20 Pest Management in Organic Cacao

Total Page:16

File Type:pdf, Size:1020Kb

20 Pest Management in Organic Cacao 20 Pest Management in Organic Cacao Régis Babin* International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya Introduction Americas produced around 14% of total world production of cocoa (FAOSTAT, 2014). General information on cacao Cacao crop expansion in Africa and Asia came with the emergence of major pests Cacao, Theobroma cacao, is a small tree and diseases, which have adapted to the from the family Malvaceae, and originated crop from their local host plants. The most in different forest areas of South and Central infamous examples are the cocoa mirids America (Wood, 1985). During the 20th cen- Sahlbergella singularis Hagl. and Distantiel- tury, the cacao-growing belt spread consid- la theobroma Dist. (Hemiptera: Miridae), and erably over tropical areas of America, Africa the black pod disease due to Phytophthora and Asia, and is around 10 million ha today palmivora Butler and Phytophthora mega- (FAOSTAT, 2014). Cocoa beans are pro- karya, which became major threats for West duced for butter and powder that are used African-producing countries in the 1960s mainly in chocolate manufacture. In 2014, and 1970s, respectively (Entwistle, 1985; chocolate confectionery produced revenues Lass, 1985). In Latin America, witches’ of around US$120 bn, and these are ex- broom disease due to the basidiomycete fun- pected to grow with the developing markets gus Moniliophthora perniciosa highly im- in countries with rising middle classes pacted production of cocoa in Brazil in the (Hawkins and Chen, 2014). At the same time, 1990s (Meinhardt et al., 2008), while the cocoa world production rose constantly for frosty pod rot, due to Moniliophthora roreri, decades and reached 5 million t in 2012 that is widely spread in Latin America, cur- (FAOSTAT, 2014). In 2012, Africa alone rently leads to low yield and crop abandon- produced around 66% of total world pro- ment (Phillips-Mora et al., 2007). The cocoa duction with four countries in the top five pod borer Conopomorpha cramerella be- cocoa-producing nations, namely Ivory came a major pest of cacao in South-east Coast (with 1.6 million t), Ghana, Nigeria Asia in the mid-1980s and is considered the and Cameroon. Asia produced around 19% main threat for cocoa production in most of world production, with Indonesia being Asian-producing countries since the early the world’s second largest producer. The 2000s (Posada et al., 2011). * [email protected] © CAB International 2018. Handbook of Pest Management in Organic Farming 502 (eds V. Vacante and S. Kreiter) Pest Management in Organic Cacao 503 Cacao pests and diseases are numerous cacao farmers unprepared for facing the and no part of the plant is spared. Some in- threats (Sonwa et al., 2008). The private sec- sects are disease vectors, such as mealybugs tor was not able to offer support to the farmers, of the Pseudococcidae family, which trans- and so pest and disease pressure worsened mit the cacao swollen shoot virus (CSSV), a in the next three decades, contributing to plant pathogenic virus that infects cacao low yields and cocoa beans of poor quality. trees in West Africa, affecting yields and However, certified organic cacao exists, often killing the trees within a few years in low but growing proportions worldwide. (Domfeh et al., 2011). Global crop losses Latest statistics from the International due to these pests and diseases are usually Cocoa Organization (ICCO) estimate pro- assessed at 30–40% of the world cocoa pro- duction of certified organic cocoa at 15,000 duction (ICCO, 2013). But pest and disease t, less than 0.5% of the world production pressure is also responsible for higher costs (ICCO, 2014). A recent world survey con- of production, health and environmental ducted by the Research Institute of Organic issues due to the use of pesticides and Agriculture (FiBL) and the International farmer despondency leading to lower in- Federation of Organic Agriculture Move- vestment in cacao farming. Indeed, pest and ments (IFOAM) gives a more optimistic re- disease management is usually problematic port with the total area under organic cacao for cacao farmers, especially in Africa and assessed at 220,000 ha in 2011, around Asia, because of inadequate farmer know- 2.3% of the world cacao-growing area. This ledge and practices, as well as limited ac- is more than twice the proportion of the cess to resistant varieties and agrochemicals world’s organic agricultural land, estimated (ICCO, 2013). at 0.9% in 2011 (Willer and Lernoud, 2013). The same survey indicates that the area under organic cacao increased fivefold General considerations of organic since 2004, which is much more than most cocoa production other crops (Willer and Lernoud, 2013). The fact is that countries with the highest vol- It is important to consider that cacao is not umes of certified organic cocoa are the an industrial crop like other crops in devel- minor producers of Latin America