Functional Effects of the Hadal Sea Cucumber Elpidia Atakama (Echinodermata: Holothuroidea, Elasipodida) Reflect Small-Scale Patterns of Resource Availability

Total Page:16

File Type:pdf, Size:1020Kb

Functional Effects of the Hadal Sea Cucumber Elpidia Atakama (Echinodermata: Holothuroidea, Elasipodida) Reflect Small-Scale Patterns of Resource Availability Mar Biol (2011) 158:2695–2703 DOI 10.1007/s00227-011-1767-7 ORIGINAL PAPER Functional effects of the hadal sea cucumber Elpidia atakama (Echinodermata: Holothuroidea, Elasipodida) reflect small-scale patterns of resource availability A. J. Jamieson • A. Gebruk • T. Fujii • M. Solan Received: 19 May 2011 / Accepted: 27 July 2011 / Published online: 7 August 2011 Ó Springer-Verlag 2011 Abstract Holothuroidea represent the dominant benthic terms of abundance and biomass (Rice et al. 1982; Ohta megafauna in hadal trenches (*6,000–11,000 m), but little 1983; Sibuet 1985; Billett 1991). A consistent feature of is known about their behaviour and functional role at such holothurian communities, irrespective of location, is the depths. Using a time-lapse camera at 8,074 m in the Peru– marked increase in diversity at abyssal depths (3,000– Chile Trench (SE Pacific Ocean), we provide the first in 6,000 m) (Billett 1991) relative to bathyal (1,000–3,000 m) situ observations of locomotory activity for the elasipodid (Hansen 1975) and hadal depths ([6,000 m) (Hansen 1957; holothurian Elpidia atakama Belyaev in Shirshov Inst Belyaev 1989). Frequently observed mass abundances of Oceanol 92:326–367, (1971). Time-lapse sequences reveal holothurians, particularly in trenches associated with high ‘run and mill’ behaviour whereby bouts of feeding activity productivity in temperate and sub-Antarctic latitudes, have are interspersed by periods of locomotion. Over the total led some authors to refer to the hadal zone as ‘‘the kingdom of observation period (20 h 25 min), we observed a mean Holothuroidea’’ (sensu Belyaev 1989), a view that has been (±SD) locomotion speed of 7.0 ± 5.7 BL h-1, but this reinforced by trawl-catch frequencies of 88% at depths increased to 10.9 ± 7.2 BL h-1 during active relocation [6,000 m (comparable only to Polychaeta) and high levels and reduced to 4.8 ± 2.9 BL h-1 during feeding. These of dominance (75–98% in number of all organisms retrieved, observations show E. atakama translocates and processes [90% biomass) at depths [7,500 m (Belyaev 1989). sediment at rates comparable to shallower species despite Although such high returns tend to be associated with trawls extreme hydrostatic pressure and remoteness from surface- confined to the bottom of the axial part of the trenches, where derived food. the greatest quantity of organic matter accumulates (Otosaka and Noriki 2000; Danovaro et al. 2003; De Leo et al. 2010; Jamieson et al. 2010), it follows that the cumulative contri- Introduction bution of the Holothuroidea to deep ocean benthic process and functioning must be considerable (Amaro et al. 2010). Deposit feeding invertebrates, such as the Holothuroidea, Despite such high levels of abundance, intra- and inter- dominate benthic megafaunal communities in the deep sea in specific competition is thought to be low because indi- vidual species of holothurians adopt different feeding strategies, including preferential feeding on nutritionally Communicated by S. Uthicke. rich patches (Hauksson 1979; Hudson et al. 2005) and/or subtle differences in mobility or feeding behaviour & A. J. Jamieson ( ) Á T. Fujii Á M. Solan (Hudson et al. 2005; Godbold et al. 2009) that allow them Oceanlab, Institute of Biological and Environmental Sciences, University of Aberdeen, Main Street, Newburgh, to utilise different fractions of the same detrital food Aberdeenshire AB41 6AA, UK source (Uthicke and Karez 1999; Miller et al. 2000). It is e-mail: [email protected] also known that differences in feeding