Performance Prediction and Simulation of Gas Turbine Engine Operation (La Pr´Evision Des Performances Et La Simulation Du Fonctionnement Des Turbomoteurs)

Total Page:16

File Type:pdf, Size:1020Kb

Performance Prediction and Simulation of Gas Turbine Engine Operation (La Pr´Evision Des Performances Et La Simulation Du Fonctionnement Des Turbomoteurs) RTO-TR-044 AC/323(AVT-018)TP/29 NORTH ATLANTIC TREATY ORGANISATION RTO-TR-044 RESEARCH AND TECHNOLOGY ORGANISATION BP 25, 7 RUE ANCELLE, F-92201 NEUILLY-SUR-SEINE CEDEX, FRANCE RTO TECHNICAL REPORT 44 Performance Prediction and Simulation of Gas Turbine Engine Operation (La pr´evision des performances et la simulation du fonctionnement des turbomoteurs) Report of the RTO Applied Vehicle Technology Panel (AVT) Task Group AVT-018. Published April 2002 Distribution and Availability on Back Cover This page has been deliberately left blank Page intentionnellement blanche RTO-TR-044 AC/323(AVT-018)TP/29 NORTH ATLANTIC TREATY ORGANISATION RESEARCH AND TECHNOLOGY ORGANISATION BP 25, 7 RUE ANCELLE, F-92201 NEUILLY-SUR-SEINE CEDEX, FRANCE RTO TECHNICAL REPORT 44 Performance Prediction and Simulation of Gas Turbine Engine Operation (La pr´evision des performances et la simulation du fonctionnement des turbomoteurs) Report of the RTO Applied Vehicle Technology Panel (AVT) Task Group AVT-018. The Research and Technology Organisation (RTO) of NATO RTO is the single focus in NATO for Defence Research and Technology activities. Its mission is to conduct and promote cooperative research and information exchange. The objective is to support the development and effective use of national defence research and technology and to meet the military needs of the Alliance, to maintain a technological lead, and to provide advice to NATO and national decision makers. The RTO performs its mission with the support of an extensive network of national experts. It also ensures effective coordination with other NATO bodies involved in R&T activities. RTO reports both to the Military Committee of NATO and to the Conference of National Armament Directors. It comprises a Research and Technology Board (RTB) as the highest level of national representation and the Research and Technology Agency (RTA), a dedicated staff with its headquarters in Neuilly, near Paris, France. In order to facilitate contacts with the military users and other NATO activities, a small part of the RTA staff is located in NATO Headquarters in Brussels. The Brussels staff also coordinates RTO’s cooperation with nations in Middle and Eastern Europe, to which RTO attaches particular importance especially as working together in the field of research is one of the more promising areas of initial cooperation. The total spectrum of R&T activities is covered by the following 7 bodies: • AVT Applied Vehicle Technology Panel • HFM Human Factors and Medicine Panel • IST Information Systems Technology Panel • NMSG NATO Modelling and Simulation Group • SAS Studies, Analysis and Simulation Panel • SCI Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These bodies are made up of national representatives as well as generally recognised ‘world class’ scientists. They also provide a communication link to military users and other NATO bodies. RTO’s scientific and technological work is carried out by Technical Teams, created for specific activities and with a specific duration. Such Technical Teams can organise workshops, symposia, field trials, lecture series and training courses. An important function of these Technical Teams is to ensure the continuity of the expert networks. RTO builds upon earlier cooperation in defence research and technology as set-up under the Advisory Group for Aerospace Research and Development (AGARD) and the Defence Research Group (DRG). AGARD and the DRG share common roots in that they were both established at the initiative of Dr Theodore von K´arm´an, a leading aerospace scientist, who early on recognised the importance of scientific support for the Allied Armed Forces. RTO is capitalising on these common roots in order to provide the Alliance and the NATO nations with a strong scientific and technological basis that will guarantee a solid base for the future. The content of this publication has been reproduced directly from material supplied by RTO or the authors. Published April 2002 Copyright RTO/NATO 2002 All Rights Reserved ISBN 92-837-1083-5 Printed by St. Joseph Ottawa/Hull (A St. Joseph Corporation Company) 45 Sacr´e-Cœur Blvd., Hull (Qu´ebec), Canada J8X 1C6 ii Performance Prediction and Simulation of Gas Turbine Engine Operation (RTO TR-044 / AVT-018) Executive Summary Simulations have become increasingly important in all aspects of military operations. As modeling techniques have improved, and as computers have progressed, simulation has assumed an essential role in planning, executing, and evaluating operations. So too, in the design, manufacturing, and operating of aircraft turbine engines, accurate performance simulations have become essential. They are being applied in rapidly expanding ways to reduce acquisition costs, increase system performance, improve maintenance through improved