such as oped countries. Cacao (90%) is grown by Bolivia, Mexico, Honduras and Peru, or smallholders. Their number has been esti- other minor cocoa-producing countries like mated at around 5 million worldwide (Haw- the Dominican Republic, the United Repub- kins and Chen, 2014). Although cacao is the lic of Tanzania, Madagascar and São Tomé main income source for most of them, farm- and Príncipe. By contrast, the largest cocoa ing practices still suffer from insufficient producers produce low levels of certified knowledge and capital investment (Haw- organic cocoa, with Ivory Coast producing kins and Chen, 2014). Thus cacao is often 0.0%, Indonesia 0.1%, Ghana 0.5% and grown with little or no use of synthetic in- Nigeria 0.4% (Willer and Lernoud, 2013). puts, which are usually too expensive for farmers. In Africa, this situation is due to cocoa sector evolution in the last five dec- ades. From the 1960s, governments pro- Cacao pest management, organic moted cacao cultivation and invested a lot by default of money in supporting farmers, especially for pest and disease management. In Camer- While the proportion of certified organic oon, for instance, government subsidized cocoa production is globally low worldwide, spraying campaigns for cocoa mirids and pest management on cacao is conducted for fungicide distribution for black pod disease. a significant part through ecologically sound Because of the 1990s’ economic crisis, the practices, for two main reasons: (i) some pesticide and cocoa sectors were liberalized pests have proven to be totally immune to and subsidies dropped in a few years, leaving chemical spraying because of their biology 504 R. Babin or because they develop resistance to in- and to two different tribes, the Odoniellini secticides; and (ii) the difficulties in access- and the Monaloniini. The two tribes have ing chemical inputs for smallholder farmers very different morphological traits: mirids has resulted in use of more economic prac- from tribe Odoniellini are usually robust in- tices including the evaluation of the farm sects and brownish in colour, while tribe natural environment. In fact, a significant Monaloniini are gracile and brightly coloured part of recommended (or traditional) prac- insects. Synthetic publications were de- tices currently used by farmers for insect voted to cocoa mirid systematics, biogeog- pest management are fully compatible with raphy, biology, ecology and management, in organic production standards. However, it the 1970s (Entwistle, 1972; Lavabre, 1977). has to be noted that, currently, there is no Sahlbergella singularis Hagl. and Dis- single organic solution for the control of the tantiella theobroma Distant, of the tribe Od- major pests of cacao. Farmers are usually oniellini, are two closely related species told to employ several practices to keep pest native to the forest area of West and Central infestations under economic thresholds, Africa. They were described for the first and organic pest management practices are time on cacao around the beginning of the sometimes associated with inappropriate 20th century, and since then, have consider- chemical spraying. ably spread with the crop throughout the The aim of this chapter is to collate the current cocoa-producing countries of the re- existing knowledge of the pest management gion. S. singularis and D. theobroma are practices and tactics that could be used in 10 mm long in the adult stage, and brown in organic cacao farming. The main pests of colour. Their overall appearance mimics cacao are reviewed followed by details on the bark of trees where they usually rest the strategies compatible with organic during the day. On cacao, eggs are inserted farming that have been developed for their into pods and green shoots. Mirid popula- management. tion density is usually low in cacao plant- ations with seasonal maximum density of 2500 individuals/ha (around two individ- uals per tree). However, damage to the crop Pests of Cacao is considerable, due to mirid feeding behav- iour. Like most Hemiptera, the mouthparts Major pests (stylets) are inserted in fruits at different de- velopmental stages, as well as buds and Cacao crop development in tropical Africa green shoots. A large supply of saliva with and Asia came with the emergence of major hydrolytic enzymes is injected, leading to insect pests, which adapted to the crop from the liquefaction of plant tissues, which are their local host plants. Currently, in Latin finally ingested by the bug. Mirid feeding le- America, its native continent, the crop is sions on cacao pods and shoots appear as a relatively unaffected by insect pests com- black plug of dead tissue. On young pods, pared with Africa and Asia, where some this damage may cause distortion during major pests are widely distributed causing growth, sometimes leading to yellowing extensive damage to the crop. and fruit abortion. But the main damage is on vegetative parts of trees with the death of Cocoa mirids the terminal part of branches as well as many lesions.