rates (compare, for example, Hudson et al. 2005; Godbold et al. 2009) alter A. Gebruk P.P. Shirshov Institute of Oceanology, Russian Academy the gut residence time of a food parcel, leading to more of Sciences, Nakhimovsky Pr. 36, Moscow 117997, Russia efficient digestion and rates of assimilation (Hiratsuka and 123 2696 Mar Biol (2011) 158:2695–2703 Uehara 2007). Whilst these physiological and behavioural (Echevin et al. 2008), a region of high surface productivity adaptations influence holothurian activity, much of the (averaging 269 g C m-2 year-1, Longhurst et al. 1995) ingested material is of low nutritional value (Lopez and with values reported as high as 3,613 g C m-2 year-1 Levinton 1987), leading to foraging activity that results in (Fossing et al. 1995). significant levels of surficial bioturbation that has seldom been quantified (Sibuet and Lawrence 1981; Bett and Rice 1993; Uthicke 1999; Roberts et al. 2000; Bett et al. 2001). Equipment Indeed, a recent review of invertebrate bioturbation (Teal et al. 2008) indicates a paucity of such data from bathyal We deployed Hadal-lander B (Jamieson et al. 2009b), a or abyssal depths (maximum depth data obtained = free-falling lander equipped with a 5 megapixel digital still 5,654 m, Yang et al. 1986) and a complete absence of camera (OE14-208; Kongsberg Maritime, UK) and a information from hadal depths. Hence, it is clear that the Conductivity, Temperature and Depth (CTD) sensor (SBE- ecological consequences of particle redistribution follow- 19plus V2; SeaBird Electronic Inc. USA), at 8,074 m in the 0 ing holothurian foraging and feeding activities are not Richards Deep, Peru–Chile trench (23° 22.470 S, 71° 0 known despite the importance of this group in deep ocean 19.973 W) on the 13 September 2010. The camera was mounted vertically (altitude 1 m) providing a visible area ecosystems. -2 In contrast to shallower environments, where species of 62 9 46.5 cm (0.29 m ). We attached a bait (*1kg can be caught and returned to the laboratory, carrying out of Tuna, Thunnus sp.) to a 1-cm-diameter scaled bar in the controlled experimental manipulations on hadal specimens centre of the field of view (FOV) and positioned to inter- is difficult. Direct in situ experimental manipulations are sect the sediment–water interface. Time-lapse images were possible using remotely operated vehicles (ROVs), but taken at 60-s intervals. The CTD probe recorded temper- progress is slow as there is only one vehicle capable of ature (°C), salinity, and pressure (dbar) every 10 s. Lander sampling [6,000 m (Fletcher et al. 2010). A more prac- recover was achieved by acoustically jettisoning ballast tical solution is the use of free-fall baited cameras weights to initiate the ascent to the surface. CTD data were (Jamieson et al. 2009a, b) which allow time-lapse or averaged, and pressure was converted to depth (m) continuous video recordings of benthic faunal behaviour. following Saunders (1981). Here, we use such technology to present the first detailed in situ account of the locomotion and feeding behaviour of Image analysis the holothurian Elpidia atakama (Belyaev 1971) (family Elpidiidae) at 8,074 m in the Richards Deep area of the Motion paths of E. atakama were tracked using ImageJ Peru–Chile trench. This species has never been seen alive 1.42q, a Java-based public domain program developed at and appears to be endemic to the Peru–Chile trench. We the USA National Institutes of Health (available at, compare locomotion speed and feeding behaviour with http://rsb.info.nih.gov/ij/index.html). Images were cali- abyssal analogues and conclude that the observed patterns brated and analysed in chronological order. We used the of activity are consistent with the view that the behaviour X–Y coordinates at the base of the central feeding tentacle of E. atakama reflects exploitation of patchily distributed as a location marker and