Dynamic Benthic Megafaunal Communities Assessing Temporal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deep-Sea Fauna of the European Seas: an Annotated Species Check-List Of
Invertebrate Zoology, 2014, 11(1): 134–155 © INVERTEBRATE ZOOLOGY, 2014 Deep-sea fauna of European seas: An annotated species check-list of benthic invertebrates living deeper than 2000 m in the seas bordering Europe. Gastropoda Alexander V. Sysoev Zoological Museum, Moscow State University, Bol’shaya Nikitskaya ul., 6, Moscow, 125009, Russia. E-mail: [email protected] ABSTRACT: An annotated check-list is given of Gastropoda species occurring deeper than 2000 m in the seas bordering Europe. The check-list is based on published data. The check- list includes 221 species. For each species data on localities in European seas and general species distribution are provided. Station data are presented separately in the present thematic issue. How to cite this article: Sysoev A.V. 2014. Deep-sea fauna of European seas: An annotated species check-list of benthic invertebrates living deeper than 2000 m in the seas bordering Europe. Gastropoda // Invert. Zool. Vol.11. No.1. P.134–155. KEY WORDS: deep-sea fauna, European seas, Gastropoda. Глубоководная фауна европейских морей: аннотированный список видов донных беспозвоночных, обитающих глубже 2000 м в морях, окружающих Европу. Gastropoda А.В. Сысоев Зоологический музей МГУ им. М.В. Ломоносова, ул. Большая Никитская, 6, Москва 125009, Россия. E-mail: [email protected] РЕЗЮМЕ: Приводится аннотированный список видов Gastropoda, обитающих глуб- же 2000 м в морях, окружающих Европу. Список основан на опубликованных данных. Список насчитывает 221 вид. Для каждого вида приведены данные о нахождениях в европейских морях и сведения о распространении. Данные о станци- ях приводятся в отдельном разделе настоящего тематического выпуска. Как цитировать эту статью: Sysoev A.V. -
The Role of Body Size in Complex Food Webs: a Cold Case
Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Ecological Research, Vol. 45 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Ute Jacob, Aaron Thierry, Ulrich Brose, Wolf E. Arntz, Sofia Berg, Thomas Brey, Ingo Fetzer, Tomas Jonsson, Katja Mintenbeck, Christian Möllmann, Owen Petchey, Jens O. Riede and Jennifer A. Dunne, The Role of Body Size in Complex Food Webs: A Cold Case. In Andrea Belgrano and Julia Reiss, editors: Advances in Ecological Research, Vol. 45, Amsterdam, The Netherlands, 2011, pp. 181-223. ISBN: 978-0-12-386475-8 © Copyright 2011 Elsevier Ltd. Academic press. Author's personal copy The Role of Body Size in Complex Food Webs: A Cold Case UTE JACOB,1,* AARON THIERRY,2,3 ULRICH BROSE,4 WOLF E. ARNTZ,5 SOFIA BERG,6 THOMAS BREY,5 INGO FETZER,7 TOMAS JONSSON,6 KATJA MINTENBECK,5 CHRISTIAN MO¨ LLMANN,1 OWEN L. -
FAU Institutional Repository
FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1990 The Bailey-Matthews Shell Museum. This author manuscript appears courtesy of The Nautilus, a peer-reviewed, not-for-profit quarterly published by the non-profit organization The Bailey-Matthews Shell Museum. The published version is available at http://shellmuseum.org/nautilus/index.html and may be cited as: Harasewyeh, M. G. (1990). Studies on bathyal and abyssal buccinidae (Gastropoda: Neogastropoda): 1. Metula fusiformis Clench and Aguayo, 1941. The Nautilus, 104(4), 120-129. o THE NAUTI LUS 104(4):120-129, 1990 Page 120 Studies on Bathyal and Abyssal Buccinidae (Gastropoda: Neogastropoda): 1. Metula fusiformis Clench and Aguayo, 1941 M. G. Harasewych Department of Invertebrate Zoology National Museum of Natura l History Smithsonian Institution Washington , DC 20560, USA ABSTRACT fact that the vast majority of taxa are based exclusively on features of the shell and operculum, supplemented Based