Recommended publications
  • Biological Aspects of Tiracola Grandirena (Herrich-Schäffer, 1868
    DOI: http://dx.doi.org/10.1590/1519-6984.12212 Biological aspects of Tiracola grandirena (Herrich-Schäffer, 1868) (Lepidoptera: Noctuidae): a polyphagous armyworm Specht, A.a,b*, Iltchenco, J.b, Fronza, E.b, Roque-Specht, VF.c, Luz, PC.b and Montezzano, DG.b aLaboratório de Entomologia, Embrapa Cerrados, BR 020, Km 18, CP 08223, CEP 73310-970 Planaltina, DF, Brazil bPrograma de Pós-graduação em Biotecnologia, Centro de Ciências Agrárias e Biológicas, Universidade de Caxias do Sul – UCS, CP 1352, CEP 95070-560, Caxias do Sul, RS, Brazil cFaculdade UnB Planaltina, Universidade de Brasília - FUP/UnB, Área Universitária n. 1, Vila Nossa Senhora de Fátima, CEP 73345-010, Planaltina, DF, Brazil *e-mail: [email protected] Received: July 4, 2012 – Accepted: November 27, 2012 – Distributed: February 28, 2014 Abstract We studied the biology of Tiracola grandirena (Herrich-Schäffer, 1868) (Lepidoptera: Noctuidae: Hadeninae) at 25 ± 1 °C, 70 ± 10% RH and 14 hours of photo phase. Three experiments, using 150 larvae each, were conducted for the larval stage. In the first, used to assess the duration and survival of all stages, insects were reared individually and fed an artificial diet (Grenee). In the second, individuals were also reared separately, but were fed leaves of 10 plants from different families. In the third, the larvae were not individualised, the food plants were rotated such as to provide three plant species every 48 hours. In the first experiment, the viability of the eggs, larvae, pupae and prepupae was 91.9, 94.7, 32.49 and 43.5%, respectively. The average duration of the egg, larvae, prepupae, pupae and adult were 6.0, 25.3, 25.7, 21.4 and 12.7 days, respectively.