diagnostics and prognostics, and to improve new system design. Recognizing the importance of the turbine engine to NATO operations, and the widespread use of turbine-engine performance simulations, Technical Team AVT-018 was created to provide a manual of such simulations. These were to range from applications to the latest developments in modeling technology. Originally focused on operators and applications, the effort has resulted in a manual of broad scope. There is material for all users of models, ranging from those in original design, to those who operate and maintain aircraft gas turbine engines. The report is one of the most extensive available on both the applications and the methodology of engine performance simulations. Applications of performance models will be of initial interest to many readers and a detailed review of 22 examples is provided. It ranges from preliminary design to in-service support, and includes educational examples. The document then describes the features of several types of complete engine models, including the complex and detailed models that are used for the actual design of a new turbine engine and its components. These models are often of a proprietary nature. All modern performance models are executed on computer platforms, which often dictate the form or construction of the model, as well as the method and speed of execution. A chapter describing current computer platforms and software, and possible future developments is included. Sample executable performance models are included, an addition made possible by the electronic format of the report. Finally, several recent and advanced developments in mathematical modeling of components are described. An Appendix contains the results of a survey of model users, and a Glossary completes the document. The members of Technical Team AVT-018 hope that the availability of this manual will serve to increase the use and the value of turbine engine performance simulations in the NATO community, and encourage progress in performance modeling and related applications. iii La pr´evision des performances et la simulation du fonctionnement des turbomoteurs (RTO TR-044 / AVT-018) Synth`ese La simulation est devenue de plus en plus importante dans tous les aspects des op´erations militaires. Avec l’am´elioration des techniques de mod´elisation, et l’´evolution de l’informatique, la simulation remplit d´esormais un rˆole essentiel dans la planification, l’ex´ecution et l’´evaluation des op´erations. De la mˆeme fa¸con, la simulation de performances pr´ecises est d´esormais indispensable a` la conception, la fabrication et l’exploitation des turbomoteurs. Les simulations sont mises en œuvre dans des domaines sans cesse nouveaux dans le but de r´eduire les coˆuts d’acquisition, d’accroˆıtre les performances, d’optimiser la maintenance grˆace a` un meilleur diagnostic et un meilleur pronostic, et d’am´eliorer la conception des nouveaux syst`emes. Etant donn´e l’importance des turbomoteurs pour les op´erations de l’OTAN, ainsi que l’emploi g´en´eralis´e des simulations de performances des turbomoteurs, il a et´´ e d´ecid´e de cr´eer l’´equipe technique AVT-018 en vue de la r´ealisation d’un manuel technique pour ces simulations. L’ouvrage devait couvrir un domaine allant des applications aux derniers d´eveloppements concernant les technologies de mod´elisation. Orient´e initialement sur les op´erateurs et les applications, le groupe a finalement produit un manuel d’un champ d’application tr`es etendu.´ Il contient des indications destin´ees a` l’ensemble des utilisateurs de mod`eles, qu’ils soient concepteurs, exploitants ou techniciens de maintenance de turbomoteurs. Il s’agit, en effet, de l’un des rapports les plus complets disponibles sur les applications et la m´ethodologie de la simulation des performances des moteurs. Les applications des mod`eles de performances int´eresseront bon nombre de lecteurs non-sp´ecialistes et le manuel pr´esente un examen d´etaill´e de 22 exemples. Ils vont de la conception pr´eliminaire a` l’assistance technique en service, avec des exemples didactiques. Le document d´ecrit ensuite les caract´eristiques d’un certain nombre de mod`eles de moteurs complets, y compris des mod`eles complexes et d´etaill´es qui sont actuellement utilis´es pour la conception d’un nouveau turbomoteur et de ses organes. Il s’agit dans plusieurs cas de mod`eles de marque d´epos´ee. Tous les mod`eles de performances modernes sont ex´ecut´es sur des plates-formes informatiques, ce qui d´etermine, en g´en´eral, la forme ou la construction du mod`ele, ainsi que la m´ethode et la rapidit´e d’ex´ecution. Les plates-formes informatiques et les logiciels actuels sont examin´es, ainsi que les d´eveloppements futurs possibles dans un chapitre particulier. Grˆace au format electronique´ du rapport, les auteurs ont pu y inclure des exemples de mod`eles de performance ex´ecutables. Enfin, diff´erents d´eveloppements avanc´es r´ecents dans le domaine de la mod´elisation math´ematique des composants sont d´ecrits. Les r´esultats d’un sondage d’utilisateurs de mod`eles sont donn´es en annexe, ainsi qu’un glossaire des termes utilis´es.
