1984) Also 1 1 .9% 3 1 .8%. 1984

Total Page:16

File Type:pdf, Size:1020Kb

1984) Also 1 1 .9% 3 1 .8%. 1984 EGG LAYING IN SMOOTH NEWTS 7 number produced hy. the fe male". Ve rrell ( 1984) also reductions of a population size as is the case of many noted that the majority of fe males remain unresponsive Ti·i111rus species. to male courtship for 20 days after the first insemination. This study shows that 44% of non­ ACKNOWLEDGEMENTS inseminatecl fe males eagerly fo llowed a courting male until the encl of sexual sequences. I would like to thank Dr Jan Rafit1ski fo r his guidance The prolonged receptiveness of fe males and the throughout this study and helpful comments in the successive taking up of spermatophores might have both preparation of this manuscript. I would also like to proximate. physiological and ultimate, adaptive reasons. thank Dr Neil Sanderson fo r his helpful comments on When the tubules are filled with a great number of the manuscript. spermatozoa from several spermatophores (or from one REFERENCES large spermatophore) the fu nctioning of the sperm distribution might he more efficient. Baylis. H.A. (1939). Delayed reproduction in the spotted It seems that the amount of sperm reduces quickly in salamander. Proc. Zoo/. Soc. Lond. I09A. 243-246. females which lay eggs each day, as some time after Bell. G. (1977). The life of the smooth newt (1hwrus vulgaris) insemination the number of unferiilizecl eggs increases. after metamorphosis. Ecol. Monogr. 47. 279-299. This might explain the phenomenon, that the multiple Hagstrom. T. ( 1980). Egg production of newt (Triturus v11/garis and in southwestern Sweden. I. inseminated females produce on average 11.9% T cristatus) ASRA .Joumal 1-8. unfertilized eggs, while once inseminated as much as Halliday. T.R. and Verrell. P.A. (1984). Sperm competition in 31.8%. amphibians. In: Smith. R.L. (ed.). Sperm cornpelition and In this experiment some of the fe males after the Evolutio11 of Animal Mating Systems. Academic Press. insemination with one spermatophore only produced a New York. pp. 487-508. large number of eggs which is close to a measured value Joly. J. ( 1966). Ecologie et cycle sexuelle de Salanwndra of the complete clutch size for a season (Hagstrom, salanwndra (L). These. CNRS. 1980). A similar phenomenon was observed in Rafiriski. J.N. (198 1). Multiple paternity in a natural population Ambystoma tigrinum and Desmognathus orhrophaeus of the alpine newt. Trit11n.1s alpestris (Laur.). Amphihia­ (Halliday and Ve rrell, 1984). The size of a Reptilia 2. 282. Smith. M. (1954). Collins. spermatophore is highly variable and most probably The British Amphibian and Reptiles. London. depends on the level of male sexual activity. It might be Verrell. P.A. (1984). The responses of inseminated female that a large spermatophore may contain as may sperms smooth newts, Triturus vu/garis. to further exposure to as several smaller ones. males. British .Journal of Herpetology 6. 414-415. Multiple insemination can significantly increase Verrell, P.A. and Halliday, T. (1985). Reproductive dynamics of genetic variation of the progeny produced by a fe male. a population of smooth newts, Triturus v11/garis. in southern This might be especially significant for a species which England. Herpetologica41, 386-395. colonises transient environments and experiences sharp HERPETOLOGICALJOURNAL. Vol. 2, pp. 7-18 (1992) EGG, CLUTCH AND MATERNAL SIZES IN LIZARDS: INTRA- AND INTERSPECIFIC RELATIONS IN NEAR-EASTERN AGAMIDAE AND LACERTIDAE ELIEZER FRANKENBERG1 AND YEHUDAH L. WERNER2 * 2 1Nat11re Reserves Authority. 78 Yim1eyah11 St.. 94467.lemsalem. Israel 2Depanment of Evolution. Systematics and Ecology. TheAlexander Silberman Institute of Life Sciences. The Hehrew U11iver.>ity of .Jen1salem. 91904 .Jerusalem. Israel *Author for co"espondence (Accepted 18.5. 