SP's Aviation August 2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aerospace Engine Data
AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16 -
USAF USAF Weapons 2008 USAF Almanac by Susan H.H
Gallery of USAF USAF Weapons 2008 USAF Almanac By Susan H.H. Young Note: Inventory numbers are total active inventory figures as of Sept. 30, 2007. Bombers B-1 Lancer Brief: A long-range, air refuelable multirole bomber capable of flying missions over intercontinental range, then penetrating enemy defenses with the largest pay- load of guided and unguided weapons in the Air Force inventory. Function: Long-range conventional bomber. Operator: ACC, AFMC. First Flight: Dec. 23, 1974 (B-1A); Oct. 18, 1984 (B-1B). Delivered: June 1985-May 1988. IOC: Oct. 1, 1986, Dyess AFB, Tex. (B-1B). Production: 104. Inventory: 67. Unit Location: Dyess AFB, Tex., Ellsworth AFB, S.D., Edwards AFB, Calif. Contractor: Boeing; AIL Systems; General Electric. Power Plant: four General Electric F101-GE-102 turbo- fans, each 30,780 lb thrust. B-1B Lancer (Richard VanderMeulen) Accommodation: four, pilot, copilot, and two systems officers (offensive and defensive), on zero/zero ACES II ejection seats. B-1B. Initiated in 1981, the first production model of Unit Location: Whiteman AFB, Mo. Dimensions: span spread 137 ft, swept aft 79 ft, length the improved variant B-1 flew in October 1984. USAF Contractor: Northrop Grumman; Boeing; Vought. 146 ft, height 34 ft. produced a total of 100. The active B-1B inventory was Power Plant: four General Electric F118-GE-100 turbo- Weights: empty equipped 192,000 lb, max operating reduced to 67 aircraft (from the remaining 92) with con- fans, each 17,300 lb thrust. weight 477,000 lb. solidation to two main operating bases within Air Combat Accommodation: two, mission commander and pilot, Ceiling: more than 30,000 ft. -
Propulsione Aeronautica 2020/2021 Francesco Barato
PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO MATERIALE DI SUPPORTO FONDAMENTI DI PROPULSIONE AERONAUTICA Thrust 푇 = (푚̇ 푎 + 푚̇ 푓)푉푒 − 푚̇ 푎푉0 + (푝푒 − 푝푎)퐴푒 푇 ≈ 푚̇ 푎(푉푒 − 푉0) + (푝푒 − 푝푎)퐴푒 1 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Ramjet P-270 Moskit (left), BrahMos (right) Turboramjet Pratt & Whitney J-58 turbo(ram)jet 2 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Scramjet 3 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Specific impulse 푇 푉푒 푇 푚̇ 푝 푉푒 − 푉0 퐼푠푝 = = [푠] 푟표푐푘푒푡푠 퐼푠푝 = = [푠] 푎푟 푏푟푒푎푡ℎ푛푔 푚̇ 푝푔0 푔0 푚̇ 푓푔0 푚̇ 푓 푔0 4 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Propulsive efficiency Overall efficiency Overall efficiency with Mach number 5 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Engine bypass ratios Bypass Engine Name Major applications ratio turbojet early jet aircraft, Concorde 0.0 SNECMA M88 Rafale 0.30 GE F404 F/A-18, T-50, F-117 0.34 PW F100 F-16, F-15 0.36 Eurojet EJ200 Typhoon 0.4 Klimov RD-33 MiG-29, Il-102 0.49 Saturn AL-31 Su-27, Su-30, J-10 0.59 Kuznetsov NK-144A Tu-144 0.6 PW JT8D DC-9, MD-80, 727, 737 Original 0.96 Soloviev D-20P Tu-124 1.0 Kuznetsov NK-321 Tu-160 1.4 GE Honda HF120 HondaJet 2.9 RR Tay Gulfstream IV, F70, F100 3.1 GE CF6-50 A300, DC-10-30,Lockheed C-5M Super Galaxy 4.26 PowerJet SaM146 SSJ 100 4.43 RR RB211-22B TriStar 4.8 PW PW4000-94 A300, A310, Boeing 767, Boeing 747-400 4.85 Progress D-436 Yak-42, Be-200, An-148 4.91 GE CF6-80C2 A300-600, Boeing 747-400, MD-11, A310 4.97-5.31 RR Trent 700 A330 5.0 PW JT9D Boeing 747, Boeing 767, A310, DC-10 5.0 6 PROPULSIONE -
Usafalmanac ■ Gallery of USAF Weapons
USAFAlmanac ■ Gallery of USAF Weapons By Susan H.H. Young The B-1B’s conventional capability is being significantly enhanced by the ongoing Conventional Mission Upgrade Program (CMUP). This gives the B-1B greater lethality and survivability through the integration of precision and standoff weapons and a robust ECM suite. CMUP will include GPS receivers, a MIL-STD-1760 weapon interface, secure radios, and improved computers to support precision weapons, initially the JDAM, followed by the Joint Standoff Weapon (JSOW) and the Joint Air to Surface Standoff Missile (JASSM). The Defensive System Upgrade Program will improve aircrew situational awareness and jamming capability. B-2 Spirit Brief: Stealthy, long-range, multirole bomber that can deliver conventional and nuclear munitions anywhere on the globe by flying through previously impenetrable defenses. Function: Long-range heavy bomber. Operator: ACC. First Flight: July 17, 1989. Delivered: Dec. 17, 1993–present. B-1B Lancer (Ted Carlson) IOC: April 1997, Whiteman AFB, Mo. Production: 21 planned. Inventory: 21. Unit Location: Whiteman AFB, Mo. Contractor: Northrop Grumman, with Boeing, LTV, and General Electric as principal subcontractors. Bombers Power Plant: four General Electric F118-GE-100 turbo fans, each 17,300 lb thrust. B-1 Lancer Accommodation: two, mission commander and pilot, Brief: A long-range multirole bomber capable of flying on zero/zero ejection seats. missions over intercontinental range without refueling, Dimensions: span 172 ft, length 69 ft, height 17 ft. then penetrating enemy defenses with a heavy load Weight: empty 150,000–160,000 lb, gross 350,000 lb. of ordnance. Ceiling: 50,000 ft. Function: Long-range conventional bomber. -
The Market for Aviation Turbofan Engines
The Market for Aviation Turbofan Engines Product Code #F640 A Special Focused Market Segment Analysis by: Aviation Gas Turbine Forecast Analysis 1 The Market for Aviation Turbofan Engines 2010-2019 Table of Contents Executive Summary .................................................................................................................................................2 Introduction................................................................................................................................................................2 Trends..........................................................................................................................................................................3 Market Focus .............................................................................................................................................................3 Competitive Environment.......................................................................................................................................4 Figure 1 - The Market for Aviation Turbofan Engines Unit Production 2010 - 2019 (Bar Graph) .................................................................................6 Figure 2 - The Market for Aviation Turbofan Engines Value of Production 2010 - 2019 (Bar Graph)...........................................................................6 Manufacturers Review.............................................................................................................................................7 -
Testing Down to the Last Detail
1/2010 Testing down to the last detail MTU Aero Engines Holding AG Customers + PartnersTechnology + Science MTU Global Dachauer Straße 665 80995 Munich • Germany Tel. +49 89 1489-0 Fax +49 89 1489-5500 Power for the Jumbo Jet Hardfaced tips for top MTU support for the [email protected] www.mtu.de and the Dreamliner efficiency “flying gas station” Contents Editorial Cover Story Dear Readers: Testing down to the last detail 4 – 7 Finally, yes finally, the bird is on the wing. However, the program highlights something Late last year, the new A400M military trans- else too—something we have witnessed re- Customers + Partners port aircraft successfully completed its long- peatedly in the past. Almost all the major Power for the Jumbo Jet and 8 – 11 awaited, eagerly anticipated maiden flight commercial and military aircraft programs the Dreamliner above the Spanish city of Seville. The relief that have ever been initiated in Europe and A boost for the MRJ 12 – 15 Testing down to the last detail was palpable throughout the industry; delays the United States have been subject to to the project had been creating too much delays, some of them massive. In this respect, Four TP400-D6 engines lift Europe’s new military transport, the A400M, up into turbulence all round. Now, the ongoing flight the A400M is no exception. As things stand the air—now almost an everyday occurrence at Seville airport. Since the maiden Technology + Science test program is demonstrating the superior at present, in pure economic terms, MTU flight in December 2009, flight testing has been in full swing. -
India's Tejas Fighters Are Pretty Good