Recommended publications
  • Aerospace Engine Data
    AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16
    [Show full text]
  • A Study of Technology Used and Comparison Between Traditional and Hf120 (Advanced Aero Engine)
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-4 Issue-4, September 2015 A Study of Technology Used and Comparison Between Traditional and Hf120 (Advanced Aero Engine) Vivek Kumar, Rajeshwar Prasad Singh, Vikash Kumar Abstract- Paper includes detailed study of the HF120 turbofan The two companies began talks in 2003 with the goal of engine, which is the first product from GE Honda Aero providing durable and economical engines for business Engines. This paper is to showcase state of art technology aviation. The idea was to combine the strengths of each involved in gas turbine engines and to bring out various aspects and future trends in field of propulsion technology. parent company in technology leadership, manufacturing Paper also includes development in gas turbine engine that have expertise, and performance engine tradition to provide helped to achieve great fuel efficiency and less noise, increased modern business aviation engines with the performance power, thrust and also advancements made in the field of and availability of large commercial engines. A strategic materials have contributed in a major way in gas turbine in alliance between the two companies lead to planning of accordance to the future trends that have come up in recent 50/50 project intended to develop, certify and market the years. The paper reviews the evolutionary process that has taken place over the years with reference to the different design Honda engine. The HF120, product from GE Honda Aero concepts used for aero engines. At General Electric, the official Engines, utilizes Honda's world-renowned expertise in corporate slogan is “Imagination at work.” At Honda, it’s “The manufacturing, research and development and GE's power of dreams.” Two of the world's most respected names in experience in aerospace technology, durability, and propulsion have come together to design and manufacture certification.
    [Show full text]
  • High Pressure Ratio Intercooled Turboprop Study
    E AMEICA SOCIEY O MECAICA EGIEES 92-GT-405 4 E. 4 S., ew Yok, .Y. 00 h St hll nt b rpnbl fr ttnt r pnn dvnd In ppr r n d n t tn f th St r f t vn r Stn, r prntd In t pbltn. n rnt nl f th ppr pblhd n n ASME rnl. pr r vlbl fr ASME fr fftn nth ftr th tn. rntd n USA Copyright © 1992 by ASME ig essue aio Iecooe uoo Suy C. OGES Downloaded from http://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT1992/78941/V002T02A028/2401669/v002t02a028-92-gt-405.pdf by guest on 23 September 2021 Sundstrand Power Systems San Diego, CA ASAC NOMENCLATURE High altitude long endurance unmanned aircraft impose KFT Altitude Thousands Feet unique contraints on candidate engine propulsion systems and HP Horsepower types. Piston, rotary and gas turbine engines have been proposed for such special applications. Of prime importance is the HIPIT High Pressure Intercooled Turbine requirement for maximum thermal efficiency (minimum specific Mn Flight Mach Number fuel consumption) with minimum waste heat rejection. Engine weight, although secondary to fuel economy, must be evaluated Mls Inducer Mach Number when comparing various engine candidates. Weight can be Specific Speed (Dimensionless) minimized by either high degrees of turbocharging with the Ns piston and rotary engines, or by the high power density Exponent capabilities of the gas turbine. pps Airflow The design characteristics and features of a conceptual high SFC Specific Fuel Consumption pressure ratio intercooled turboprop are discussed. The intended application would be for long endurance aircraft flying TIT Turbine Inlet Temperature °F at an altitude of 60,000 ft.(18,300 m).