calculated the distance (cm) an resources. We contend that the ability to exploit envi- individual travelled per time step to determine the absolute locomotion speed (cm h-1) as follows: ronmental heterogeneity in this way explains, at least in qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi part, why the holothurians are so abundant and outcom- 2 2 d ðÞX2 À X1 þ ðÞY2 À Y1 pete other deposit feeding species at abyssal and hadal a ¼ ¼ ð1Þ depths. t t where a˜ = absolute locomotion speed, cm h-1; d = dis- tance, cm; and t = time interval (here, 60 s). We also explore how differences in time-lapse interval Materials and methods alter ecological interpretation by re-calculating the absolute locomotion speed (and percentage deviation in error rela- Study site tive to the highest resolution of observation) for E. atakama at 1-, 2-, 5-, 10-, 20- and 60-min intervals and place our The Peru–Chile Trench (SE Pacific Ocean) is the longest results within the context of other findings published in the trench in the world (5,900 km 9 100 km, Angel 1982) and scientific literature. runs parallel to the west coast of South America from In order to account for body size, we divided a˜ by body Ecuador to central Chile. The trench lies below the length (BL = longest axis of specimen) to provide a size- Humboldt Current and the Peruvian upwelling system specific speed (BL h-1). 123 Mar Biol (2011) 158:2695–2703 2697 Results these together, a˜ = 35.5 ± 29.3 cm h-1 (7.0 ± 5.7 BL h-1), giving a mean swept area rate (a˜ 9 body width 9 We recorded 1,225 images (20 h 25 min) at a calculated distance/t) of 81.6 cm-2 h-1. The speed and direction of depth of 8,072 m (=8,276 dbar). At this depth, water movement was neither constant nor unidirectional (Fig. 2), temperature was 2.25°C and salinity was 34.68. Sequences reflecting a ‘run and mill’ movement pattern (Kaufmann included observations of the holothurian, Elpidia atakama, and Smith 1997), i.e. relatively large distances are achieved and three species of scavenging gammarid amphipods: with minimal changes in speed and direction (routine Eurythenes gryllus, (Thurston et al. 2002), Hirondellea locomotion) and are interspersed with bouts of localised, sp.nov.
Recommended publications
  • Petition to List the Black Teatfish, Holothuria Nobilis, Under the U.S. Endangered Species Act
    Before the Secretary of Commerce Petition to List the Black Teatfish, Holothuria nobilis, under the U.S. Endangered Species Act Photo Credit: © Philippe Bourjon (with permission) Center for Biological Diversity 14 May 2020 Notice of Petition Wilbur Ross, Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected], [email protected] Dr. Neil Jacobs, Acting Under Secretary of Commerce for Oceans and Atmosphere U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected] Petitioner: Kristin Carden, Oceans Program Scientist Sarah Uhlemann, Senior Att’y & Int’l Program Director Center for Biological Diversity Center for Biological Diversity 1212 Broadway #800 2400 NW 80th Street, #146 Oakland, CA 94612 Seattle,WA98117 Phone: (510) 844‐7100 x327 Phone: (206) 324‐2344 Email: [email protected] Email: [email protected] The Center for Biological Diversity (Center, Petitioner) submits to the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (NOAA) through the National Marine Fisheries Service (NMFS) a petition to list the black teatfish, Holothuria nobilis, as threatened or endangered under the U.S. Endangered Species Act (ESA), 16 U.S.C. § 1531 et seq. Alternatively, the Service should list the black teatfish as threatened or endangered throughout a significant portion of its range. This species is found exclusively in foreign waters, thus 30‐days’ notice to affected U.S. states and/or territories was not required. The Center is a non‐profit, public interest environmental organization dedicated to the protection of native species and their habitats.