    [Show full text]
  • Western Ghats), Idukki District, Kerala, India
    International Journal of Entomology Research International Journal of Entomology Research ISSN: 2455-4758 Impact Factor: RJIF 5.24 www.entomologyjournals.com Volume 3; Issue 2; March 2018; Page No. 114-120 The moths (Lepidoptera: Heterocera) of vagamon hills (Western Ghats), Idukki district, Kerala, India Pratheesh Mathew, Sekar Anand, Kuppusamy Sivasankaran, Savarimuthu Ignacimuthu* Entomology Research Institute, Loyola College, University of Madras, Chennai, Tamil Nadu, India Abstract The present study was conducted at Vagamon hill station to evaluate the biodiversity of moths. During the present study, a total of 675 moth specimens were collected from the study area which represented 112 species from 16 families and eight super families. Though much of the species has been reported earlier from other parts of India, 15 species were first records for the state of Kerala. The highest species richness was shown by the family Erebidae and the least by the families Lasiocampidae, Uraniidae, Notodontidae, Pyralidae, Yponomeutidae, Zygaenidae and Hepialidae with one species each. The results of this preliminary study are promising; it sheds light on the unknown biodiversity of Vagamon hills which needs to be strengthened through comprehensive future surveys. Keywords: fauna, lepidoptera, biodiversity, vagamon, Western Ghats, Kerala 1. Introduction Ghats stretches from 8° N to 22° N. Due to increasing Arthropods are considered as the most successful animal anthropogenic activities the montane grasslands and adjacent group which consists of more than two-third of all animal forests face several threats (Pramod et al. 1997) [20]. With a species on earth. Class Insecta comprise about 90% of tropical wide array of bioclimatic and topographic conditions, the forest biomass (Fatimah & Catherine 2002) [10].
    [Show full text]
  • Helopeltis Spp.) on Cashew (Anacardium Occidentale Linn.
    Journal of Cell and Animal Biology Vol. 6(14), pp. 200-206, September 2012 Available online at http://www.academicjournals.org/JCAB DOI: 10.5897/JCAB11.094 ISSN 1996-0867 ©2012 Academic Journals Full Length Research Paper Field survey and comparative biology of tea mosquito bug (Helopeltis spp.) on cashew (Anacardium occidentale Linn.) Srikumar K. K.1* and P. Shivarama Bhat2 Department of Entomology, Directorate of Cashew Research, Puttur, Karnataka 574 202, India. Accepted 8 August, 2012 Cashew (Anacardium occidentale Linn.) has become a very important tree crop in India. Several insect pests, however, have been recorded on cashew and prominent among which is the tea mosquito bug (TMB), Helopeltis spp. (Hemiptera: Miridae). Field survey from November 2009 to November 2011 suggests that Helopeltis antonii was dominant, which accounted for 82% of all Helopeltis spp. collected; whereas, Helopeltis bradyi and Helopeltis theivora accounted for 12 and 6%, respectively. No significant differences in egg hatchability percentage among the three species were observed. The study showed that there is significant variation in developmental rate of 2nd, 3rd and 4th instar nymphs of Helopeltis spp. The total developmental time for H. antonii, H. bradyi and H. theivora were 224.19, 211.38 and 214.59 hours, respectively. Survival rates of the nymphal instars of H. antonii were significantly high compared to H. bradyi and H. theivora. The sex ratio of H. antonii was highly female biased. The adults of H. bradyi and H.theivora survived longer and produced significantly higher number of eggs than H. antonii. The outcome of this study is very important in planning control as insect monitoring and biological studies are important components of Integrated Pest Management (IPM).
