SGI™ Origin™ 200 Scalable Multiprocessing Server Origin 200—In Partnership with You
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SGI® Opengl Multipipe™ User's Guide
SGI® OpenGL Multipipe™ User’s Guide 007-4318-008 Version 1.4.2 CONTRIBUTORS Written by Ken Jones and Jenn Byrnes Illustrated by Chrystie Danzer Edited by Susan Wilkening Production by Glen Traefald Engineering contributions by Bill Feth, Christophe Winkler, Claude Knaus, and Alpana Kaulgud COPYRIGHT © 2000–2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, InfiniteReality, IRIS, IRIX, Onyx, Onyx2, and OpenGL are registered trademarks and IRIS GL, OpenGL Performer, InfiniteReality2, Open Inventor, OpenGL Multipipe, Power Onyx, Reality Center, and SGI Reality Center are trademarks of Silicon Graphics, Inc. MIPS and R10000 are registered trademarks of MIPS Technologies, Inc. used under license by Silicon Graphics, Inc. Netscape is a trademark of Netscape Communications Corporation. -
IRIS Performer™ Programmer's Guide
IRIS Performer™ Programmer’s Guide Document Number 007-1680-030 CONTRIBUTORS Edited by Steven Hiatt Illustrated by Dany Galgani Production by Derrald Vogt Engineering contributions by Sharon Clay, Brad Grantham, Don Hatch, Jim Helman, Michael Jones, Martin McDonald, John Rohlf, Allan Schaffer, Chris Tanner, and Jenny Zhao © Copyright 1995, Silicon Graphics, Inc.— All Rights Reserved This document contains proprietary and confidential information of Silicon Graphics, Inc. The contents of this document may not be disclosed to third parties, copied, or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/ or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. Indigo, IRIS, OpenGL, Silicon Graphics, and the Silicon Graphics logo are registered trademarks and Crimson, Elan Graphics, Geometry Pipeline, ImageVision Library, Indigo Elan, Indigo2, Indy, IRIS GL, IRIS Graphics Library, IRIS Indigo, IRIS InSight, IRIS Inventor, IRIS Performer, IRIX, Onyx, Personal IRIS, Power Series, RealityEngine, RealityEngine2, and Showcase are trademarks of Silicon Graphics, Inc. AutoCAD is a registered trademark of Autodesk, Inc. X Window System is a trademark of Massachusetts Institute of Technology. -
SGI® Opengl Multipipe™ User's Guide
SGI® OpenGL Multipipe™ User’s Guide Version 2.3 007-4318-012 CONTRIBUTORS Written by Ken Jones and Jenn Byrnes Illustrated by Chrystie Danzer Production by Karen Jacobson Engineering contributions by Craig Dunwoody, Bill Feth, Alpana Kaulgud, Claude Knaus, Ravid Na’ali, Jeffrey Ungar, Christophe Winkler, Guy Zadicario, and Hansong Zhang COPYRIGHT © 2000–2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, InfiniteReality, IRIS, IRIX, Onyx, Onyx2, OpenGL, and Reality Center are registered trademarks and GL, InfinitePerformance, InfiniteReality2, IRIS GL, Octane2, Onyx4, Open Inventor, the OpenGL logo, OpenGL Multipipe, OpenGL Performer, Power Onyx, Tezro, and UltimateVision are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide. MIPS and R10000 are registered trademarks of MIPS Technologies, Inc. -
SGI Origin 3000 Series Datasheet
Datasheet SGI™ Origin™ 3000 Series SGI™ Origin™ 3200, SGI™ Origin™ 3400, and SGI™ Origin™ 3800 Servers Features As Flexible as Your Imagination •True multidimensional scalability Building on the robust NUMA architecture that made award-winning SGI •Snap-together flexibility, serviceability, and resiliency Origin family servers the most modular and scalable in the industry, the •Clustering to tens of thousands of processors SGI Origin 3000 series delivers flexibility, resiliency, and performance at •SGI Origin 3200—scales from two to eight breakthrough levels. Now taking modularity a step further, you can scale MIPS processors CPU, storage, and I/O components independently within each system. •SGI Origin 3400—scales from 4 to 32 MIPS processors Complete multidimensional flexibility allows organizations to deploy, •SGI Origin 3800—scales from 16 to 512 MIPS processors upgrade, service, expand, and redeploy system components in every possible dimension to meet any business demand. The only limitation is your imagination. Build It Your Way SGI™ NUMAflex™ is a revolutionary snap-together server system concept that allows you to configure—and reconfigure—systems brick by brick to meet the exact demands of your business applications. Upgrade CPUs to keep apace of innovation. Isolate and service I/O interfaces on the fly. Pay only for the computation, data processing, or communications power you need, and expand and redeploy systems with ease as new technologies emerge. Performance, Reliability, and Versatility With their high bandwidth, superior scalability, and efficient resource distribution, the new generation of Origin servers—SGI™ Origin™ 3200, SGI™ Origin™ 3400, and SGI™ Origin™ 3800—are performance leaders. The series provides peak bandwidth for high-speed peripheral connectiv- ity and support for the latest networking protocols. -