    [Show full text]
  • Helicopter Turboshafts
    Helicopter Turboshafts Luke Stuyvenberg University of Colorado at Boulder Department of Aerospace Engineering The application of gas turbine engines in helicopters is discussed. The work- ings of turboshafts and the history of their use in helicopters is briefly described. Ideal cycle analyses of the Boeing 502-14 and of the General Electric T64 turboshaft engine are performed. I. Introduction to Turboshafts Turboshafts are an adaptation of gas turbine technology in which the principle output is shaft power from the expansion of hot gas through the turbine, rather than thrust from the exhaust of these gases. They have found a wide variety of applications ranging from air compression to auxiliary power generation to racing boat propulsion and more. This paper, however, will focus primarily on the application of turboshaft technology to providing main power for helicopters, to achieve extended vertical flight. II. Relationship to Turbojets As a variation of the gas turbine, turboshafts are very similar to turbojets. The operating principle is identical: atmospheric gases are ingested at the inlet, compressed, mixed with fuel and combusted, then expanded through a turbine which powers the compressor. There are two key diferences which separate turboshafts from turbojets, however. Figure 1. Basic Turboshaft Operation Note the absence of a mechanical connection between the HPT and LPT. An ideal turboshaft extracts with the HPT only the power necessary to turn the compressor, and with the LPT all remaining power from the expansion process. 1 of 10 American Institute of Aeronautics and Astronautics A. Emphasis on Shaft Power Unlike turbojets, the primary purpose of which is to produce thrust from the expanded gases, turboshafts are intended to extract shaft horsepower (shp).
    [Show full text]
  • Improving Engine Efficiency Through Core Developments
    IMPROVING ENGINE EFFICIENCY THROUGH CORE DEVELOPMENTS Brief summary: The NASA Environmentally Responsible Aviation (ERA) Project and Fundamental Aeronautics Projects are supporting compressor and turbine research with the goal of reducing aircraft engine fuel burn and greenhouse gas emissions. The primary goals of this work are to increase aircraft propulsion system fuel efficiency for a given mission by increasing the overall pressure ratio (OPR) of the engine while maintaining or improving aerodynamic efficiency of these components. An additional area of work involves reducing the amount of cooling air required to cool the turbine blades while increasing the turbine inlet temperature. This is complicated by the fact that the cooling air is becoming hotter due to the increases in OPR. Various methods are being investigated to achieve these goals, ranging from improved compressor three-dimensional blade designs to improved turbine cooling hole shapes and methods. Finally, a complementary effort in improving the accuracy, range, and speed of computational fluid mechanics (CFD) methods is proceeding to better capture the physical mechanisms underlying all these problems, for the purpose of improving understanding and future designs. National Aeronautics and Space Administration Improving Engine Efficiency Through Core Developments Dr. James Heidmann Project Engineer for Propulsion Technology (acting) Environmentally Responsible Aviation Integrated Systems Research Program AIAA Aero Sciences Meeting January 6, 2011 www.nasa.gov NASA’s Subsonic