    [Show full text]
  • The Status of Natural Resources on the High-Seas
    The status of natural resources on the high-seas Part 1: An environmental perspective Part 2: Legal and political considerations An independent study conducted by: The Southampton Oceanography Centre & Dr. A. Charlotte de Fontaubert The status of natural resources on the high-seas i The status of natural resources on the high-seas Published May 2001 by WWF-World Wide Fund for Nature (Formerly World Wildlife Fund) Gland, Switzerland. Any reproduction in full or in part of this publication must mention the title and credit the above mentioned publisher as the copyright owner. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of WWF or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of WWF or IUCN. Published by: WWF International, Gland, Switzerland IUCN, Gland, Switzerland and Cambridge, UK. Copyright: © text 2001 WWF © 2000 International Union for Conservation of Nature and Natural Resources © All photographs copyright Southampton Oceanography Centre Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: WWF/IUCN (2001). The status of natural resources on the high-seas. WWF/IUCN, Gland, Switzerland. Baker, C.M., Bett, B.J., Billett, D.S.M and Rogers, A.D.
    [Show full text]
  • Swimming Deep-Sea Holothurians (Echinodermata: Holothuroidea) on the Northern Mid-Atlantic Ridge*
    Zoosymposia 7: 213–224 (2012) ISSN 1178-9905 (print edition) www.mapress.com/zoosymposia/ ZOOSYMPOSIA Copyright © 2012 · Magnolia Press ISSN 1178-9913 (online edition) Swimming deep-sea holothurians (Echinodermata: Holothuroidea) on the northern Mid-Atlantic Ridge* ANTONINA ROGACHEVA1,3, ANDREY GEBRUK1 & CLAUDIA H.S. ALT2 1 P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia 2 National Oceanography Centre, University of Southampton, Southampton, United Kingdom 3 Corresponding author, E-mail: [email protected] *In: Kroh, A. & Reich, M. (Eds.) Echinoderm Research 2010: Proceedings of the Seventh European Conference on Echinoderms, Göttingen, Germany, 2–9 October 2010. Zoosymposia, 7, xii + 316 pp. Abstract The ability to swim was recorded in 17 of 32 species of deep-sea holothurians during the RRS James Cook ECOMAR cruise in 2010 to the Mid-Atlantic Ridge. Holothurians were observed, photographed, and video recorded using the ROV Isis at four sites around the Charlie-Gibbs Fracture Zone at approximate depths of 2,200–2,800 m. For eleven species swimming is reported for the first time. A number of swimming species were observed on rocks, cliffs and steep slopes with taluses. These habitats are unusual for deep-sea holothurians, which are traditionally common on flat areas with soft sediment rich in detritus. Three species were found exclusively on cliffs. Swimming may provide an advantage in cliff habitats that are inaccessible to most epibenthic deposit-feeders. Key words: sea cucumbers, benthopelagic species, diversity, Northern Atlantic Ocean Introduction Mid-ocean ridges remain one of the least studied environments in the ocean. They are characterised by remoteness, high relief, very complicated topography and complex current regimes.