90) ABSTRACT We provide data on the fecundity of locally common Israeli reptiles, and use these data to examine current ideas on the reproductive ecology of lizards. Our methodology was selected in consideration of the acute problems of nature conservation in Israel. In the museum collections of the Hebrew University of Jerusalem and Tel Aviv University we used radiography to locate the shelled oviductal eggs of 164 fe male lizards. belonging to eleven species (Agamidae and Lacertidae). Each sample sums the species· variation over its range and over diffe rent years. Female body size. egg number and egg volume were determined. Specific clutch volumes. relative to maternal body lengths. resembled those reported in iguanid lizards from tropical America. Clutch size varied intraspecifically and. in most speci'es, correlated to maternal size. In others, egg size was more influenced by maternal size. We argue that the latter species oviposit in more stable environments than do the majority. 8 ELIEZER FRAN KENBERG AND YEHUDAH L. WERNER INTRODUCTION The aspect of reproductive ecology most commonly studied in reptiles is the numher of eggs in a clutch The amount of energy availahle to an organism at any (Turner. 1977; Fitch, 1985). From studies elsewhere this given time is fi nite; the amount expended may he numher is known to vary intraspecifically hetween partitioned into mainlenance, growth and reproduction. populations (Kramer, 1946; Fitch, 1985). In some In lizards the allocation of energy to reproduction has species. clutches are larger in warmer parts of the heen reviewed hy several investigators. The main areas specific range; this results in part fro m the variation in of concern have heen. first. whether and what fe male size. larger fe males producing larger clutches diffe rences in parental investment exist hetween species (Oliver. 1955; Fitch, 1970). But in a majority of wide­ differing in hody size. hody shape. environment or ranging new-world species clutches are larger in cold hehaviour. and how such diffe rences may he explained. latitudes (and high altitudes), allegedly in compensation forthe smaller number of clutches in the shorter season (Turner. 1977). Nevertheless Vitt and Price ( 1982) listed several reports in which also the size of the eggs had been considered. These authors calculated the relation of clutch mass to parent mass, and concluded that this relation diffe rs hetween ecological types and hetween fa milies. The accuracy of some of the data and hence the validity of some of the conclusions have since heen questioned hy We rner (1988). Dunham, Miles and Reznick (1988) analyzed the relations among clutch size, relative clutch mass and foraging mode in reptiles and found that active foragers produce significantly smaller �' clutches than sit and wait foragers, with significantly 1''"1''''1" '1''' '''\�l''''I� '''' smaller relative clutch mass. They also found a relation 1 2 3 t.. s r, 7 0 9 between clutch size and habitat: fossorial (burrowing) Fig. I. A typical small deser1 lacer1id lizard, Mesalina guttulata. lizards produced the smallest clutches, arboreal and and her freshly laid (modal) clutch of four eggs (female arenicolous (sand-dwelling) lizards produced larger collected in the Judean Desert on 5.IV. 1981. oviposited and clutches and terrestrial and saxicolous (rock-dwelling) photographed on 12.IV.81; from Kodachrome diapositive). lizards produced the largest clutches. Little is known of the reproductive ecology of Israeli reptiles, as, with the exception of a fe w species, mostly For example, species of lacertid lizards (Fig. 1) have venomous snakes and gekkonid lizards (Mendelssohn, been characterized by clutches which range from 14 to 1963, 1965; We rner, 1965, 1966a, 1986a, 1988; Dmi'el, 40% of the pregnant fe male's weight. And second, how a 1967; Orr, Shachak and Steinberger, 1979), knowledge is fe male with limited energy available for reproduction limited to the scanty information in local general texts reaches a compromise between emphasizing either egg (Margolin, 1959; Werner,1966b, 1973; Arbel, 1984; Dor, number or energy content per egg. The latter value is 1987). roughly, though not precisely, paralleled by egg mass In this paper we examine the relationships among and size (Tinkle, 1969; Ballinger and Clark, 1973; clutch size, egg volume, clutch volume and maternal Emlen, 1973; Ballinger, 1978; Vitt, 1978; Huey and size, in eleven common oviparous Israeli lizards in Pianka, 1981; Vitt and Price, 1982; Fitch, 1985; Pianka, which clutch size