Fri, 13 Dec 2019 India's Tejas Fighters are pretty good (but they are no F-35) By Sebastien Roblin • Key point: The Tejas was developed out of the Light Combat Aircraft program, which sought a replacement for the hundreds of MiG-21 fighters nearing the end of their service lives in the Indian Air Force In 2016 the Indian Navy rejected the domestically built Tejas jet fighter—or Light Combat Aircraft—after a troubled thirty-three years of development in which the maritime fighting branch had invested significantly. However, the Indian Navy argued that the Tejas weighed too much, and produced insufficient thrust for takeoff from the ski-jump ramp of its forthcoming aircraft carrier. But the Indian Navy hasn’t given up entirely on the Tejas; it is considering a Mark 2 variant under development, which will be powered by the same F414 turbofan engines as the U.S. Navy’s Super Hornet fighter. The Tejas was developed out of the Light Combat Aircraft program, which sought a replacement for the hundreds of MiG-21 fighters nearing the end of their service lives in the Indian Air Force. The single-engine Tejas has a tailless delta-wing configuration and supposedly costs only $25 million per airplane. However, it took decades for the LCA to come together, and it continued to rely heavily on foreign components, including an Israeli Doppler radar and General Electric F404 turbofan engines. With a top speed of Mach 1.6 to 1.8, a maximum external load of 7,700 pounds and a service ceiling of fifty-two thousand feet, the Tejas remains unexceptional compared to top-performing fourth- generation light fighters such as the F-16. -
A Parametric Analysis of a Turbofan Engine with an Auxiliary Bypass Combustion Chamber – the Turboaux Engine
Old Dominion University ODU Digital Commons Mechanical & Aerospace Engineering Theses & Dissertations Mechanical & Aerospace Engineering Fall 12-2020 A Parametric Analysis of a Turbofan Engine with an Auxiliary Bypass Combustion Chamber – The TurboAux Engine Kaleab Fetahi Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds Part of the Mechanical Engineering Commons, Thermodynamics Commons, and the Transportation Commons Recommended Citation Fetahi, Kaleab. "A Parametric Analysis of a Turbofan Engine with an Auxiliary Bypass Combustion Chamber – The TurboAux Engine" (2020). Master of Science (MS), Thesis, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/55dp-vd74 https://digitalcommons.odu.edu/mae_etds/330 This Thesis is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. A PARAMETRIC ANALYSIS OF A TURBOFAN ENGINE WITH AN AUXILIARY BYPASS COMBUSTION CHAMBER – THE TURBOAUX ENGINE by Kaleab Fetahi B.S. May 2019, Old Dominion University M.S. December 2020, Old Dominion University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE MECHANICAL ENGINEERING OLD DOMINION UNIVERSITY December 2020 Approved by: Sharan Asundi (Director) Arthur C. Taylor (Co-Director) Adem Ibrahim (Member) ii ABSTRACT A PARAMETRIC ANALYSIS OF A TURBOFAN ENGINE WITH AN AUXILIARY BYPASS COMBUSTION CHAMBER – THE TURBOAUX ENGINE Kaleab Fetahi Old Dominion University, 2020 Director: Dr. Sharan Asundi A parametric study of a novel turbofan engine with an auxiliary combustion chamber, nicknamed the TurboAux engine is presented. -
Modern Combat Aircraft (1945 – 2010)
I MODERN COMBAT AIRCRAFT (1945 – 2010) Modern Combat Aircraft (1945-2010) is a brief overview of the most famous military aircraft developed by the end of World War II until now. Fixed-wing airplanes and helicopters are presented by the role fulfilled, by the nation of origin (manufacturer), and year of first flight. For each aircraft is available a photo, a brief introduction, and information about its development, design and operational life. The work is made using English Wikipedia, but also other Web sites. FIGHTER-MULTIROLE UNITED STATES UNITED STATES No. Aircraft 1° fly Pg. No. Aircraft 1° fly Pg. Lockheed General Dynamics 001 1944 3 011 1964 27 P-80 Shooting Star F-111 Aardvark Republic Grumman 002 1946 5 012 1970 29 F-84 Thunderjet F-14 Tomcat North American Northrop 003 1947 7 013 1972 33 F-86 Sabre F-5E/F Tiger II North American McDonnell Douglas 004 1953 9 014 1972 35 F-100 Super Sabre F-15 Eagle Convair General Dynamics 005 1953 11 015 1974 39 F-102 Delta Dagger F-16 Fighting Falcon Lockheed McDonnell Douglas 006 1954 13 016 1978 43 F-104 Starfighter F/A-18 Hornet Republic Boeing 007 1955 17 017 1995 45 F-105 Thunderchief F/A-18E/F Super Hornet Vought Lockheed Martin 008 1955 19 018 1997 47 F-8 Crusader F-22 Raptor Convair Lockheed Martin 009 1956 21 019 2006 51 F-106 Delta Dart F-35 Lightning II McDonnell Douglas 010 1958 23 F-4 Phantom II SOVIET UNION SOVIET UNION No. -
National Air & Space Museum Technical Reference Files: Propulsion
