Elpidia Soyoae, a New Species of Deep-Sea Holothurian (Echinodermata) from the Japan Trench Area

Total Page:16

File Type:pdf, Size:1020Kb

Elpidia Soyoae, a New Species of Deep-Sea Holothurian (Echinodermata) from the Japan Trench Area Species Diversity 25: 153–162 Published online 7 August 2020 DOI: 10.12782/specdiv.25.153 Elpidia soyoae, a New Species of Deep-sea Holothurian (Echinodermata) from the Japan Trench Area Akito Ogawa1,2,4, Takami Morita3 and Toshihiko Fujita1,2 1 Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan E-mail: [email protected] 2 Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan 3 National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan 4 Corresponding author (Received 23 October 2019; Accepted 28 May 2020) http://zoobank.org/00B865F7-1923-4F75-9075-14CB51A96782 A new species of holothurian, Elpidia soyoae sp. nov., is described from the Japan Trench area, at depths of 3570– 4145 m. It is distinguished from its congeners in having: four or five paired papillae and unpaired papillae present along entire dorsal radii (four to seven papillae on each radius), with wide separation between second and third paired papillae; maximum length of Elpidia-type ossicles in dorsal body wall exceeds 1000 µm; axis diameter of dorsal Elpidia-type ossicles less than 40 µm; tentacle Elpidia-type ossicles with arched axis and shortened, occasionally completely reduced arms and apophyses. Purple pigmentation spots composed of small purple particles on both dorsal and ventral body wall. This is the second species of Elpidia Théel, 1876 from Japanese abyssal depths. The diagnosis of the genus Elpidia is modified to distin- guish from all other elpidiid genera. A morphological comparison of the species of the slender axis group of genus Elpidia, and partial mitochondrial cytochrome c oxidase subunit I (COI) gene sequences of type specimens are provided. Key Words: sea cucumber, abyssal, Elasipodida, Elpidiidae, Elpidia soyoae, North Pacific Ocean. body wall (Belyaev 1971). In the robust axis group, 17 nomi- Introduction nal species and subspecies has been reported: E. belyaevi Rogacheva, 2007, E. kermadecensis Hansen, 1956, E. ataka- Elpidia Théel, 1876 is the type genus of the family Elpidi- ma Belyaev, 1971, E. birsteini Belyaev, 1971, E. decapoda Be- idae of the order Elasipodida. This genus was distinguished lyaev, 1975, E. glacialis Théel, 1876, E. hanseni hanseni Bely- for the other Elpidiidae genera in having four (rarely five) aev, 1971, E. hanseni idzubonensis Belyaev, 1971, E. heckeri paired tube feet, having papillae present along the entire Baranova, 1989, E. javanica Belyaev, 1971, E. kurilensis Ba- dorsal radii, having Elpidia-type ossicles, and lacking C- ranova and Belyaev in Belyaev, 1971, E. lata Belyaev, 1975, shaped ossicles (Hansen 1975; Gebruk 1990; Rogacheva E. longicirrata Belyaev, 1971, E. ninae Belyaev, 1975, E. solo- 2007). Twenty-four nominal species and subspecies have monensis Belyaev, 1971, E. sundensis Hansen, 1956, and E. been described in this genus (e.g., Belyaev 1971, 1975; Han- uschakovi Belyaev, 1971 (Théel 1877; Belyaev 1971, 1975; sen 1975; Rogacheva 2007). Elpidia has an essentially cos- Hansen 1975; Rogacheva 2007). Elpidia echinata (Perrier, mopolitan distribution (e.g., Belyaev 1971, 1975; Hansen 1896) has not been allocated to either group because Perrier 1975; Rogacheva 2007), and a wide bathymetrical range, (1896) did not describe its external or ossicle morphology from 70 to 9735 m (Théel 1877; Belyaev 1971). in details. These two groups have different bathymetrical In the genus Elpidia, two morphologically distinct species distributions with the exception of the Arctic and Antarc- groups, based upon axis diameter of dorsal Elpidia-type os- tic species: the slender axis group occurs in abyssal depths, sicles, have been recognized (Belyaev 1971; Hansen 1975). 