    [Show full text]
  • Engineering Fundamentals of the Internal Combustion Engine
    Engineering Fundamentals of the Internal Combustion Engine . I Willard W. Pulkrabek University of Wisconsin-· .. Platteville vi Contents 2-3 Mean Effective Pressure, 49 2-4 Torque and Power, 50 2-5 Dynamometers, 53 2-6 Air-Fuel Ratio and Fuel-Air Ratio, 55 2-7 Specific Fuel Consumption, 56 2-8 Engine Efficiencies, 59 2-9 Volumetric Efficiency, 60 , 2-10 Emissions, 62 2-11 Noise Abatement, 62 2-12 Conclusions-Working Equations, 63 Problems, 65 Design Problems, 67 3 ENGINE CYCLES 68 3-1 Air-Standard Cycles, 68 3-2 Otto Cycle, 72 3-3 Real Air-Fuel Engine Cycles, 81 3-4 SI Engine Cycle at Part Throttle, 83 3-5 Exhaust Process, 86 3-6 Diesel Cycle, 91 3-7 Dual Cycle, 94 3-8 Comparison of Otto, Diesel, and Dual Cycles, 97 3-9 Miller Cycle, 103 3-10 Comparison of Miller Cycle and Otto Cycle, 108 3-11 Two-Stroke Cycles, 109 3-12 Stirling Cycle, 111 3-13 Lenoir Cycle, 113 3-14 Summary, 115 Problems, 116 Design Problems, 120 4 THERMOCHEMISTRY AND FUELS 121 4-1 Thermochemistry, 121 4-2 Hydrocarbon Fuels-Gasoline, 131 4-3 Some Common Hydrocarbon Components, 134 4-4 Self-Ignition and Octane Number, 139 4-5 Diesel Fuel, 148 4-6 Alternate Fuels, 150 4-7 Conclusions, 162 Problems, 162 Design Problems, 165 Contents vii 5 AIR AND FUEL INDUCTION 166 5-1 Intake Manifold, 166 5-2 Volumetric Efficiency of SI Engines, 168 5-3 Intake Valves, 173 5-4 Fuel Injectors, 178 5-5 Carburetors, 181 5-6 Supercharging and Turbocharging, 190 5-7 Stratified Charge Engines and Dual Fuel Engines, 195 5-8 Intake for Two-Stroke Cycle Engines, 196 5-9 Intake for CI Engines, 199
    [Show full text]
  • Propulsione Aeronautica 2020/2021 Francesco Barato
    PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO MATERIALE DI SUPPORTO FONDAMENTI DI PROPULSIONE AERONAUTICA Thrust 푇 = (푚̇ 푎 + 푚̇ 푓)푉푒 − 푚̇ 푎푉0 + (푝푒 − 푝푎)퐴푒 푇 ≈ 푚̇ 푎(푉푒 − 푉0) + (푝푒 − 푝푎)퐴푒 1 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Ramjet P-270 Moskit (left), BrahMos (right) Turboramjet Pratt & Whitney J-58 turbo(ram)jet 2 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Scramjet 3 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Specific impulse 푇 푉푒 푇 푚̇ 푝 푉푒 − 푉0 퐼푠푝 = = [푠] 푟표푐푘푒푡푠 퐼푠푝 = = [푠] 푎푟 푏푟푒푎푡ℎ푛푔 푚̇ 푝푔0 푔0 푚̇ 푓푔0 푚̇ 푓 푔0 4 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Propulsive efficiency Overall efficiency Overall efficiency with Mach number 5 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Engine bypass ratios Bypass Engine Name Major applications ratio turbojet early jet aircraft, Concorde 0.0 SNECMA M88 Rafale 0.30 GE F404 F/A-18, T-50, F-117 0.34 PW F100 F-16, F-15 0.36 Eurojet EJ200 Typhoon 0.4 Klimov RD-33 MiG-29, Il-102 0.49 Saturn AL-31 Su-27, Su-30, J-10 0.59 Kuznetsov NK-144A Tu-144 0.6 PW JT8D DC-9, MD-80, 727, 737 Original 0.96 Soloviev D-20P Tu-124 1.0 Kuznetsov NK-321 Tu-160 1.4 GE Honda HF120 HondaJet 2.9 RR Tay Gulfstream IV, F70, F100 3.1 GE CF6-50 A300, DC-10-30,Lockheed C-5M Super Galaxy 4.26 PowerJet SaM146 SSJ 100 4.43 RR RB211-22B TriStar 4.8 PW PW4000-94 A300, A310, Boeing 767, Boeing 747-400 4.85 Progress D-436 Yak-42, Be-200, An-148 4.91 GE CF6-80C2 A300-600, Boeing 747-400, MD-11, A310 4.97-5.31 RR Trent 700 A330 5.0 PW JT9D Boeing 747, Boeing 767, A310, DC-10 5.0 6 PROPULSIONE
    [Show full text]