on the morphology of the radu la and shell, Metula [u occasionally by observations on radu lar morphology. sifo rmis Clench & Aguayo, 1941 is transferred to the predom inantl y Indo-w estern Pacific genus Manaria . This species occurs Shells of Buccinid ae tend to be simple, and offer few in upper continental slope communities (183- 578 m) of the readily discernible morphological characters. These are Caribbean Sea and the northern coast of South America . The subject to convergence, especia lly in polar regions and holotype was collected dead in 2,633 rn, well below the depth the deep sea, where effects of habitat on shell form are inhabited by this species. -
Molluscan Fauna of The“ Miocene” Namigata Formation in the Namigata Area, Okayama Prefecture, Southwest Japan
Jour. Geol. Soc. Japan, Vol. 119, No. 4, p. 249–266, April 2013 JOI: DN/JST.JSTAGE/geosoc/2012.0048 doi: 10.5575/geosoc.2012.0048 Molluscan fauna of the“ Miocene” Namigata Formation in the Namigata area, Okayama Prefecture, southwest Japan Abstract Takashi Matsubara The molluscan fauna of the Namigata Formation, traditionally ac- cepted to be of Miocene age, are reexamined taxonomically, and the Received 27 February, 2012 geologic age of the formation and its paleogeographic implications Accepted 12 June, 2012 are discussed. The formation is subdivided into the main part and two new members (the Senjuin Shell-Sandstone and Ônishi Con- Division of Natural History, Museum of Na- glomerate members). The Namigata Formation yielded 13 species of ture and Human Activities Hyogo, 6 Yayoiga- Gastropoda, 16 species of Bivalvia and 1 species of Scaphopoda. The oka, Sanda 669-1546, Japan occurrences of Molopophorus watanabei Otuka, Acila (Truncacila) nagaoi Oyama and Mizuno, Chlamys (Nomurachlamys?) namiga- Corresponding author: T. Matsubara, [email protected] taensis (Ozaki), and Isognomon (Hippochaeta) hataii Noda and Fu- ruichi indicate that the molluscan age should be revised to the late Late Eocene–Early Oligocene. Taking account of the latest elasmo- branch data and preliminary strontium isotope ratio, the age of the formation is confined to the late Late Eocene. The present and recent results show that the First Seto Inland Sea was actually composed of two sea areas that existed at different times: the Paleogene sea area is estimated to have been an open sea facing south to the Pacific Ocean, whereas that in the Miocene is thought to have been an em- bayment connected to the northwest to the Sea of Japan. -
Elpidia Soyoae, a New Species of Deep-Sea Holothurian (Echinodermata) from the Japan Trench Area
Species Diversity 25: 153–162 Published online 7 August 2020 DOI: 10.12782/specdiv.25.153 Elpidia soyoae, a New Species of Deep-sea Holothurian (Echinodermata) from the Japan Trench Area Akito Ogawa1,2,4, Takami Morita3 and Toshihiko Fujita1,2 1 Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan E-mail: [email protected] 2 Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan 3 National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan 4 Corresponding author (Received 23 October 2019; Accepted 28 May 2020) http://zoobank.org/00B865F7-1923-4F75-9075-14CB51A96782 A new species of holothurian, Elpidia soyoae sp. nov., is described from the Japan Trench area, at depths of 3570– 4145 m. It is distinguished from its congeners in having: four or five paired papillae and unpaired papillae present along entire dorsal radii (four to seven papillae on each radius), with wide separation between second and third paired papillae; maximum length of Elpidia-type ossicles in dorsal body wall exceeds 1000 µm; axis diameter of dorsal Elpidia-type ossicles less than 40 µm; tentacle Elpidia-type ossicles with arched axis and shortened, occasionally completely reduced arms and apophyses. Purple pigmentation spots composed of small purple particles on both dorsal and ventral body wall. This is the second species of Elpidia Théel, 1876 from Japanese abyssal depths. The diagnosis of the genus Elpidia is modified to distin- guish from all other elpidiid genera. -