is variable. Our aims are, first, to 1986). provide basic data about the fecundity of Israeli reptiles. Several factors affe ct the apportionment of energy in Such information is necessary (though insufficient) for egg production, since natural selection should result in the planning of nature conservation. Second, to an energetic compromise that maximizes the parent's examine some of the currently prevailing total (long-range) contrihution to future generations. generalizations (quoted above) concerning the Larger eggs may be more resistant (especially to reproductive ecology of lizards. drought) during incubation (Ackerman, Seagrave, Dmi'el and Ar, 1985). They give rise to larger young MATERIALS AND METHODS (Ferguson, Brown and DeMarco, 1982; We rner, l 986a, 1988), which are able to utilize a broader range of food SPECIES items, more ahle to withstand a shortage of food, and Gravid fe males of eleven lizard species (agamids and compete better in social encounters (Fitch, 1970; lacertids) were examined. These are listed in Ta hle 1, Fe rguson et al., 1982; Rand, 982). On the other hand, a I which details their fu ll specific, and, where applicahle, low level of competition, or a high level of predation of suhspecific, names. Most of these species have heen a type not affected hy juvenile size, may press for a heautifully descrihed and depicted in Anderson (1898). strategy of producing many small eggs. The production For the others (and some of the same) the reader is of large numhers of small eggs may he adaptive also in referred to Barash and Hoofien (1956), Ba�oglu and coarse-grained patchy environments (Emlen, 1973) or in Baran (1977), Arnold, Burton and Ovendon (1978) and those changing in time. As the environment hecomes Arhel (1984). The taxonomy of the Agamidae has heen less stable, selection favours greater fecundity rather reviewed hy We rmuth ( 1967) and that of the genus than survivorship (Cody, 1966).
Recommended publications
  • The First Miocene Fossils of Lacerta Cf. Trilineata (Squamata, Lacertidae) with A
    bioRxiv preprint doi: https://doi.org/10.1101/612572; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The first Miocene fossils of Lacerta cf. trilineata (Squamata, Lacertidae) with a comparative study of the main cranial osteological differences in green lizards and their relatives Andrej Čerňanský1,* and Elena V. Syromyatnikova2, 3 1Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 84215, Bratislava, Slovakia 2Borissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, 117997 Moscow, Russia 3Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, St. Petersburg, 199034 Russia * Email: [email protected] Running Head: Green lizard from the Miocene of Russia Abstract We here describe the first fossil remains of a green lizardof the Lacerta group from the late Miocene (MN 13) of the Solnechnodolsk locality in southern European Russia. This region of Europe is crucial for our understanding of the paleobiogeography and evolution of these middle-sized lizards. Although this clade has a broad geographical distribution across the continent today, its presence in the fossil record has only rarely been reported. In contrast to that, the material described here is abundant, consists of a premaxilla, maxillae, frontals, bioRxiv preprint doi: https://doi.org/10.1101/612572; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • An Annotated Type Catalogue of the Dragon Lizards (Reptilia: Squamata: Agamidae) in the Collection of the Western Australian Museum Ryan J
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 115–132 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.115-132 An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. Biologic Environmental Survey, 24–26 Wickham St, East Perth, Western Australia 6004, Australia. Email: [email protected] ABSTRACT – The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, holotype, syntype, paratype, dragon lizard, nomenclature. INTRODUCTION Australia was named by John Edward Gray in 1825, The Agamidae, commonly referred to as dragon Clamydosaurus kingii Gray, 1825 [now Chlamydosaurus lizards, comprises over 480 taxa worldwide, occurring kingii (Gray, 1825)].