2710–5740 m, and the robust axis group is found in hadal The axis diameter is less than 40 µm in the so-called slender depths of 6156–9735 m (Hansen 1956; Belyaev 1971, 1975). axis group and more than 40 µm in the robust axis group. From Japanese waters, six species and subspecies of Elpid- The slender axis group includes six nominal species: E. ade- ia have been reported from the Izu-Ogasawara, Japan, and nensis Belyaev, 1971, E. antarctica Belyaev, 1971, E. chilensis Kurile-Kamchatka Trenches: E. birsteini, E. hanseni hanseni, Belyaev, 1971, E. gracilis Belyaev, 1975, E. minutissima Be- E. hanseni idzubonensis, E. kurilensis, E. longicirrata, and E. lyaev, 1971, and E. theeli Hansen, 1956 (Belyaev 1971, 1975; minutissima (Belyaev 1971, 1975; Mironov et al. 2019). The Hansen 1975). Although Hansen (1975) had synonymized former five species and subspecies belong to the robust axis E. antarctica into E. theeli, and E. antarctica is treated a valid group, and only E. minutissima belongs to the slender axis species in this study because it is distinguishable from E. group. theeli in having cross ossicles in its both dorsal and ventral In this study, we describe one undescribed Elpidia spe- © 2020 The Japanese Society of Systematic Zoology 154 Akito Ogawa et al. cies based on specimens collected from the Japan Trench 39°10.312′N, 143°39.570′E to 143°42.027′E: St. Iwate 4200 area and determine its partial mitochondrial cytochrome c Kago) from 3570–4145 m, on 10–11 July, 2018 using a baited oxidase subunit I (COI) gene sequences for future DNA bar- trap during the third cruise in 2018 of the R/V Soyo-maru coding and phylogenetic studies. (Japan Fisheries Research and Education Agency: FRA). Specimens were photographed onboard with a digital cam- era (Nikon D5300); tentacles were subsampled from live ani- Materials and Methods mals on board, placed in 95% ethanol, and stored at −20°C; the remaining bodies were fixed and preserved in 99% etha- Five individuals were collected from the Japan Trench nol. These specimens were deposited in the National Muse- area, east of Iwate Prefecture, northern Japan (39°4.914′N to um of Nature and Science (NSMT), Tsukuba, Japan. Fig. 1. Fresh specimen of Elpidia soyoae sp. nov. (NSMT E-12635: paratype). A, dorsal view; B, ventral view. Elpidia soyoae, a new species of deep-sea holothurian 155 Specimens were observed and dissected under a micro- under a SEM (JEOL JSM-6380LV) in the NSMT with the scope (Leica MZ 8). Body length (BL), body width (BW) acceleration voltage of 10 or 15 kV. The arm length of piec- and papillae length were measured under the microscope. es from the calcareous ring was measured from SEM im- For SEM study, calcareous ring and ossicles from the dor- ages. Likewise, we measured the ossicle axis length (DOL), sal and ventral body walls and the tentacles were extracted. the axis diameter and the height of apophyses (DAH) of They were coated with gold-palladium alloy and observed Elpidia-type ossicles from dorsal body wall, the ossicle di- Fig. 2. Papillae arrangements of Elpidia soyoae sp. nov. A, left side view; B, right side view; C–F, dorsal side. A–B, holotype; C, NSMT E-12635: paratype; D, NSMT E-12636: paratype; E, NSMT E-12637: paratype; F, NSMT E-12639: paratype. Abbreviations: lp, paired papillae on dorsal left radius; lu, unpaired papillae on dorsal left radius; rp, paired papillae on dorsal right radius; ru, unpaired papillae on dorsal right radius. 