    [Show full text]
  • (Echinodermata) Collected During the TALUD Cruises Off the Pacific Coast of Mexico, with the Description of Two New Species Revista Mexicana De Biodiversidad, Vol
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Massin, Claude; Hendrickx, Michel E. Deep-water Holothuroidea (Echinodermata) collected during the TALUD cruises off the Pacific coast of Mexico, with the description of two new species Revista Mexicana de Biodiversidad, vol. 82, núm. 2, junio, 2011, pp. 413-443 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42521043005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 82: 413-443, 2011 Deep-water Holothuroidea (Echinodermata) collected during the TALUD cruises off the Pacific coast of Mexico, with the description of two new species Holothuroidea (Echinodermata) de mar profundo recolectadas durante las campañas TALUD frente a la costa del Pacífico mexicano, con la descripción de dos especies nuevas Claude Massin1 and Michel E. Hendrickx2* 1Department of Recent Invertebrates, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium. 2Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, PO Box 811, 82000 Mazatlán, Sinaloa, México. *Correspondent: [email protected] Abstract. Research cruises aboard the R/V “El Puma” were organized to collect deep-water benthic and pelagic specimens off the Pacific coast of Mexico. Seventy four specimens of Holothuroidea were collected off the Pacific coast of Mexico in depths of 377-2 200 m.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • SPC Beche-De-Mer Information Bulletin Has 13 Original S.W
    ISSN 1025-4943 Issue 36 – March 2016 BECHE-DE-MER information bulletin Inside this issue Editorial Rotational zoning systems in multi- species sea cucumber fisheries This 36th issue of the SPC Beche-de-mer Information Bulletin has 13 original S.W. Purcell et al. p. 3 articles relating to the biodiversity of sea cucumbers in various areas of Field observations of sea cucumbers the western Indo-Pacific, aspects of their biology, and methods to better in Ari Atoll, and comparison with two nearby atolls in Maldives study and rear them. F. Ducarme p. 9 We open this issue with an article from Steven Purcell and coworkers Distribution of holothurians in the on the opportunity of using rotational zoning systems to manage shallow lagoons of two marine parks of Mauritius multispecies sea cucumber fisheries. These systems are used, with mixed C. Conand et al. p. 15 results, in developed countries for single-species fisheries but have not New addition to the holothurian fauna been tested for small-scale fisheries in the Pacific Island countries and of Pakistan: Holothuria (Lessonothuria) other developing areas. verrucosa (Selenka 1867), Holothuria cinerascens (Brandt, 1835) and The four articles that follow, deal with biodiversity. The first is from Frédéric Ohshimella ehrenbergii (Selenka, 1868) Ducarme, who presents the results of a survey conducted by an International Q. Ahmed et al. p. 20 Union for Conservation of Nature mission on the coral reefs close to Ari A checklist of the holothurians of Atoll in Maldives. This study increases the number of holothurian species the far eastern seas of Russia recorded in Maldives to 28.
    [Show full text]
  • I. Introduction
    Bathymetric distribution of the species .... 210 2. Penetration of species into the Bathymetric zonation of the deep sea ...... 210 Mediterranean deep sea ............. 235 Bathymetric distribution and taxonomic 3. Comparison with other groups ....... 235 relationship .......................... 214 Sediments and nutrient conditions ........ 235 Number of species and individuals in Hydrostatic pressure ..................... 237 relation to depth ...................... 217 Currents ............................... 238 Topography ............................ 238 E. Geographic distribution .................. 219 Conclusion ............................. 239 The exploration of the different geographic regions ............................... 219 G. The hadal fauna ........................ 239 The bathyal fauna ...................... 220 The hadal environment .................. 239 The abyssal fauna ....................... 221 General features of the hadal fauna ....... 240 1. World-wide distributions ............ 223 2. The Antarctic Ocean ................ 224 H. Evolutionary aspects .................... 243 3. The North Atlantic ................. 225 Evolution within the deep sea versus 4. The South Atlantic ................. 227 immigration from shallower depths .... 243 5. The Indian Ocean .................. 22; Geographic variation .................... 244 6. The Indonesian seas ................ 228 1. Clines ............................. 245 7. The Pacific Ocean .................. 231 2. Local variation ..................... 245 8. The Arctic