National Air & Space Museum Technical Reference Files: Propulsion NASM Staff 2017 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Scope and Contents........................................................................................................ 1 Accessories...................................................................................................................... 1 Engines............................................................................................................................ 1 Propellers ........................................................................................................................ 2 Space Propulsion ............................................................................................................ 2 Container Listing ............................................................................................................. 3 Series B3: Propulsion: Accessories, by Manufacturer............................................. 3 Series B4: Propulsion: Accessories, General........................................................ 47 Series B: Propulsion: Engines, by Manufacturer.................................................... 71 Series B2: Propulsion: Engines, General............................................................ -
Gallery of USAF Weapons
Almanac USAF■ Gallery of USAF Weapons By Susan H.H. Young Note: Inventory numbers are Total Active Inventory figures as of Sept. 30, 1999. B-1B’s list of weapons, with fleet completion in FY02. The B-1B’s capability is being significantly enhanced by the ongoing Conventional Mission Upgrade Pro- gram (CMUP). This gives the B-1B greater lethality and survivability through the integration of precision and standoff weapons and a robust ECM suite. CMUP includes GPS receivers, a MIL-STD-1760 weapon in- terface, secure radios, and improved computers to support precision weapons, initially the JDAM, fol- lowed by the Joint Standoff Weapon (JSOW) and the Joint Air-to-Surface Standoff Missile (JASSM). The Defensive System Upgrade Program will improve air- crew situational awareness and jamming capability. B-2 Spirit Brief: Stealthy, long-range, multirole bomber that can deliver conventional and nuclear munitions any- where on the globe by flying through previously impen- etrable defenses. Function: Long-range heavy bomber. Operator: ACC. First Flight: July 17, 1989. Delivered: Dec. 17, 1993–present. B-1B Lancer (Ted Carlson) IOC: April 1997, Whiteman AFB, Mo. Production: 21. Inventory: 21. Unit Location: Whiteman AFB, Mo. Contractor: Northrop Grumman, with Boeing, LTV, and General Electric as principal subcontractors. Bombers Power Plant: four General Electric F118-GE-100 turbofans, each 17,300 lb thrust. B-1 Lancer Accommodation: two, mission commander and pi- Brief: A long-range multirole bomber capable of lot, on zero/zero ejection seats. flying missions over intercontinental range without re- Dimensions: span 172 ft, length 69 ft, height 17 ft. -
Engine Programs
Engine programs MTU Aero Engines Number one in Germany As Germany’s industrial lead company for MTU Aero Engines is Germany’s leading engine practically all engines flown by the country’s manufacturer and ranks among the global military, the Munich-based company claims players in the industry. It designs, develops, leadership also in the military arena, where manufactures, markets and supports commer- it provides enabling technologies, develops cial and military aircraft engines, as well as and manufactures engines and engine compo- industrial gas turbines, for customers around nents, offers technical logistic support for the the world. A respected partner in cooperative overall product and trains customers. MTU and ventures, it collaborates with the world’s major the German military are blazing new trails with engine manufacturers. From these activities, their cooperation with the German Air Force MTU has derived a broad, balanced product that in an integrated win-win approach lets portfolio that gives it content in all thrust and them share as equals in the maintenance of power categories. With its technology lead, the EJ200, RB199, J79, RR250-C20 and MTR390 company again and again stimulates major engines. component and subsystem areas like compres- sors, combustors and turbines. Notably MTU’s Partners down the road low-pressure turbines and high-pressure com- MTU’s mantra is “Get things done jointly”. With pressors count among the best-of-class world- that in mind, it sees itself as a competent wide. partner of its customers, implementing new propulsion concepts and developing new mate- Leaders in engineering and service rials and processes that open up entirely new The need for reduced fuel consumption, emis- opportunities in engine construction.