156 Akito Ogawa et al. ameter, and the diameter of central connecting portion of culated using the Kimura 2-parameter model (K2P: Kimura wheel ossicles from dorsal body wall, the ossicle axis length 1980) by the software MEGA7 (Kumar et al. 2016). (VOL), the axis diameter, and the height of apophyses (VAH) of Elpidia-type ossicles from ventral body wall, and the ossicle length (TOL), the axis diameter, and the height of Results and Discussion apophyses (TAH) of Elpidia-type ossicles from the tentacles. Total genomic DNA was extracted from the subsampled Order Elasipodida Théel, 1882 tentacles using the DNeasy Blood and Tissue Kit (Qiagen). Family Elpidiidae Théel, 1882 Gene fragments of the partial region of mitochondrial COI Genus Elpidia Théel, 1876 gene were sequenced by using primers, COIceF and COIceR [New Japanese name: Kuma-namako-zoku] (Hoareau and Boissin 2010). PCR reactions were performed using the reagent mix: 0.2 µl Tks Gflex DNA polymerase, 5 µl Elpidia Théel, 1876: 1–7; Théel 1877: 1–30; Belyaev 1971: Gflex PCR Buffer (Takara Bio, Inc.), 0.2 µl of each primer, 329–330; Hansen 1975: 172–173; Rogacheva 2007: 368– 1.0 µl template DNA, and 3.4 µl H2O and following the pro- 372. file: preheating at 94°C for 1 min and 30 cycles of denatur- Tutela Perrier, 1896: 901. ation at 98°C for 10 s, annealing at 55°C for 10 s, and exten- Diagnosis [modified from Hansen (1975) and Ro- sion at 68°C for 30 s. The PCR product was purified (4.0 µl gacheva (2007)]. Tentacles 10, having discs with long and ExoSAP-IT PCR Product Clean-up with ExoSAP-IT thermo- slender, retractile processes. Tube feet 4 pairs (5 pairs for cycler protocol). The purified products were sequenced using E. decapoda), cylindrical, prominent, well spaced and equal BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo in size. Papillae conical, separate, present along the entire Fisher Scientific, Inc.) on Applied Biosystems 3500xL Ge- dorsal radii, sometimes divided into an anterior and pos- netic analyzer (Life Technologies, Inc.). Sequence data were terior groups. Elpidia-type ossicles (=rods with two paired edited with GeneStudio Professional Edition version 2.2.0.0 horizontal arms and one paired vertical apophyses; Gebruk (GeneStudio, Inc.) and deposited with the International Nu- 1990) present; wheels occasionally present; C-shape ossicles cleotide Sequence Database (INSD) through the DNA Data absent. Calcareous ring strong and continuous, each piece Bank of Japan.
Recommended publications
  • I. Introduction
    Bathymetric distribution of the species .... 210 2. Penetration of species into the Bathymetric zonation of the deep sea ...... 210 Mediterranean deep sea ............. 235 Bathymetric distribution and taxonomic 3. Comparison with other groups ....... 235 relationship .......................... 214 Sediments and nutrient conditions ........ 235 Number of species and individuals in Hydrostatic pressure ..................... 237 relation to depth ...................... 217 Currents ............................... 238 Topography ............................ 238 E. Geographic distribution .................. 219 Conclusion ............................. 239 The exploration of the different geographic regions ............................... 219 G. The hadal fauna ........................ 239 The bathyal fauna ...................... 220 The hadal environment .................. 239 The abyssal fauna ....................... 221 General features of the hadal fauna ....... 240 1. World-wide distributions ............ 223 2. The Antarctic Ocean ................ 224 H. Evolutionary aspects .................... 243 3. The North Atlantic ................. 225 Evolution within the deep sea versus 4. The South Atlantic ................. 227 immigration from shallower depths .... 243 5. The Indian Ocean .................. 22; Geographic variation .................... 244 6. The Indonesian seas ................ 228 1. Clines ............................. 245 7. The Pacific Ocean .................. 231 2. Local variation ..................... 245 8. The Arctic
    [Show full text]
  • The Role of Body Size in Complex Food Webs: a Cold Case