    [Show full text]
  • Iguanid and Varanid CAMP 1992.Pdf
    CONSERVATION ASSESSMENT AND MANAGEMENT PLAN FOR IGUANIDAE AND VARANIDAE WORKING DOCUMENT December 1994 Report from the workshop held 1-3 September 1992 Edited by Rick Hudson, Allison Alberts, Susie Ellis, Onnie Byers Compiled by the Workshop Participants A Collaborative Workshop AZA Lizard Taxon Advisory Group IUCN/SSC Conservation Breeding Specialist Group SPECIES SURVIVAL COMMISSION A Publication of the IUCN/SSC Conservation Breeding Specialist Group 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124 USA A contribution of the IUCN/SSC Conservation Breeding Specialist Group, and the AZA Lizard Taxon Advisory Group. Cover Photo: Provided by Steve Reichling Hudson, R. A. Alberts, S. Ellis, 0. Byers. 1994. Conservation Assessment and Management Plan for lguanidae and Varanidae. IUCN/SSC Conservation Breeding Specialist Group: Apple Valley, MN. Additional copies of this publication can be ordered through the IUCN/SSC Conservation Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124. Send checks for US $35.00 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US Banlc Funds may be wired to First Bank NA ABA No. 091000022, for credit to CBSG Account No. 1100 1210 1736. The work of the Conservation Breeding Specialist Group is made possible by generous contributions from the following members of the CBSG Institutional Conservation Council Conservators ($10,000 and above) Australasian Species Management Program Gladys Porter Zoo Arizona-Sonora Desert Museum Sponsors ($50-$249) Chicago Zoological
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters David F
    Brigham Young University Science Bulletin, Biological Series Volume 12 | Number 3 Article 1 1-1971 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Department of Biology, Southern Connecticut State College, New Haven, Connecticut Wilmer W. Tanner Department of Zoology, Brigham Young University, Provo, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Avery, David F. and Tanner, Wilmer W. (1971) "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters," Brigham Young University Science Bulletin, Biological Series: Vol. 12 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol12/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. S-^' Brigham Young University f?!AR12j97d Science Bulletin \ EVOLUTION OF THE IGUANINE LIZARDS (SAURIA, IGUANIDAE) AS DETERMINED BY OSTEOLOGICAL AND MYOLOGICAL CHARACTERS by David F. Avery and Wilmer W. Tanner BIOLOGICAL SERIES — VOLUME Xil, NUMBER 3 JANUARY 1971 Brigham Young University Science Bulletin
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Evolution of Limblessness
    Evolution of Limblessness Evolution of Limblessness Early on in life, many people learn that lizards have four limbs whereas snakes have none. This dichotomy not only is inaccurate but also hides an exciting story of repeated evolution that is only now beginning to be understood. In fact, snakes represent only one of many natural evolutionary experiments in lizard limblessness. A similar story is also played out, though to a much smaller extent, in amphibians. The repeated evolution of snakelike tetrapods is one of the most striking examples of parallel evolution in animals. This entry discusses the evolution of limblessness in both reptiles and amphibians, with an emphasis on the living reptiles. Reptiles Based on current evidence (Wiens, Brandley, and Reeder 2006), an elongate, limb-reduced, snakelike morphology has evolved at least twenty-five times in squamates (the group containing lizards and snakes), with snakes representing only one such origin. These origins are scattered across the evolutionary tree of squamates, but they seem especially frequent in certain families. In particular, the skinks (Scincidae) contain at least half of all known origins of snakelike squamates. But many more origins within the skink family will likely be revealed as the branches of their evolutionary tree are fully resolved, given that many genera contain a range of body forms (from fully limbed to limbless) and may include multiple origins of snakelike morphology as yet unknown. These multiple origins of snakelike morphology are superficially similar in having reduced limbs and an elongate body form, but many are surprisingly different in their ecology and morphology. This multitude of snakelike lineages can be divided into two ecomorphs (a are surprisingly different in their ecology and morphology.