  • Online Vehicle Database Index 2006 - Issue 3 EXPLANATION VEHICLE TYPE on DATA SHEETS
    Online Vehicle Database Index 2006 - Issue 3 EXPLANATION VEHICLE TYPE ON DATA SHEETS 2 Two Seater Man Manual gearbox 4 Four Seater McP McPherson 2+2 Two +Two Seater MPV Multi Purpose Vehicle 2D Two Door MV Mini Van 3D Three Door MWB Middle wheelbase 4D Four Door 5D Five Door NT Narrow track 3HB Three Door Hatchback 5HB Five Door Hatchback O Open 2HT Two Door Hardtop 4HT Four Door Hardtop P Petrol 4L 4-link Suspension PS Power steering 5L 5-link Suspension PU Pick Up 2WD Two Wheel Drive 4WD Four Wheel Drive R Roadster 4WS Four Wheel Steering RC Regular Cab RHD Right Hand Drive Aut Automatic gearbox RWD Rear Wheel Drive AWD All Wheel Drive S3 3 cylinder straight engine B4 4 cylinder Boxer engine S4 4 cylinder straight engine B6 6 cylinder Boxer engine S5 5 cylinder straight engine B Bus S6 6 cylinder straight engine C Coupe S Sedan CO Combi Sh Short CP Compact ShB Short Bed CS Coil Springs Sp Sport CV Convertible/Cab SR Servo CVP Cab Plus Std Standard StdC Standard Cab D Diesel StdV Standard Van SUV Sport Utility Vehicle E Extended SW Station Wagon ExC Extended Cab SWB Short wheelbase ExV Extended Van EV Electric vehicle Ute Utility Vehicle FWD Front Wheel Drive V Van V4 4 cylinder V-engine HB Hatchback V5 5 cylinder V-engine HD Heavy duty V6 6 cylinder V-engine HT Hardtop V8 8 cylinder V-engine V10 10 cylinder V-engine IRS Independent Rear Suspension V12 12 cylinder V-engine LB Liftback W Wankel engine LC Light Commercial WB Wheelbase LHD Left Hand Drive WT Wide track Lo Long LoB Long Bed XLWB Extra long wheelbase LS Leaf Springs LWB Long
    [Show full text]
  • Design and Analysis of IC Engine Piston, Piston Rings and Connecting Rod 1 2 3 4 5 6 G
    ISSN 2348–2370 Vol.10,Issue.04, April-2018, Pages:0342-0347 www.ijatir.org Design And Analysis of IC Engine Piston, Piston Rings and Connecting Rod 1 2 3 4 5 6 G. MANUSHA , G. KAVYA , K. S. J. SADHANA , NASEER AHMED , SD. INTHIYAZ , T. HARISH BABU Dept of Mechanical Engineering, SVITS, Mahbubnagar, Telangana, India. Abstract: This project mainly deals with the design and expanding gas in the cylinder to the crankshaft via a piston analysis of I.C engine piston, piston rings and connecting rod and/or connecting rod. rod. Piston is a component of reciprocating engines, reciprocating pumps, gas compressors and pneumatic A. Piston cylinders among other similar mechanisms. In an engine, its A piston is a component of reciprocating engines, purpose is to transfer force from expanding gas in the reciprocating pumps, gas compressors and pneumatic cylinder to the crankshaft via a piston rod or connecting rod. cylinders, among other similar mechanisms. For this project, there are two basic requirements. The first requirement is to design of a model of I.C engine piston, piston rings and connecting rod. The second requirement is to analyze of I.C engine piston, piston rings and connecting rod by the method, such as following a track, which consists of straight lines and curves. These systems are done by modeling software’s like CatiaV5, and analysis is done by Ansys software. Specifications of a product are detailed in terms of the product size, speed range, weight and power consumption. Here the piston is designed; analyzed and has been studied. Piston temperature has considerable influence on efficiency, emission, performance of the engine.