Sgiconsole™ Hardware Connectivity Guide
SGIconsole™ Hardware Connectivity Guide Document Number 007-4340-001 Contributors Written by Francisco Razo Illustrated by Dan Young Production by Karen Jacobson Contributions by Jagdish Bhavsar, Michael T. Brown, Dick Brownell, Jason Chang, Steven Dean, Steve Ewing, Jim Friedl, Jim Grisham, Karen Johnson, Tony Kavadias, Paul Kinyon, Jenny Leung, Laraine MacKenzie, Philip Montalban, Rod Negus, Sonny Oh, Keith Rich, Laura Shepard, Paddy Sreenivasan, Rebecca Underwood, and Eric Zamost. COPYRIGHT © 2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Indy, IRIS, IRIX, Onyx2, and Silicon Graphics are registered trademarks of Silicon Graphics, Inc. SGI, the SGI logo, IRISconsole, IRIS InSight, and SGIconsole are trademarks of Silicon Graphics, Inc. PostScript is a registered trademark of Adobe Systems, Inc. Linux is a registered trademark of Linus Torvalds. -
İSTANBUL TECHNICAL UNIVERSITY INSTITUTE of SCIENCE and TECHNOLOGY Master Thesis by Göker Burak ÇETİN, Eng. Department
ĐSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY ITU-CSCRS GROUND RECEIVING STATION AUTOMATION & RENOVATION Master Thesis by Göker Burak ÇET ĐN, Eng. Department : Geodesy & Photogrammetry Engineering Programme: Geomatics Engineering SEPTEMBER 2007 ISTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY ITU-CSCRS GROUND RECEIVING STATION AUTOMATION & RENOVATION Master Thesis by Göker Burak ÇET ĐN, Eng. 501031614 Date of submission : 4 September 2007 Date of defence examination: 3 September 2007 Supervisor (Chairman) : Prof. Dr. Filiz SUNAR Members of the Examining Committee : Prof. Dr. Derya MAKTAV (ITU) Assist. Prof. Dr. Berk ÜSTÜNDA Ğ (ITU) SEPTEMBER 2007 ĐSTANBUL TEKN ĐK ÜN ĐVERS ĐTES Đ FEN B ĐLĐMLER Đ ENST ĐTÜSÜ ĐTÜ-UHUZAM UYDU YER ĐSTASYONU OTOMASYON VE RENOVASYONU Master Tezi Müh. Göker Burak ÇET ĐN 501031614 Tezin Enstitüye Verildi ği Tarih : 4 Eylül 2007 Tezi Savunuldu ğu Tarih : 3 Eylül 2007 Tez Danı şmanı : Prof. Dr. Filiz SUNAR Di ğer Jüri Üyeleri : Prof. Dr. Derya MAKTAV ( Đ.T.Ü.) Yard. Doç. Dr. Berk ÜSTÜNDA Ğ ( Đ.T.Ü.) EYLÜL 2007 FOREWORD I have tried to solidate and provide this documentation related to satellite ground receiving station in a more methodical way after four years of labor and experience gained as a system administrator at ITU-CSCRS Ground Station. From the day I begin working at the ground station I observed some of the obstacles in the system. Now after 4 years with the aging hardware and software systems, it is now more obvious that the ground station needs a renovation project to carry on its operation. Therefore without constant renovation a ground station, could have never achieve enough service quality, because of the constant increase of demands of the remote sensing data market at the end user side. -
SGI™Origin™3000 Series
Product Guide SGI™Origin™ 3000 Series Modular, High-Performance Servers The successful deployment of today’s high-performance computing solutions is often obstructed by architectural bottlenecks. To enable organizations to adapt their computing assets rapidly to new application environments, SGI™ servers have provided revolutionary architectural flexibility for more than a decade. Now, the pioneer of shared-memory parallel processing systems has delivered a radical breakthrough in flexibility, resiliency, and investment protection: the SGI Origin 3000 series of modular high-performance servers. Design Your System to Precisely Match Your Application Requirements SGI Origin 3000 series systems take modularity A New Snap-Together Approach to the next level. Building on the same modular This new approach to server architecture architecture of award-winning SGI™ 2000 allows you to configure—and reconfigure— series servers, the SGI Origin 3000 series systems brick by brick. Upgrade CPUs now provides the flexibility to scale CPU and selectively to keep apace of innovation. memory, storage, and I/O components inde- Isolate and service I/O interfaces on the fly. pendently within the system. You can design Pay only for the computation, data processing, a system down to the level of individual visualization, or communication muscle you components to meet your exact application need. Achieve all this while seamlessly fitting requirements—and easily and cost effectively systems into your IT environment with an make changes as desired. industry-standard form factor. Brick-by-brick modularity lets you build and maintain your Unmatched Flexibility system optimally, with a level of flexibility that The unique SGI NUMA system architecture makes obsolescence almost obsolete. -