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Ecological Research, Vol. 45 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Ute Jacob, Aaron Thierry, Ulrich Brose, Wolf E. Arntz, Sofia Berg, Thomas Brey, Ingo Fetzer, Tomas Jonsson, Katja Mintenbeck, Christian Möllmann, Owen Petchey, Jens O. Riede and Jennifer A. Dunne, The Role of Body Size in Complex Food Webs: A Cold Case. In Andrea Belgrano and Julia Reiss, editors: Advances in Ecological Research, Vol. 45, Amsterdam, The Netherlands, 2011, pp. 181-223. ISBN: 978-0-12-386475-8 © Copyright 2011 Elsevier Ltd. Academic press. Author's personal copy The Role of Body Size in Complex Food Webs: A Cold Case UTE JACOB,1,* AARON THIERRY,2,3 ULRICH BROSE,4 WOLF E. ARNTZ,5 SOFIA BERG,6 THOMAS BREY,5 INGO FETZER,7 TOMAS JONSSON,6 KATJA MINTENBECK,5 CHRISTIAN MO¨ LLMANN,1 OWEN L.
    [Show full text]
  • Deep–Sea Research I
    Deep–Sea Research Part I 122 (2017) 81–94 Contents lists available at ScienceDirect Deep–Sea Research I journal homepage: www.elsevier.com/locate/dsri Dynamic benthic megafaunal communities: Assessing temporal variations MARK in structure, composition and diversity at the Arctic deep-sea observatory HAUSGARTEN between 2004 and 2015 ⁎ J. Taylor , T. Krumpen, T. Soltwedel, J. Gutt, M. Bergmann Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar‐ und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany ARTICLE INFO ABSTRACT Keywords: Established in the Fram Strait in 1999, the LTER (Long-Term Ecological Research) observatory HAUSGARTEN Arctic enables us to study ecological changes on the deep Arctic seafloor. Repeated deployments of a towed camera Deep sea system (Ocean Floor Observation System) along the same tracks allowed us to build a time series longer than a Image analysis decade (2004–2015). Here, we present the first time-series results from a northern and the southernmost Epibenthic megafauna station of the observatory (N3 and S3, ~2650 m and 2350 m depth respectively) obtained via the analysis of still Long-term ecological research imagery. We assess temporal variability in community structure, megafaunal densities and diversity, and use a Photo/video system Time series range of biotic factors, environmental sediment parameters and habitat features to explain the patterns observed. There were significant temporal differences in megafaunal abundances, diversity and habitat features at both stations. A particularly high increase in megafaunal abundance was recorded at N3 from 12.08 ( ± 0.39; 2004) individuals m−2 to 35.21 ( ± 0.97; 2007) ind. m−2 alongside a ten-fold increase in (drop-)stones.
    [Show full text]
  • THE Official Magazine of the OCEANOGRAPHY SOCIETY
    OceThe OfficiaaL MaganZineog of the Oceanographyra Spocietyhy CITATION Bluhm, B.A., A.V. Gebruk, R. Gradinger, R.R. Hopcroft, F. Huettmann, K.N. Kosobokova, B.I. Sirenko, and J.M. Weslawski. 2011. Arctic marine biodiversity: An update of species richness and examples of biodiversity change. Oceanography 24(3):232–248, http://dx.doi.org/10.5670/ oceanog.2011.75. COPYRIGHT This article has been published inOceanography , Volume 24, Number 3, a quarterly journal of The Oceanography Society. Copyright 2011 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. downLoaded from www.tos.org/oceanography THE CHANGING ARctIC OCEAN | SPECIAL IssUE on THE IntERNATIonAL PoLAR YEAr (2007–2009) Arctic Marine Biodiversity An Update of Species Richness and Examples of Biodiversity Change Under-ice image from the Bering Sea. Photo credit: Miller Freeman Divers (Shawn Cimilluca) BY BODIL A. BLUHM, AnDREY V. GEBRUK, RoLF GRADINGER, RUssELL R. HoPCROFT, FALK HUEttmAnn, KsENIA N. KosoboKovA, BORIS I. SIRENKO, AND JAN MARCIN WESLAwsKI AbstRAct. The societal need for—and urgency of over 1,000 ice-associated protists, greater than 50 ice-associated obtaining—basic information on the distribution of Arctic metazoans, ~ 350 multicellular zooplankton species, over marine species and biological communities has dramatically 4,500 benthic protozoans and invertebrates, at least 160 macro- increased in recent decades as facets of the human footprint algae, 243 fishes, 64 seabirds, and 16 marine mammals.