    [Show full text]
  • DOGAMI Open-File Report O-86-06, the State of Scientific
    "ABLE OF CONTENTS Page INTRODUCTION ..~**********..~...~*~~.~...~~~~1 GORDA RIDGE LEASE AREA ....................... 2 RELATED STUDIES IN THE NORTH PACIFIC .+,...,. 5 BYDROTHERMAL TEXTS ........................... 9 34T.4 GAPS ................................... r6 ACKNOWLEDGEMENT ............................. I8 APPENDIX 1. Species found on the Gorda Ridge or within the lease area . .. .. .. .. .. 36 RPPENDiX 2. Species found outside the lease area that may occur in the Gorda Ridge Lease area, including hydrothermal vent organisms .................................55 BENTHOS THE STATE OF SCIENTIFIC INFORMATION RELATING TO THE BIOLOGY AND ECOLOGY 3F THE GOUDA RIDGE STUDY AREA, NORTZEAST PACIFIC OCEAN: INTRODUCTION Presently, only two published studies discuss the ecology of benthic animals on the Gorda Sidge. Fowler and Kulm (19701, in a predominantly geolgg isal study, used the presence of sublittor31 and planktsnic foraminiferans as an indication of uplift of tfie deep-sea fioor. Their resuits showed tiac sedinenta ana foraminiferans are depositea in the Zscanaba Trough, in the southern part of the Corda Ridge, by turbidity currents with a continental origin. They list 22 species of fararniniferans from the Gorda Rise (See Appendix 13. A more recent study collected geophysical, geological, and biological data from the Gorda Ridge, with particular emphasis on the northern part of the Ridge (Clague et al. 19843. Geological data suggest the presence of widespread low-temperature hydrothermal activity along the axf s of the northern two-thirds of the Corda 3idge. However, the relative age of these vents, their present activity and presence of sulfide deposits are currently unknown. The biological data, again with an emphasis on foraminiferans, indicate relatively high species diversity and high density , perhaps assoc iated with widespread hydrotheraal activity.
    [Show full text]
  • The Role of Body Size in Complex Food Webs: a Cold Case
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Ecological Research, Vol. 45 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Ute Jacob, Aaron Thierry, Ulrich Brose, Wolf E. Arntz, Sofia Berg, Thomas Brey, Ingo Fetzer, Tomas Jonsson, Katja Mintenbeck, Christian Möllmann, Owen Petchey, Jens O. Riede and Jennifer A. Dunne, The Role of Body Size in Complex Food Webs: A Cold Case. In Andrea Belgrano and Julia Reiss, editors: Advances in Ecological Research, Vol. 45, Amsterdam, The Netherlands, 2011, pp. 181-223. ISBN: 978-0-12-386475-8 © Copyright 2011 Elsevier Ltd. Academic press. Author's personal copy The Role of Body Size in Complex Food Webs: A Cold Case UTE JACOB,1,* AARON THIERRY,2,3 ULRICH BROSE,4 WOLF E. ARNTZ,5 SOFIA BERG,6 THOMAS BREY,5 INGO FETZER,7 TOMAS JONSSON,6 KATJA MINTENBECK,5 CHRISTIAN MO¨ LLMANN,1 OWEN L.
    [Show full text]
  • Elpidia Soyoae, a New Species of Deep-Sea Holothurian (Echinodermata) from the Japan Trench Area
    Species Diversity 25: 153–162 Published online 7 August 2020 DOI: 10.12782/specdiv.25.153 Elpidia soyoae, a New Species of Deep-sea Holothurian (Echinodermata) from the Japan Trench Area Akito Ogawa1,2,4, Takami Morita3 and Toshihiko Fujita1,2 1 Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan E-mail: [email protected] 2 Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan 3 National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan 4 Corresponding author (Received 23 October 2019; Accepted 28 May 2020) http://zoobank.org/00B865F7-1923-4F75-9075-14CB51A96782 A new species of holothurian, Elpidia soyoae sp. nov., is described from the Japan Trench area, at depths of 3570– 4145 m. It is distinguished from its congeners in having: four or five paired papillae and unpaired papillae present along entire dorsal radii (four to seven papillae on each radius), with wide separation between second and third paired papillae; maximum length of Elpidia-type ossicles in dorsal body wall exceeds 1000 µm; axis diameter of dorsal Elpidia-type ossicles less than 40 µm; tentacle Elpidia-type ossicles with arched axis and shortened, occasionally completely reduced arms and apophyses. Purple pigmentation spots composed of small purple particles on both dorsal and ventral body wall. This is the second species of Elpidia Théel, 1876 from Japanese abyssal depths. The diagnosis of the genus Elpidia is modified to distin- guish from all other elpidiid genera.