SGI® Origin® 3000 Engineered for High-Productivity Supercomputing
SGI® Origin® 3000 Engineered for High-Productivity Supercomputing Features Deployable Supercomputing • Deployable supercomputing SGI Origin 3000 supercomputers are the most powerful systems on the planet, with more • SGI NUMAflex shared-memory architecture processors (up to 128), memory (up to 256GB), and application performance per rack • Customer-defined scalable performance than any other system. Using the unique SGI® NUMAflex™ memory architecture to • IRGO: Optimized HPC workflow environment combine up to 512 CPUs and 1TB of memory in a shared-memory image, SGI Origin 3000 systems enable breakthroughs that general-purpose business servers cannot address. Add a technical operating environment that is specifically engineered to optimize workflow for greater productivity, and your next breakthrough idea won’t have to take up a lot of space. SGI NUMAflex Shared-Memory Architecture The SGI NUMAflex shared-memory architecture lets you run more complex models more frequently. Because the entire memory space is shared, large models fit into memory with no programming model restrictions. This allows system resources to be dynamically reas- signed to more complex areas, resulting in faster time to solution—and insight. Customer-Defined Scalable Performance The SGI NUMAflex architecture is designed for the unique requirements of high- productivity computing. Every HPC application has its own criteria for real performance, so SGI Origin 3000 systems are designed with scalability in mind. With modular compo- nents for memory, compute, I/O bandwidth, and visualization tied to a high-bandwidth, low-latency interconnect, you can tailor and evolve your supercomputer to meet your unique performance requirements. SGI® IRGO™: Optimized HPC Workflow Environment SGI Origin 3000 supercomputers have unique SGI IRGO HPC workflow optimization features that give you even more control over your high-productivity supercomputing environment. -
Visualisierung Von Informationsräumen
Visualisierung von Informationsr¨aumen Dissertationsschrift zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) vorgelegt an der Fakult¨at fur¨ Informatik und Automatisierung Institut fur¨ Praktische Informatik und Medieninformatik der Technischen Universit¨at Ilmenau von Dipl.-Inf. Martha Argentina Barberena Najarro Berichterstatter: 1. Gutachter: Univ.-Prof. Dr.-Ing. habil. D. Reschke, TU Ilmenau 2. Gutachter: Prof. Dr.-Ing G. Schade, FH Erfurt 3. Gutachter: Prof. Dr.-Ing R. B¨ose, FH Schmalkalden Tag der Einreichung: 06.06.2003 Tag der ¨offentlichen wissenschaftlichen Aussprache: 16.12.2003 2 Vorwort Als ich diese Arbeit begann, ahnte ich nicht, welches Ausmaß sie annehmen wurde¨ und wieviele Fragen und Detail-Probleme fur¨ ca. 200 Seiten beantwortet und aufbereitet werden mußten. An dieser Stelle sei deshalb allen ganz herzlich gedankt, die mich in den vergangenen Jahren unterstutzt¨ haben. Mein besonderer Dank gilt meinem Doktorvater, Herrn Prof. Dr.-Ing. habil. Dietrich Reschke fur¨ die Unterstutzung¨ und das Vertrauen, mit dem er mich w¨ahrend der Arbeit begleitet hat. In vielen Diskussionen mit ihm erhielt ich wertvolle Hinweise, die mir sehr hilfreich waren bei der Anfertigung dieser Arbeit. Uber¨ die Tatsache, daß ich Frau Prof. Dr. Gabriele Schade und Herrn Prof. Dr. Ralf B¨ose als Gutachter gewinnen konnte, habe ich mich sehr gefreut und danke Ihnen fur¨ ihre sofortige Bereitschaft. Bei meinen Kolleginnen und Kollegen bedanke ich mich fur¨ die angenehme Arbeitsatmosph¨are, die anregenden Gespr¨ache und die gemeinsamen Unternehmungen. Ganz besonders danke ich meinem Mann, Rainer Barth. Sein Verst¨andnis und seine Hilfe bei Problemen jeglicher Art haben es mir erm¨oglicht, diese Arbeit fertigzustellen. -
SGI® Origin® 3000 Engineered for High-Productivity Supercomputing