    [Show full text]
  • Molecular Phylogenetics and Evolution 55 (2010) 153–167
    Molecular Phylogenetics and Evolution 55 (2010) 153–167 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Conservation phylogenetics of helodermatid lizards using multiple molecular markers and a supertree approach Michael E. Douglas a,*, Marlis R. Douglas a, Gordon W. Schuett b, Daniel D. Beck c, Brian K. Sullivan d a Illinois Natural History Survey, Institute for Natural Resource Sustainability, University of Illinois, Champaign, IL 61820, USA b Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303-3088, USA c Department of Biological Sciences, Central Washington University, Ellensburg, WA 98926, USA d Division of Mathematics & Natural Sciences, Arizona State University, Phoenix, AZ 85069, USA article info abstract Article history: We analyzed both mitochondrial (MT-) and nuclear (N) DNAs in a conservation phylogenetic framework to Received 30 June 2009 examine deep and shallow histories of the Beaded Lizard (Heloderma horridum) and Gila Monster (H. Revised 6 December 2009 suspectum) throughout their geographic ranges in North and Central America. Both MTDNA and intron Accepted 7 December 2009 markers clearly partitioned each species. One intron and MTDNA further subdivided H. horridum into its Available online 16 December 2009 four recognized subspecies (H. n. alvarezi, charlesbogerti, exasperatum, and horridum). However, the two subspecies of H. suspectum (H. s. suspectum and H. s. cinctum) were undefined. A supertree approach sus- Keywords: tained these relationships. Overall, the Helodermatidae is reaffirmed as an ancient and conserved group. Anguimorpha Its most recent common ancestor (MRCA) was Lower Eocene [35.4 million years ago (mya)], with a 25 ATPase Enolase my period of stasis before the MRCA of H.
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1970-08-01 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Avery, David F., "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters" (1970). Theses and Dissertations. 7618. https://scholarsarchive.byu.edu/etd/7618 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. EVOLUTIONOF THE IGUA.NINELI'ZiUIDS (SAUR:U1., IGUANIDAE) .s.S DETEH.MTNEDBY OSTEOLOGICJJJAND MYOLOGIC.ALCHARA.C'l'Efi..S A Dissertation Presented to the Department of Zoology Brigham Yeung Uni ver·si ty Jn Pa.rtial Fillf.LLlment of the Eequ:Lr-ements fer the Dz~gree Doctor of Philosophy by David F. Avery August 197U This dissertation, by David F. Avery, is accepted in its present form by the Department of Zoology of Brigham Young University as satisfying the dissertation requirement for the degree of Doctor of Philosophy. 30 l'/_70 ()k ate Typed by Kathleen R. Steed A CKNOWLEDGEHENTS I wish to extend my deepest gratitude to the members of m:r advisory committee, Dr. Wilmer W. Tanner> Dr. Harold J. Bissell, I)r. Glen Moore, and Dr. Joseph R. Murphy, for the, advice and guidance they gave during the course cf this study.
    [Show full text]
  • An Etymological Review of the Lizards of Iran: Families Lacertidae, Scincidae, Uromastycidae, Varanidae
    International Journal of Animal and Veterinary Advances 3(5): 322-329, 2011 ISSN: 2041-2908 © Maxwell Scientific Organization, 2011 Submitted: July 28, 2011 Accepted: September 25, 2011 Published: October 15, 2011 An Etymological Review of the Lizards of Iran: Families Lacertidae, Scincidae, Uromastycidae, Varanidae 1Peyman Mikaili and 2Jalal Shayegh 1Department of Pharmacology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran 2Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, Shabestar Branch, Islamic Azad University, Shabestar, Iran Abstract: The etymology of the reptiles, especially the lizards of Iran has not been completely presented in other published works. Iran is a very active geographic area for any animals, and more especially for lizards, due to its wide range deserts and ecology. We have attempted to ascertain, as much as possible, the construction of the Latin binomials of all Iranian lizard species. We believe that a review of these names is instructive, not only in codifying many aspects of the biology of the lizards, but in presenting a historical overview of collectors and taxonomic work in Iran and Middle East region. We have listed all recorded lizards of Iran according to the order of the scientific names in the book of Anderson, The Lizards of Iran. All lizard species and types have been grouped under their proper Families, and then they have been alphabetically ordered based on their scientific binominal nomenclature. We also examined numerous published works in addition to those included in the original papers presenting each binomial. Key words: Etymology, genera, iran, lizards, Middle East, species, taxonomy. INTRODUCTION comprising the fauna of Iran, including Field guide to the reptiles of Iran, (Vol.