    [Show full text]
  • Biodiversidad De Los Equinodermos (Echinodermata) Del Mar Profundo Mexicano
    Biodiversidad de los equinodermos (Echinodermata) del mar profundo mexicano Francisco A. Solís-Marín,1 A. Laguarda-Figueras,1 A. Durán González,1 A.R. Vázquez-Bader,2 Adolfo Gracia2 Resumen Nuestro conocimiento de la diversidad del mar profundo en aguas mexicanas se limita a los escasos estudios existentes. El número de especies descritas es incipiente y los registros taxonómicos que existen provienen sobre todo de estudios realizados por ex- tranjeros y muy pocos por investigadores mexicanos, con los cuales es posible conjuntar algunas listas faunísticas. Es importante dar a conocer lo que se sabe hasta el momen- to sobre los equinodermos de las zonas profundas de México, información básica para diversos sectores en nuestro país, tales como los tomadores de decisiones y científicos interesados en el tema. México posee hasta el momento 643 especies de equinoder- mos reportadas en sus aguas territoriales, aproximadamente el 10% del total de las especies reportadas en todo el planeta (~7,000). Según los registros de la Colección Nacional de Equinodermos (ICML, UNAM), la Colección de Equinodermos del “Natural History Museum, Smithsonian Institution”, Washington, DC., EUA y la bibliografía revisa- 1 Colección Nacional de Equinodermos “Ma. E. Caso Muñoz”, Laboratorio de Sistemá- tica y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México (UNAM). Apdo. Post. 70-305, México, D. F. 04510, México. 2 Laboratorio de Ecología Pesquera de Crustáceos, Instituto de Ciencias del Mar y Lim- nología (ICML), (UNAM), Apdo. Postal 70-305, México D. F., 04510, México. 215 da, existen 348 especies de equinodermos que habitan las aguas profundas mexicanas (≥ 200 m) lo que corresponde al 54.4% del total de las especies reportadas para el país.
    [Show full text]
  • Deep–Sea Research I
    Deep–Sea Research Part I 122 (2017) 81–94 Contents lists available at ScienceDirect Deep–Sea Research I journal homepage: www.elsevier.com/locate/dsri Dynamic benthic megafaunal communities: Assessing temporal variations MARK in structure, composition and diversity at the Arctic deep-sea observatory HAUSGARTEN between 2004 and 2015 ⁎ J. Taylor , T. Krumpen, T. Soltwedel, J. Gutt, M. Bergmann Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar‐ und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany ARTICLE INFO ABSTRACT Keywords: Established in the Fram Strait in 1999, the LTER (Long-Term Ecological Research) observatory HAUSGARTEN Arctic enables us to study ecological changes on the deep Arctic seafloor. Repeated deployments of a towed camera Deep sea system (Ocean Floor Observation System) along the same tracks allowed us to build a time series longer than a Image analysis decade (2004–2015). Here, we present the first time-series results from a northern and the southernmost Epibenthic megafauna station of the observatory (N3 and S3, ~2650 m and 2350 m depth respectively) obtained via the analysis of still Long-term ecological research imagery. We assess temporal variability in community structure, megafaunal densities and diversity, and use a Photo/video system Time series range of biotic factors, environmental sediment parameters and habitat features to explain the patterns observed. There were significant temporal differences in megafaunal abundances, diversity and habitat features at both stations. A particularly high increase in megafaunal abundance was recorded at N3 from 12.08 ( ± 0.39; 2004) individuals m−2 to 35.21 ( ± 0.97; 2007) ind. m−2 alongside a ten-fold increase in (drop-)stones.
    [Show full text]