    [Show full text]
  • Towards the Development of an Integrated Pest Management
    MARDI Res.l. 17(1)(1989): 55-68 Towards the developmentof an integrated pest managementsystem of Helopeltis in Malaysia [. Azhar* Key words: Helopeltis,Integrated Pest Management (IPM), cultural control, chemical control, biological control, ants, early warning system Abstrak Helopeltisialah perosakkoko yangpenting di Malaysia.Oleh itu pengurusannyasangatlah penting untuk mendapatkanhasil koko yang menguntungkan.Memandangkan koko ialah tanamanbaru di Malaysia penyelidikandalam pengurtsan Helopeltis masih berkurangan. Kebanyakan pendekatanpengurusan perosak ini berpandukanpengalaman di Afrika Barat, keranabanyak penyelidikan telah dijalankandi negaratersebut. Namun demikian,cara pengurusannyamasih berasaskan kimia, yang menjadipendekatan utama dalam pengurusan Helopeltis di Malaysia. Perkembangankawalan kimia dibincangkan. Perkara-perkarautama dalam pengawalan biologi dan kultur juga dibincangkan.Kecetekan kefahaman terhadap prinsip-prinsip yang merangkumikaedah kawalan tersebut menyebabkan kaedah ini jarang digunakandalam pengurusan Helopeltis. Namun demikian,peranan utama semutdalam mengurangkanserangan Helopeltis, terutamanya dalam ekosistemkoko dan kelapapatut diambil kira dalam menggubalsistem pengurusanperosak bersepadu (PPB) untuk Helopeltistidak kira samaada untuk kawasanpekebun kecil ataupunladang besar. Sebagaimatlamat utama untuk mengurangkanpenggunaan racun kimia, pengawasanpopulasi Helopeltis dan kefahamanterhadap ekologinya telah menjadipenting dalam pelaksanaan PPB. Penggunaansistem amaran awal adalahsalah satu carauntuk
    [Show full text]
  • Ent18 2 117 121 (Kravchenko Et Al).Pmd
    Russian Entomol. J. 18(2): 117121 © RUSSIAN ENTOMOLOGICAL JOURNAL, 2009 The Eariadinae and Chloephorinae (Lepidoptera: Noctuoidea, Nolidae) of Israel: distribution, phenology and ecology Eariadinae è Chloephorinae (Lepidoptera: Noctuoidea, Nolidae) Èçðàèëÿ: ðàñïðåäåëåíèå, ôåíîëîãèÿ è ýêîëîãèÿ V.D. Kravchenko1, Th. Witt2, W. Speidel2, J. Mooser3, A. Junnila4 & G.C. Müller4 Â.Ä. Êðàâ÷åíêî1,Ò. Âèòò2, Â. Øïàéäåëü2, Äæ. Ìîçåð3, Ý. Äæàííèëà4 , Ã.Ê. Ìþëëåð4 1 Department of Zoology, Tel Aviv University, Tel Aviv, Israel. 2 Museum Witt, Tengstr. 33, D-80796 Munich, Germany. 3 Seilerbruecklstr. 23, D-85354 Freising, Germany. 4 Department of Parasitology, Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University Hadassah- Medical School, Jerusalem, Israel. KEY WORDS: Lepidoptera, Israel, Levant, Nolidae, Eariadinae, Chloephorinae, phenology, ecology, host- plants. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Lepidoptera, Èçðàèëü, Ëåâàíò, Nolidae, Eariadinae, Chloephorinae, ôåíîëîãèÿ, ýêîëîãèÿ, êîðìîâûå ðàñòåíèÿ. ABSTRACT: The distribution, flight period and âèä, Microxestis wutzdorffi (Püngeler, 1907), ñîáðàííûé abundance of six Israeli Eariadinae and eight Chloe- 80 ëåò íàçàä, íå îáíàðóæåí çà âðåìÿ ðàáîòû phorinae species (Noctuoidea, Nolidae) are summa- Èçðàèëüñêî-Ãåðìàíñêîãî Ïðîåêòà ïî èçó÷åíèþ Lepi- rized. Seven species are new records for Israel: Earias doptera. Äëÿ âñåõ âèäîâ ïðèâîäÿòñÿ äàííûå ïî biplaga Walker, 1866, Earias cupreoviridis (Walker, ÷èñëåííîñòè, ðàñïðåäåëåíèþ, ôåíîëîãèè è ýêîëîãèè. 1862), Acryophora dentula (Lederer, 1870), Bryophilop- Äëÿ ïÿòè âèäîâ âïåðâûå óêàçàíû êîðìîâûå ðàñòåíèÿ. sis roederi (Standfuss, 1892), Nycteola revayana (Sco- poli, 1772), Nycteola columbana (Turner, 1925) and Nycteola asiatica (Krulikovsky, 1904). Three species, Introduction E. biplaga E. cupreoviridis and N. revayana, are re- corded for the first time from the Levante. Only one The Nolidae is a family that has changed in its species, Microxestis wutzdorffi (Püngeler, 1907), col- coverage several times during the past.