Datasheet SGI® Origin® 3000 Engineered for High-Productivity Supercomputing Features Deployable Supercomputing • Deployable supercomputing SGI Origin 3000 supercomputers are the most powerful systems • SGI NUMAflex shared-memory architecture on the planet, with more processors (up to 128), memory (up to • Customer-defined scalable performance 256GB), and application performance per rack than any other sys- • IRGO: Optimized HPC workflow environment tem. Using the unique SGI® NUMAflex™ memory architecture to combine up to 512 CPUs and 1TB of memory in a shared-memory image, SGI Origin 3000 systems enable breakthroughs that general- purpose business servers cannot address. Add a technical operating environment that is specifically engineered to optimize workflow for greater productivity, and your next breakthrough idea won’t have to take up a lot of space. SGI NUMAflex Shared-Memory Architecture The SGI NUMAflex shared-memory architecture lets you run more complex models more frequently. Because the entire memory space is shared, large models fit into memory with no programming model restrictions. This allows system resources to be dynamically reas- signed to more complex areas, resulting in faster time to solution— and insight. Customer-Defined Scalable Performance The SGI NUMAflex architecture is designed for the unique require- ments of high-productivity computing. Every HPC application has its own criteria for real performance, so SGI Origin 3000 systems are designed with scalability in mind. With modular components for memory, compute, I/O bandwidth, and visualization tied to a high- bandwidth, low-latency interconnect, you can tailor and evolve your supercomputer to meet your unique performance requirements. SGI® IRGO™: Optimized HPC Workflow Environment SGI Origin 3000 supercomputers have unique SGI IRGO HPC work- flow optimization features that give you even more control over your high-productivity supercomputing environment. -
Remanufactured SGI™ Origin™ 2000 High-Performance Server
Product Guide Remanufactured SGI™ Origin™ 2000 High-Performance Server Origin 2000 Rack Multirack System The rack-mounted Connect multiple racks as a shared- Origin 2000 system memory powerhouse or redeploy is the industry’s those assets into multiple, tightly most powerful and integrated departmental servers. flexible shared-memory Add IRIS FailSafe™ software to server. Easily expand provide failover between systems, the system by adding and Origin 2000 becomes the additional racks. ultimate high-availability server for critical computational and business solutions. Origin 2000 Deskside Revolutionary Server for Your Expanding Business SGI server family, can expand from dual-processor With its outstanding Today’s corporate environment is characterized by deskside systems to powerful 512-processor scalable price/performance, the a rapid growth in communications requirements servers without disruptive and expensive box-swaps deskside Origin 2000 and continual organizational change. A great deal common with other server solutions. System server is ideal for of energy is spent planning future system purchases resources can be deployed as tightly integrated evolving applications in an ongoing effort to keep system capabilities arrays of small Origin 2000 systems or as single requiring expansion capability. Seamless upgradability to larger ahead of application demands. Corporations require large shared-memory systems capable of meeting rack-based configurations supports scalable, flexible computer systems that can adapt the most demanding data processing and your growing requirements. to business change and satisfy growing server computing requirements. requirements. SGI offers you a proven, more adaptable way to purchase your data processing, SGI pioneered the development and delivery of computation, and communications capabilities. shared-memory parallel processing systems. -
Indigo and Indigo IMPACT Dual Head Installation Guide and Notes For
Indigo2™ and Indigo2 IMPACT™ Dual Head Installation Guide and Notes for Developers Document Number 007-9206-003 CONTRIBUTORS Written by Judy Muchowski, Jed Hartman, Charmaine Moyer Illustrated by Dany Galgani, Cheri Brown Production by Laura Cooper Engineering Contributions by Michael Nagy, Jeff Quilici, Peter Daifuku, Barbara Corriero, Michael Wright, Richard Wright Copyright 1996, Silicon Graphics, Inc.— All Rights Reserved This document contains proprietary and confidential information of Silicon Graphics, Inc. The contents of this document may not be disclosed to third parties, copied, or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. Silicon Graphics is a registered trademark and Indigo2, Indigo2 IMPACT, Indigo2 High IMPACT, IRIS GL, IRIX, and OpenGL are trademarks of Silicon Graphics, Inc. Extreme is a trademark used under license by Silicon Graphics, Inc. Indigo2™ and Indigo2 IMPACT™ Dual Head Installation Guide and Notes for Developers Document Number 007-9206-003 Contents Introduction xi Product Support xi 1. Installing the XL Graphics Board: Indigo2 XL/XL Configuration 1 Shutting Down and Powering Off the System 1 Removing the Cover 3 Attaching the Wrist Strap 5 Installing the Board 6 Replacing the Cover 10 2.