Deep–Sea Research I
Deep–Sea Research Part I 122 (2017) 81–94 Contents lists available at ScienceDirect Deep–Sea Research I journal homepage: www.elsevier.com/locate/dsri Dynamic benthic megafaunal communities: Assessing temporal variations MARK in structure, composition and diversity at the Arctic deep-sea observatory HAUSGARTEN between 2004 and 2015 ⁎ J. Taylor , T. Krumpen, T. Soltwedel, J. Gutt, M. Bergmann Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar‐ und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany ARTICLE INFO ABSTRACT Keywords: Established in the Fram Strait in 1999, the LTER (Long-Term Ecological Research) observatory HAUSGARTEN Arctic enables us to study ecological changes on the deep Arctic seafloor. Repeated deployments of a towed camera Deep sea system (Ocean Floor Observation System) along the same tracks allowed us to build a time series longer than a Image analysis decade (2004–2015). Here, we present the first time-series results from a northern and the southernmost Epibenthic megafauna station of the observatory (N3 and S3, ~2650 m and 2350 m depth respectively) obtained via the analysis of still Long-term ecological research imagery. We assess temporal variability in community structure, megafaunal densities and diversity, and use a Photo/video system Time series range of biotic factors, environmental sediment parameters and habitat features to explain the patterns observed. There were significant temporal differences in megafaunal abundances, diversity and habitat features at both stations. A particularly high increase in megafaunal abundance was recorded at N3 from 12.08 ( ± 0.39; 2004) individuals m−2 to 35.21 ( ± 0.97; 2007) ind. m−2 alongside a ten-fold increase in (drop-)stones. -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Final Report Form
Appendix K – OSRI Grant Policy Manual Final Report Form - Oil Spill Recovery Institute An electronic copy of this report shall be submitted by mail, or e-mail to the OSRI Research Program Manager [email protected] and Financial Office [email protected] Mailing address: P.O. Box 705 - Cordova, AK 99574 - Deadline for this report: Submittal within 90 days of grant/award expiration. Also, note that a summary Financial Statement shall be submitted within 45 days of the grant expiration. The final invoice and financial statement is due within 90 days of the grant/award expiration. Today’s date: 15 April 2014 Name of awardee/grantee: Bodil Bluhm OSRI Contract Number: 11-10-14 Project title: Data rescue: Epibenthic invertebrates from the Beaufort Sea sampled during WEBSEC and OCS cruises in the 1970s Dates project began and ended: PART I - Outline for Final Program or Technical Report This report must be submitted by all grantees. However, for those whose project work resulted in a peer reviewed publication (whether in draft or final form), this report may be abbreviated and the publication attached as part of the report. A. Non-technical Abstract or summary of project work that does not exceed 2 pages and includes an overview of the project. This abstract should describe the nature and significance of the project. It may be provided to the Advisory Board and could be used by OSRI staff to answer inquiries as to the nature and significance of the project. This project sought to rescue data on epibenthic invertebrates and fish sampled by trawls and photographs in the Alaskan Beaufort Sea during Western Beaufort Sea Ecological Cruise (WEBSEC) and Outer Continental Shelf (OCS) surveys in the 1970s. -