    [Show full text]
  • The Lepidoptera Rapa Island
    J. F. GATES CLA, The Lepidoptera Rapa Island SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • 1971 NUMBER 56 .-24 f O si % r 17401 •% -390O i 112100) 0 is -•^ i BLAKE*w 1PLATEALP I5 i I >k =(M&2l2Jo SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 56 j. F. Gates Clarke The Lepidoptera of Rapa Island SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1971 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields.
    [Show full text]
  • New Subdivision of Cotton Production Area of Côte D'ivoire Based on The
    Journal of Entomology and Zoology Studies 2021; 9(3): 50-57 E-ISSN: 2320-7078 P-ISSN: 2349-6800 New subdivision of cotton production area of Côte www.entomoljournal.com JEZS 2021; 9(3): 50-57 d’Ivoire based on the infestation of main © 2021 JEZS Received: 25-03-2021 arthropod pests Accepted: 27-04-2021 Kouakou Malanno National Center for Agronomic Kouakou Malanno, Bini Kouadio Kra Norbert, Ouattara Bala Mamadou Research, Cotton Research and Ochou Ochou Germain Station of Bouake, Entomology Laboratory, 01 BP 633 Bouaké 01, Côte d’Ivoire DOI: https://doi.org/10.22271/j.ento.2021.v9.i3a.8689 Bini Kouadio Kra Norbert Abstract National Center for Agronomic Variations in populations of arthropod pests, under the influence of climate change, compromise the Research, Cotton Research effectiveness of the cotton phytosanitary protection strategy in Côte d'Ivoire. This study aims to establish Station of Bouake, Entomology a new classification of cotton production areas, on the basis of predominant pests. A monitoring was Laboratory, 01 BP 633 Bouaké therefore carried out from 2016 to 2019 in 400 farmers' fields. In these fields, surveys were conducted 01, Côte d’Ivoire weekly, from the 30th to the 122nd day after emergence. Data analysis, through Principal Component Analysis, identified four groups of localities. The first group includes the northeastern localities (4°W to Ouattara Bala Mamadou Department of Physical 5°W: 8°N to 10.5°N) such as Kong, Ouangolodougou, Sordi, Tiékpè, Kaouara. This area is characterized Geography, University Alassane by high infestations of most pests (jassid, white flies, exocarpic lepidoptera, endocarpic lepidoptera, Ouattara, Côte d'Ivoire phyllophagous lepidoptera and mites).
    [Show full text]
  • Farmers' Knowledge and Perception of Cocoa Insect Pests and Damage
    Journal of Plant Protection Research ISSN 1427-4345 ORIGINAL ARTICLE Farmers’ knowledge and perception of cocoa insect pests and damage and the implications for pest management on cocoa in Ghana Godfred Kweku Awudzi1*, Richard Adu-Acheampong1, Silas Wintuma Avicor1, Yahaya Bukari2, Millicent Adomaa Yeboah3, Edmond Kwadwo Oti Boateng4, Stephen Kwame Ahadzi1 1 Entomology, Cocoa Research Institute of Ghana (CRIG), Ghana 2 Plant Pathology, Cocoa Research Institute of Ghana (CRIG), Ghana 3 Extension, Cocoa Health and Extension Division (CHED), Ghana 4 Social Science and Statistics Unit (SSU), Cocoa Research Institute of Ghana (CRIG), Ghana Vol. 61, No. 2: 145–155, 2021 Abstract DOI: 10.24425/jppr.2021.137022 Annual losses of cocoa in Ghana to insect pests are significant. The use of integrated pest management (IPM) tools is critical for effective pest management. Previous studies on Received: November 13, 2020 the subject have considered how farmers perceive the economic impact of insect pests on Accepted: December 23, 2020 cocoa. These studies however did not investigate farmers’ ability to identify pests, associ- ated damage symptoms and their implications for pest management. The current study, *Corresponding address: therefore, assessed farmers’ ability to correctly associate insect damage with the pest [email protected] species that caused it. A total of 600 farmers were interviewed in the Eastern, Ashanti, Western, Brong Ahafo and Central Regions of Ghana with a structured open and closed- ended questionnaire. Most farmers (>85%) were unable to correctly identify and associ- ate pests to their damage. The majority (>80%) of farmers also could not link the imma- ture stages of insect pests to their adult stages.