    [Show full text]
  • Final Report Form
    Appendix K – OSRI Grant Policy Manual Final Report Form - Oil Spill Recovery Institute An electronic copy of this report shall be submitted by mail, or e-mail to the OSRI Research Program Manager [email protected] and Financial Office [email protected] Mailing address: P.O. Box 705 - Cordova, AK 99574 - Deadline for this report: Submittal within 90 days of grant/award expiration. Also, note that a summary Financial Statement shall be submitted within 45 days of the grant expiration. The final invoice and financial statement is due within 90 days of the grant/award expiration. Today’s date: 15 April 2014 Name of awardee/grantee: Bodil Bluhm OSRI Contract Number: 11-10-14 Project title: Data rescue: Epibenthic invertebrates from the Beaufort Sea sampled during WEBSEC and OCS cruises in the 1970s Dates project began and ended: PART I - Outline for Final Program or Technical Report This report must be submitted by all grantees. However, for those whose project work resulted in a peer reviewed publication (whether in draft or final form), this report may be abbreviated and the publication attached as part of the report. A. Non-technical Abstract or summary of project work that does not exceed 2 pages and includes an overview of the project. This abstract should describe the nature and significance of the project. It may be provided to the Advisory Board and could be used by OSRI staff to answer inquiries as to the nature and significance of the project. This project sought to rescue data on epibenthic invertebrates and fish sampled by trawls and photographs in the Alaskan Beaufort Sea during Western Beaufort Sea Ecological Cruise (WEBSEC) and Outer Continental Shelf (OCS) surveys in the 1970s.
    [Show full text]
  • An Annotated Species Check-List of Benthic Invertebrates Living Deeper Than 2000 M in the Seas Bordering Europe
    Invertebrate Zoology, 2014, 11(1): 156–180 © INVERTEBRATE ZOOLOGY, 2014 Deep-sea fauna of European seas: An annotated species check-list of benthic invertebrates living deeper than 2000 m in the seas bordering Europe. Holothuroidea Andrey V. Gebruk1, Alexey V. Smirnov2 and Antonina V. Rogacheva1 1 P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky Pr., 36, Moscow, 117997, Russia. E-mails: [email protected] [email protected] 2 Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, St.-Petersburg, 199034, Russia. E-mail: [email protected] ABSTRACT: An annotated check-list is given of Holothuroidea species occurring deeper than 2000 m in the seas bordering Europe. The check-list is based on published data. The check-list includes 78 species. For each species synonymy, data on localities in European seas and general species distribution are provided. Station data are presented separately in the present thematic issue. How to cite this article: Gebruk A.V., Smirnov A.V., Rogacheva A.V. 2014. Deep-sea fauna of European seas: An annotated species check-list of benthic invertebrates living deeper than 2000 m in the seas bordering Europe. Holothuroidea // Invert. Zool. Vol.11. No.1. P.156–180. KEY WORDS: deep-sea fauna, European seas, Holothuroidea. Глубоководная фауна европейских морей: аннотированный список видов донных беспозвоночных, обитающих глубже 2000 м в морях, окружающих Европу. Holothuroidea А.В. Гебрук, А.В. Смирнов, А.В. Рогачева Институт океанологии им. П.П. Ширшова РАН, Нахимовский просп. 36, Москва, 117997, Россия. E-mails: [email protected]; [email protected] Зоологический институт РАН, Университетская наб., 1, Санкт-Петербург 199034 Россия.