An Annotated Species Check-List of Benthic Invertebrates Living Deeper Than 2000 M in the Seas Bordering Europe
Invertebrate Zoology, 2014, 11(1): 156–180 © INVERTEBRATE ZOOLOGY, 2014 Deep-sea fauna of European seas: An annotated species check-list of benthic invertebrates living deeper than 2000 m in the seas bordering Europe. Holothuroidea Andrey V. Gebruk1, Alexey V. Smirnov2 and Antonina V. Rogacheva1 1 P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky Pr., 36, Moscow, 117997, Russia. E-mails: [email protected] [email protected] 2 Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, St.-Petersburg, 199034, Russia. E-mail: [email protected] ABSTRACT: An annotated check-list is given of Holothuroidea species occurring deeper than 2000 m in the seas bordering Europe. The check-list is based on published data. The check-list includes 78 species. For each species synonymy, data on localities in European seas and general species distribution are provided. Station data are presented separately in the present thematic issue. How to cite this article: Gebruk A.V., Smirnov A.V., Rogacheva A.V. 2014. Deep-sea fauna of European seas: An annotated species check-list of benthic invertebrates living deeper than 2000 m in the seas bordering Europe. Holothuroidea // Invert. Zool. Vol.11. No.1. P.156–180. KEY WORDS: deep-sea fauna, European seas, Holothuroidea. Глубоководная фауна европейских морей: аннотированный список видов донных беспозвоночных, обитающих глубже 2000 м в морях, окружающих Европу. Holothuroidea А.В. Гебрук, А.В. Смирнов, А.В. Рогачева Институт океанологии им. П.П. Ширшова РАН, Нахимовский просп. 36, Москва, 117997, Россия. E-mails: [email protected]; [email protected] Зоологический институт РАН, Университетская наб., 1, Санкт-Петербург 199034 Россия. -
Revision of the Genus Retimohnia Mclean, 1995 (Gastropoda: Buccinidae)
Ruthenica, 2016, vol. 26, No. 2: 85-121. © Ruthenica, 2016 Published online June 3, 2016. http: www.ruthenica.com Revision of the genus Retimohnia McLean, 1995 (Gastropoda: Buccinidae) A.R. KOSYAN1, Yu.I. KANTOR A.N. Severtsov Institute of Ecology and Evolution, 119071, Leninsky prospekt, 33, Moscow, RUSSIA. 1 Corresponding author, [email protected] urn:lsid:zoobank.org:pub:603156BE-21E3-40D2-9E15-3BDA289D6677 ABSTRACT. The genus Retimohnia McLean, 1995 is Material and methods revised based on shell and radular morphology, foregut and stomach anatomy. Ten previously described spe- The material was obtained from the collections cies are recognized as valid: R. frielei (Dall, 1891), R. of Russian Institutions – the P.P. Shirshov Institute bella (Ozaki, 1958), R. vernalis (Dall, 1913), R. clarki of Oceanology of Russian Academy of Sciences (Dall, 1907), R.hondoensis (Dall, 1913), R. micra (Dall, (RAS), Zoological Institute of RAS, and the Muse- 1907), R. sordida (Dall, 1907) comb. nov., R. robusta um of the A.V. Zhirmunsky Institute of Marine (Dall, 1913), R. caelata (Verrill et Smith, 1880), R. acadi- Biology, Far Eastern Branch, RAS; type material of ana García, 2008. Two species are described as new: R. lussae sp. nov, and R. mcleani sp. nov. R.japonica several species from the Natural History Museum, (Dall, 1913) is reduced to a junior synonym of R. micra, Smithsonian Institution were provided by the cura- R. clementina (Dall, 1919) considered as a junior syn- tors Drs E. Strong and M.G. Harasewych. onym of R clarki. Five species are excluded from the The radulae were extracted by gross dissection, genus. -
From the JR275 Expedition to the Eastern Weddell Sea, Antarctica