    [Show full text]
  • Synopsis and Keys to the Tribes, Genera, and Species of Miridae (Hemiptera: Heteroptera) of Minas Gerais, Brazil Part I: Bryocorinae
    Zootaxa 2920: 1–41 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Synopsis and keys to the tribes, genera, and species of Miridae (Hemiptera: Heteroptera) of Minas Gerais, Brazil Part I: Bryocorinae PAULO SERGIO FIUZA FERREIRA1 & THOMAS J. HENRY2 1Museu de Entomologia, Departamento de Biologia Animal, Universidade Federal de Viçosa, 36570-000, Viçosa, Brazil. E-mail: [email protected] 2Systematic Entomology Laboratory, Agricultural Research Service, United States Department of Agriculture, c/o National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA. E-mail: [email protected] Table of contents Abstract . 3 Introduction . 3 Material and methods . 4 Minas Gerais geography . 4 Taxonomic synopsis . 5 Subfamily Bryocorinae Baerensprung . 5 Key to Minas Gerais Tribes of Bryocorinae . 5 Tribe Bryocorini Baerensprung . 6 Genus Monalocoris Dahlbom . 6 Key to species of Monalocoris of Minas Gerais . 6 Monalocoris carioca Carvalho and Gomes . 6 Monalocoris pallidiceps (Reuter) . 6 Tribe Dicyphini Reuter . 7 Key to the genera of Dicyphini of Minas Gerais . 7 Genus Campyloneuropsis Poppius . 7 Key to Minas Gerais species of Campyloneuropsis . 7 Campyloneuropsis infumatus (Carvalho) . 7 Campyloneuropsis nigroculatus (Carvalho) . 8 Genus Engytatus Reuter . 8 Key to the Minas Gerais species of Engytatus . 8 Engytatus modestus (Distant) . 8 Engytatus varians (Distant) . 9 Genus Macrolophus Fieber . 9 Key to Minas Gerais species of Macrolophus . 9 Macrolophus aragarsanus Carvalho . 10 Macrolophus basicornis (Stål) . 10 Macrolophus cuibanus Carvalho . 10 Macrolophus praeclarus (Distant) . 11 Genus Tupiocoris China and Carvalho . 11 Key to the Minas Gerais species of Tupiocoris. 11 Tupiocoris cucurbitaceus (Spinola) .
    [Show full text]
  • Cocoa Mirids (274)
    Pacific Pests, Pathogens and Weeds - Online edition Cocoa mirids (274) Summary Narrow distribution. Indonesia, Malaysia, Papua New Guinea. On cocoa, and many other crops. Important pests. Eggs laid in cocoa pods. Pseudodoniella has hump, Helopeltis has long antennae, and a spine on the back. Direct damage is done when mirids feed on young and mature pods, and shoots, and indirectly allowing entry of fungi, causing rots and dieback. Cultural control: avoid Leucaena shade over cocoa in mirid areas, instead use coconuts to encourage ants that are antagonistic to mirids. Chemical control: use synthetic pyrethroids (e.g., bifenthrin) or imidacloprid, treating 'hot spots' only, not the whole plantation.. Photo 1. Pseudodoniella species from Papua New Guinea. Note the 'hump' on the back. Common Name Cocoa mirids Scientific Name Helopeltis clavifer and Pseudodoniella species (Pseudodoniella typica, Pseudodoniella laensis, Pseudodoniella pacifica). AUTHO R Grahame Jackson Information from Moxon JE (1992) Insect pests of cocoa in Papua New Guinea, importance and control. In: Keane PJ, Putter CAJ (eds) 'Cocoa pest and disease management in the Southeast Asia and Australasia'. FAO Plant Production and Protection Paper 112, pp 129-144. Rome; and Hori K (2000) Possible cause of disease symptoms resulting from the feeding of phytophagous heteroptera. In: Schaefer CW , Panizzi AR (eds.) 'Heteroptera of economic importance'. CRC Press, pp 11-36. Photo 3 Graeme Cocks Bow erbird. (http://w w w .bow erbird.org.au/observations/21199); and from End MJ, et al. (Eds.) 2017. Technical guidelines for the safe Photo 2. Pseudodoniella species, as in Photo 1. movement of cacao germplasm. Revised from the FAO /IPGRI Technical Guidelines No.
