give special thanks to our manager and contact person Johan Ling, head of product engineering at Scania Engine Assembly, who always supported us in our project and thesis. We also want to give a special thanks to Andreas Eldelind, head of process engineering at Scania Engine assembly, for taking the responsibility from Johan Ling at the mid phase of the project. We also want to thank our supervisor Lauras Vinteris at Scania Process Engineering for the support and help during the project. We also wish to thank the workers at the production area marine-completion, the technican Aldo Lecaj, the two team leaders Ninos Melke and Elias Melke and all the other workers for answering our questions. We would like to express special thanks to our supervisors and program managers at Royal Institute of Technology, Ulf Olofsson and Ove Bayard, for all help, support and mentorship during the project. Södertälje, Sweden, 31 May 2021 Södertälje, Sweden, 31 May 2021 Ivan Hanna Andreas Yousef i Nomenclature Abbreviation Swedish English Description A document that AD Uppdragsdirektiv Assignment directive describes an assignment Straight Engine with D9/DC9/DI9 Motortyp Engine type 9 Liters and 5 cylinders Straight Engine with D12/DC12/DI12 Motortyp Engine type 12 Liters and 6 cylinders V8-Engine with D16/DC16/DI16/V8 Motortyp Engine type 16 Liters and 8 cylinders A paper with specific - Motorkort Engine Card engine specifications The production area for MK Marinkompletteringen Marine-Completion assembly of marine components NVA Icke-värdeskapande Non-Value Adding A concept within VSM A control process Q-Zon Kvalitetszon Quality-Zone after assembly at MK A concept used at SPS SHE Säkerhet Hälsa och Miljö Safety Health and Environment and at deviation management A specific production SPS Scanias Produktionssystem Scania Production System system based on TPS A Transport Management TMS Transport system Transport Management System System for engines at Scania The foundation for TPS Toyotas Produktionssystem Toyota Production System production systems VA Värdeskapande Value Adding A concept within VSM A method for mapping VSM Värdeflödesanalys Value Stream Mapping the value-adding activities iii Contents 1 Introduction 1 1.1 Background . 1 1.1.1 Scania . 1 1.1.2 Scania Engine Assembly . 1 1.1.3 Power Solutions and Marine-Completion . 2 1.2 Purpose and Goal . 3 1.3 Research Question . 3 1.4 Delimitation . 3 1.5 Methodology . 4 1.5.1 Qualitative Study . 4 1.5.2 Quantitative Study . 4 1.5.3 Research Strategy . 4 1.5.4 Research Design . 5 1.5.5 Reliability and Validity . 5 2 Theoretical Framework 7 2.1 Production