    [Show full text]
  • Light and Vision in the Deep-Sea Benthos: I
    Nova Southeastern University NSUWorks Marine & Environmental Sciences Faculty Articles Department of Marine and Environmental Sciences 10-1-2012 Light and Vision in the Deep-Sea Benthos: I. Bioluminescence at 500-1000 m Depth in the Bahamian Islands Sönke Johnsen Duke University Tamara M. Frank Nova Southeastern University, [email protected] Steven H.D. Haddock Monterey Bay Aquarium Research Institute Edith A. Widder Ocean Research and Conservation Association Charles G. Messing Nova Southeastern University, [email protected] Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography. Follow this and additional works at: https://nsuworks.nova.edu/occ_facarticles Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Johnsen, Sönke, Tamara M. Frank, Steven HD Haddock, Edith A. Widder, and Charles G. Messing. "Light and vision in the deep-sea benthos: I. Bioluminescence at 500–1000 m depth in the Bahamian Islands." The ourJ nal of experimental biology 215, no. 19 (2012): 3335-3343. This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. 3335 The Journal of Experimental Biology 215, 3335-3343 © 2012. Published by The Company of Biologists Ltd doi:10.1242/jeb.072009 RESEARCH ARTICLE Light and vision in the deep-sea benthos: I. Bioluminescence at 500–1000m depth in the Bahamian Islands Sönke Johnsen1,*, Tamara M.
    [Show full text]
  • From the JR275 Expedition to the Eastern Weddell Sea, Antarctica
    ZooKeys 1054: 155–172 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1054.59584 DATA PAPER https://zookeys.pensoft.net Launched to accelerate biodiversity research Sea cucumbers (Echinodermata, Holothuroidea) from the JR275 expedition to the eastern Weddell Sea, Antarctica Melanie Mackenzie1, P. Mark O’Loughlin1, Huw Griffiths2, Anton Van de Putte3 1 Sciences Department – Marine Invertebrates, Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 2 British Antarctic Survey (BAS), High Cross Madingley Road, CB3 0ET, Cambridge, UK 3 Royal Belgian Institute of Natural Sciences (RBINS), Rue Vautier 29, Brussels, Belgium Corresponding author: Melanie Mackenzie ([email protected]) Academic editor: Yves Samyn | Received 12 October 2020 | Accepted 11 May 2021 | Published 4 August 2021 http://zoobank.org/43707F5D-D678-4B8E-83F1-3089091B19F8 Citation: Mackenzie M, O’Loughlin PM, Griffiths H, Van de Putte A (2021) Sea cucumbers (Echinodermata, Holothuroidea) from the JR275 expedition to the eastern Weddell Sea, Antarctica. ZooKeys 1054: 155–172. https:// doi.org/10.3897/zookeys.1054.59584 Abstract Thirty-seven holothuroid species, including six potentially new, are reported from the eastern Weddell Sea in Antarctica. Information regarding sea cucumbers in this dataset is based on Agassiz Trawl (AGT) samples collected during the British Antarctic Survey cruise JR275 on the RRS James Clark Ross in the austral summer of 2012. Species presence by site and an appendix of holothuroid identifications with registrations are included as supplementary material. Species occurrence in the Weddell Sea is updated to include new holothuroids from this expedition. Keywords Antarctic, benthic, biodiversity, dataset, holothuroid, Southern Ocean Introduction The British Antarctic Survey (BAS) JR275 research cruise on the RRS James Clark Ross visited the Weddell Sea from February to March in 2012 as part of a core EvolHist (Evolutionary History of the Polar Regions) project.