    [Show full text]
  • Download This Issue (PDF)
    QTR_03 12 A QUARTERLY PUBLICATION BROUGHT TO YOU BY THE BOEING EDGE In-Service Supplier Support 787 Propulsion System Reducing Runway Landing Overruns New Process for Component Removal Reduction Securing Airline Information on the Ground and in the Air Cover photo: 737-800 Engine Fan Blades AERO Contents 03 E nhancing Suppliers’ In-Service Support to Airlines Airline assessments of supplier performance enhance airplane support. 05 787 Propulsion System The 787 Dreamliner is powered by new-generation engines that offer improvements in fuel consumption, 05 noise, and emissions. 15 Reducing Runway Landing Overruns A combination of procedural improvements, flight crew knowledge, and flight deck enhancements help mitigate runway overrun excursions during landing. 21 15 N ew Process for Component Removal Reduction Automating the component removal reduction process can save considerable time and help operators reduce main- tenance costs. 25 Securing Airline Information on the Ground and in the Air 21 Protecting information and technology has become an operational requirement for airlines. 25 01 WWW.BOEING.COM/BOEINGEDGE/AEROMAGAZINE I ssue 47 _Quarter 03 | 2012 AERO Publisher Design Cover photography Editorial Board Shannon Myers Methodologie Jeff Corwin Don Andersen, Gary Bartz, Richard Breuhaus, David Carbaugh, Justin Hale, Darrell Hokuf, Al John, Doug Lane, Jill Langer, Russell Lee, Duke McMillin, Editorial director Writer Printer Keith Otsuka, David Presuhn, Wade Price, Jerome Schmelzer, Jill Langer Jeff Fraga ColorGraphics Corky Townsend
    [Show full text]
  • SP's Aviation August 2010
    SP’s AN SP GUIDE PUBLICATION A-BASED BUYER ONLY) BUYER A-BASED I News Flies. We Gather Intelligence. Every Month. From India. RS. 75.00 (IND RS. Aviationwww.spsaviation.net AUGUST • 2010 IAF to get more AWACS Military Aero Engines Interviews with Lockheed Martin’s Ralph Heath & Boeing’s Chris Chadwick FARNBOROUGH AIRSHOW 2010 Iconic RNI NUMBER: DELENG/2008/24199 PAGE 24 SHOW Answering the call with confidence. It’s in our power.™ Pratt & Whitney builds and supports the most advanced military engines in the world, including the F117 engine for the C-17 Globemaster III airlifter. In fact, 27 armed services across the globe employ 11,000 of our engines to deliver when it really counts. Learn more at www.pw.utc.com. Military Engines SP’s AN SP GUIDE PUBLICATION TABLE of CONTENTS News Flies. We Gather Intelligence. Every Month. From India. AviationIssue 8 • 2010 CEOSPEAK 28 Ralph Heath ‘We are the only provider of the fifth generation aircraft to the world’ OEM 30 Interview ‘We focus on the market through the eyes of our customers’ INTERVIEW 32 OEM ‘Reliability and maintainability: A400M, manufactured by Airbus Military, during an impressive two outstanding benefits’ flying display at the Farnborough Airshow 2010. T he aircraft 24 was rechristened – Grizzly HALL OF famE 34 Lawrence Hargrave FIRST Lead Story REGULAR DEpaRTMENTS 8 Transformer 5 A Word from Editor ICONIC SHOW TECH WATCH Farnborough, the biggest air 6 NewsWithViews show of the year, witnessed 9 – Phantom Eye several new aircraft, new - Laser System to track – At an Advantage players and new orders.
    [Show full text]
  • The Market for Aviation Turbofan Engines
    The Market for Aviation Turbofan Engines Product Code #F640 A Special Focused Market Segment Analysis by: Aviation Gas Turbine Forecast Analysis 1 The Market for Aviation Turbofan Engines 2010-2019 Table of Contents Executive Summary .................................................................................................................................................2 Introduction................................................................................................................................................................2 Trends..........................................................................................................................................................................3 Market Focus .............................................................................................................................................................3 Competitive Environment.......................................................................................................................................4 Figure 1 - The Market for Aviation Turbofan Engines Unit Production 2010 - 2019 (Bar Graph) .................................................................................6 Figure 2 - The Market for Aviation Turbofan Engines Value of Production 2010 - 2019 (Bar Graph)...........................................................................6 Manufacturers Review.............................................................................................................................................7
    [Show full text]