    [Show full text]
  • Cerambycid Beetle Species with Similar Pheromones Are Segregated by Phenology and Minor Pheromone Components
    J Chem Ecol (2015) 41:431–440 DOI 10.1007/s10886-015-0571-0 Cerambycid Beetle Species with Similar Pheromones are Segregated by Phenology and Minor Pheromone Components Robert F. Mitchell1,4 & Peter F. Reagel 1,5 & Joseph C. H. Wong1 & Linnea R. Meier1 & Weliton Dias Silva3 & Judith Mongold-Diers1 & Jocelyn G. Millar2 & Lawrence M. Hanks1 Received: 1 December 2014 /Revised: 11 February 2015 /Accepted: 27 February 2015 /Published online: 16 April 2015 # Springer Science+Business Media New York 2015 Abstract Recent research has shown that volatile sex and periods of adults, and/or by minor pheromone components that aggregation-sex pheromones of many species of cerambycid act as synergists for conspecifics and antagonists for beetles are highly conserved, with sympatric and synchronic heterospecifics. species that are closely related (i.e., congeners), and even more distantly related (different subfamilies), using the Keywords Reproductive isolation . Sex pheromone . same or similar pheromones. Here, we investigated mecha- Aggregation pheromone . Cerambycidae . Longhorned nisms by which cross attraction is averted among seven beetle . Anelaphus pumilus . Cyrtophorus verrucosus . cerambycid species that are native to eastern North America Euderces pini . Neoclytus caprea . Phymatodes aereus . and active as adults in spring: Anelaphus pumilus (Newman), Phymatodes amoenus . Phymatodes varius Cyrtophorus verrucosus (Olivier), Euderces pini (Olivier), Neoclytus caprea (Say), and the congeners Phymatodes aereus (Newman), P. amoenus (Say), and P.
    [Show full text]
  • Efficacy of Bt Proteins and the Effect of Temperature on the Development of Spiny Bollworm in South Africa
    Efficacy of Bt proteins and the effect of temperature on the development of spiny bollworm in South Africa D Fourie 20670591 Dissertation submitted in fulfilment of the requirements for the degree Magister Scientiae in Environmental Sciences at the Potchefstroom Campus of the North-West University Supervisor: Prof MJ du Plessis Co-supervisor: Prof J van den Berg May 2016 Acknowledgement I would like to thank the Lord above for giving me the strength to finish this project, the love and passion I have for nature and the opportunity to do something I feel passionate about. Thank you Lord for the ability to study, and all the opportunities You send my way. With Your grace, anything is possible. I would like to thank my supervisor prof. Hannalene du Plessis for all her support, inspiration and guidance during this project, but particularly for her assistance in the statistical analysis. I learned a lot and appreciate all the time and effort we spent to finish this project. I would also like to thank my co-supervisor prof. Johnnie van den Berg for the support to finish this project and his assistance and time during the writing of this dissertation, I appreciate it a lot. I would like to thank all my friends for their help, support and encouragement during the time of this project. I am truly grateful for your help during field work and your assistance in the laboratory. A special thanks to Phillip Mphuthi for all his help in collecting Earias spp. moths. I appreciate all your help during the late hours and your hospitality during my stay in Rustenburg.
    [Show full text]