    [Show full text]
  • Catalogue Des Holothuries De L'extrême-Orient Russe
    24 La bêche-de-mer, Bulletin d'information de la CPS n° 36 - Octobre 2016 Catalogue des holothuries de l’Extrême-Orient russe Vadim G. Stepanov1,2 et Elena G. Panina1,3 Introduction Au total, 638 références bibliographiques ont été consultées pour dresser un état des lieux de la répartition des holothuries dans les mers de l’Extrême-Orient russe. À partir de la littérature, un catalogue de 92 espèces a été établi. Les informations suivantes ont été compilées pour chaque espèce enregistrée dans le catalogue : 1) sa distribution géographique dans les mers de l’Extrême-Orient russe ; et 2) sa répartition en profondeur dans l’ensemble de son aire de répartition connue. Catalogue des 92 espèces observées en Extrême-Orient russe Sous-classe Synaptacea Cuénot 1891 [nom. transl. pro subclassis Al. Smirnov 2007 (ex Synaptida Cuénot 1891, pro classis)] Ordre : Synaptida Cuénot 1891 Sous-ordre : Myriotrochina Al. Smirnov 1998 Famille : Myriotrochidae Théel 1877 Genre : Myriotrochus Steenstrup 1851 1. Myriotrochus longissimus Belyaev 1970 2. Myriotrochus mitsukurii Ohshima 1915 3. Myriotrochus rinkii Steenstrup 1851 Genre : Prototrochus Belyaev et Mironov 1982 4. Prototrochus kurilensis (Belyaev 1970) 5. Prototrochus minutus (Östergren 1905) 6. Prototrochus zenkevitchi (Belyaev 1970) Genre : Siniotrochus Pawson 1971 7. Siniotrochus spiculifer Belyaev et Mironov 1981 Sous-ordre : Synaptina Al. Smirnov 1998 Famille : Chiridotidae Östergren 1898a Sous-famille : Chiridotinae Östergren 1898a, sensu Al. Smirnov 1998 Genre : Chiridota Eschscholtz 1829 8. Chiridota albatrossii Edwards 1907 9. Chiridota discolor Eschscholtz 1829 10. Chiridota ochotensis Saveljeva 1941 11. Chiridota orientalis Al. Smirnov 1981 12. Chiridota pellucida Vahl 1806 13. Chiridota tauiensis Saveljeva 1941 Sous-famille : Taeniogyrinae Al.
    [Show full text]
  • Functional Effects of the Hadal Sea Cucumber Elpidia Atakama (Echinodermata: Holothuroidea, Elasipodida) Reflect Small-Scale Patterns of Resource Availability
    Mar Biol (2011) 158:2695–2703 DOI 10.1007/s00227-011-1767-7 ORIGINAL PAPER Functional effects of the hadal sea cucumber Elpidia atakama (Echinodermata: Holothuroidea, Elasipodida) reflect small-scale patterns of resource availability A. J. Jamieson • A. Gebruk • T. Fujii • M. Solan Received: 19 May 2011 / Accepted: 27 July 2011 / Published online: 7 August 2011 Ó Springer-Verlag 2011 Abstract Holothuroidea represent the dominant benthic terms of abundance and biomass (Rice et al. 1982; Ohta megafauna in hadal trenches (*6,000–11,000 m), but little 1983; Sibuet 1985; Billett 1991). A consistent feature of is known about their behaviour and functional role at such holothurian communities, irrespective of location, is the depths. Using a time-lapse camera at 8,074 m in the Peru– marked increase in diversity at abyssal depths (3,000– Chile Trench (SE Pacific Ocean), we provide the first in 6,000 m) (Billett 1991) relative to bathyal (1,000–3,000 m) situ observations of locomotory activity for the elasipodid (Hansen 1975) and hadal depths ([6,000 m) (Hansen 1957; holothurian Elpidia atakama Belyaev in Shirshov Inst Belyaev 1989). Frequently observed mass abundances of Oceanol 92:326–367, (1971). Time-lapse sequences reveal holothurians, particularly in trenches associated with high ‘run and mill’ behaviour whereby bouts of feeding activity productivity in temperate and sub-Antarctic latitudes, have are interspersed by periods of locomotion. Over the total led some authors to refer to the hadal zone as ‘‘the kingdom of observation period (20 h 25 min), we observed a mean Holothuroidea’’ (sensu Belyaev 1989), a view that has been (±SD) locomotion speed of 7.0 ± 5.7 BL h-1, but this reinforced by trawl-catch frequencies of 88% at depths increased to 10.9 ± 7.2 BL h-1 during active relocation [6,000 m (comparable only to Polychaeta) and high levels and reduced to 4.8 ± 2.9 BL h-1 during feeding.