ZooKeys 1054: 155–172 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1054.59584 DATA PAPER https://zookeys.pensoft.net Launched to accelerate biodiversity research Sea cucumbers (Echinodermata, Holothuroidea) from the JR275 expedition to the eastern Weddell Sea, Antarctica Melanie Mackenzie1, P. Mark O’Loughlin1, Huw Griffiths2, Anton Van de Putte3 1 Sciences Department – Marine Invertebrates, Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 2 British Antarctic Survey (BAS), High Cross Madingley Road, CB3 0ET, Cambridge, UK 3 Royal Belgian Institute of Natural Sciences (RBINS), Rue Vautier 29, Brussels, Belgium Corresponding author: Melanie Mackenzie ([email protected]) Academic editor: Yves Samyn | Received 12 October 2020 | Accepted 11 May 2021 | Published 4 August 2021 http://zoobank.org/43707F5D-D678-4B8E-83F1-3089091B19F8 Citation: Mackenzie M, O’Loughlin PM, Griffiths H, Van de Putte A (2021) Sea cucumbers (Echinodermata, Holothuroidea) from the JR275 expedition to the eastern Weddell Sea, Antarctica. ZooKeys 1054: 155–172. https:// doi.org/10.3897/zookeys.1054.59584 Abstract Thirty-seven holothuroid species, including six potentially new, are reported from the eastern Weddell Sea in Antarctica. Information regarding sea cucumbers in this dataset is based on Agassiz Trawl (AGT) samples collected during the British Antarctic Survey cruise JR275 on the RRS James Clark Ross in the austral summer of 2012. Species presence by site and an appendix of holothuroid identifications with registrations are included as supplementary material. Species occurrence in the Weddell Sea is updated to include new holothuroids from this expedition. Keywords Antarctic, benthic, biodiversity, dataset, holothuroid, Southern Ocean Introduction The British Antarctic Survey (BAS) JR275 research cruise on the RRS James Clark Ross visited the Weddell Sea from February to March in 2012 as part of a core EvolHist (Evolutionary History of the Polar Regions) project. -
Functional Effects of the Hadal Sea Cucumber Elpidia Atakama (Echinodermata: Holothuroidea, Elasipodida) Reflect Small-Scale Patterns of Resource Availability
Mar Biol (2011) 158:2695–2703 DOI 10.1007/s00227-011-1767-7 ORIGINAL PAPER Functional effects of the hadal sea cucumber Elpidia atakama (Echinodermata: Holothuroidea, Elasipodida) reflect small-scale patterns of resource availability A. J. Jamieson • A. Gebruk • T. Fujii • M. Solan Received: 19 May 2011 / Accepted: 27 July 2011 / Published online: 7 August 2011 Ó Springer-Verlag 2011 Abstract Holothuroidea represent the dominant benthic terms of abundance and biomass (Rice et al. 1982; Ohta megafauna in hadal trenches (*6,000–11,000 m), but little 1983; Sibuet 1985; Billett 1991). A consistent feature of is known about their behaviour and functional role at such holothurian communities, irrespective of location, is the depths. Using a time-lapse camera at 8,074 m in the Peru– marked increase in diversity at abyssal depths (3,000– Chile Trench (SE Pacific Ocean), we provide the first in 6,000 m) (Billett 1991) relative to bathyal (1,000–3,000 m) situ observations of locomotory activity for the elasipodid (Hansen 1975) and hadal depths ([6,000 m) (Hansen 1957; holothurian Elpidia atakama Belyaev in Shirshov Inst Belyaev 1989). Frequently observed mass abundances of Oceanol 92:326–367, (1971). Time-lapse sequences reveal holothurians, particularly in trenches associated with high ‘run and mill’ behaviour whereby bouts of feeding activity productivity in temperate and sub-Antarctic latitudes, have are interspersed by periods of locomotion. Over the total led some authors to refer to the hadal zone as ‘‘the kingdom of observation period (20 h 25 min), we observed a mean Holothuroidea’’ (sensu Belyaev 1989), a view that has been (±SD) locomotion speed of 7.0 ± 5.7 BL h-1, but this reinforced by trawl-catch frequencies of 88% at depths increased to 10.9 ± 7.2 BL h-1 during active relocation [6,000 m (comparable only to Polychaeta) and high levels and reduced to 4.8 ± 2.9 BL h-1 during feeding.