    [Show full text]
  • ABSTRACTS Deep-Sea Biology Symposium 2018 Updated: 18-Sep-2018 • Symposium Page
    ABSTRACTS Deep-Sea Biology Symposium 2018 Updated: 18-Sep-2018 • Symposium Page NOTE: These abstracts are should not be cited in bibliographies. SESSIONS • Advances in taxonomy and phylogeny • James J. Childress • Autecology • Mining impacts • Biodiversity and ecosystem • Natural and anthropogenic functioning disturbance • Chemosynthetic ecosystems • Pelagic systems • Connectivity and biogeography • Seamounts and canyons • Corals • Technology and observing systems • Deep-ocean stewardship • Trophic ecology • Deep-sea 'omics solely on metabarcoding approaches, where genetic diversity cannot Advances in taxonomy and always be linked to an individual and/or species. phylogenetics - TALKS TALK - Advances in taxonomy and phylogenetics - ABSTRACT 263 TUESDAY Midday • 13:30 • San Carlos Room TALK - Advances in taxonomy and phylogenetics - ABSTRACT 174 Eastern Pacific scaleworms (Polynoidae, TUESDAY Midday • 13:15 • San Carlos Room The impact of intragenomic variation on Annelida) from seeps, vents and alpha-diversity estimations in whalefalls. metabarcoding studies: A case study Gregory Rouse, Avery Hiley, Sigrid Katz, Johanna Lindgren based on 18S rRNA amplicon data from Scripps Institution of Oceanography Sampling across deep sea habitats ranging from methane seeps (Oregon, marine nematodes California, Mexico Costa Rica), whale falls (California) and hydrothermal vents (Juan de Fuca, Gulf of California, EPR, Galapagos) has resulted in a Tiago Jose Pereira, Holly Bik remarkable diversity of undescribed polynoid scaleworms. We demonstrate University of California, Riverside this via DNA sequencing and morphology with respect to the range of Although intragenomic variation has been recognized as a common already described eastern Pacific polynoids. However, a series of phenomenon amongst eukaryote taxa, its effects on diversity estimations taxonomic problems cannot be solved until specimens from their (i.e.
    [Show full text]
  • Sea Cucumbers 2013-2020 Bibliography
    Sea Cucumbers 2013-2020 Bibliography Jamie Roberts, Librarian, NOAA Central Library Erin Cheever, Librarian, NOAA Central Library NCRL subject guide 2020-11 https://doi.org/10.25923/nebs-2p41 June 2020 U.S. Department of Commerce National Oceanic and Atmospheric Administration Office of Oceanic and Atmospheric Research NOAA Central Library – Silver Spring, Maryland Table of Contents Background & Scope ................................................................................................................................. 3 Sources Reviewed ..................................................................................................................................... 3 Section I: Biology ...................................................................................................................................... 3 Section II: Ecology ................................................................................................................................... 29 Section III: Fisheries & Aquaculture ........................................................................................................ 33 Section IV: Population Abundance & Trends .......................................................................................... 74 Section V: Conservation .......................................................................................................................... 82 2 Background & Scope This bibliography focuses on sea cucumber literature published since 2013. Sea cucumbers live on the sea floor
    [Show full text]