    [Show full text]
  • Redescription, Molecular Characterisation and Taxonomic Re-Evaluation of a Unique African Monitor Lizard Haemogregarine Karyolysus Paradoxa (Dias, 1954) N
    Cook et al. Parasites & Vectors (2016) 9:347 DOI 10.1186/s13071-016-1600-8 RESEARCH Open Access Redescription, molecular characterisation and taxonomic re-evaluation of a unique African monitor lizard haemogregarine Karyolysus paradoxa (Dias, 1954) n. comb. (Karyolysidae) Courtney A. Cook1*, Edward C. Netherlands1,2† and Nico J. Smit1† Abstract Background: Within the African monitor lizard family Varanidae, two haemogregarine genera have been reported. These comprise five species of Hepatozoon Miller, 1908 and a species of Haemogregarina Danilewsky, 1885. Even though other haemogregarine genera such as Hemolivia Petit, Landau, Baccam & Lainson, 1990 and Karyolysus Labbé, 1894 have been reported parasitising other lizard families, these have not been found infecting the Varanidae. The genus Karyolysus has to date been formally described and named only from lizards of the family Lacertidae and to the authors’ knowledge, this includes only nine species. Molecular characterisation using fragments of the 18S gene has only recently been completed for but two of these species. To date, three Hepatozoon species are known from southern African varanids, one of these Hepatozoon paradoxa (Dias, 1954) shares morphological characteristics alike to species of the family Karyolysidae. Thus, this study aimed to morphologically redescribe and characterise H. paradoxa molecularly, so as to determine its taxonomic placement. Methods: Specimens of Varanus albigularis albigularis Daudin, 1802 (Rock monitor) and Varanus niloticus (Linnaeus in Hasselquist, 1762) (Nile monitor) were collected from the Ndumo Game Reserve, South Africa. Upon capture animals were examined for haematophagous arthropods. Blood was collected, thin blood smears prepared, stained with Giemsa, screened and micrographs of parasites captured. Haemogregarine morphometric data were compared with the data for named haemogregarines of African varanids.
    [Show full text]
  • Pressing Problems: Distribution, Threats, and Conservation Status of the Monitor Lizards (Varanidae: Varanus Spp.) of Southeast
    March 2013 Open Access Publishing Volume 8, Monograph 3 The Southeast Asia and Indo-Australian archipelago holds 60% of the varanid global diversity. The major threats to varanids in this region include habitat destruction, international commercialism, and human consumption. Pressing Problems: Distribution, Threats, and Conservation Status of the Monitor Lizards (Varanidae: Varanus spp.) of Southeast Asia and the Indo-Australian Archipelago Monograph 3. André Koch, Thomas Ziegler, Wolfgang Böhme, Evy Arida and Mark Auliya ISSN: 1931-7603 Published in Partnership with: Indexed by: Zoological Record, Scopus, Current Contents / Agriculture, Biology & Environmental Sciences, Journal Citation Reports, Science Citation Index Extended, EMBiology, Biology Browser, Wildlife Review Abstracts, Google Scholar, and is in the Directory of Open Access Journals. PRESSING PROBLEMS: DISTRIBUTION, THREATS, AND CONSERVATION STATUS OF THE MONITOR LIZARDS (VARANIDAE: VARANUS SPP.) OF SOUTHEAST ASIA AND THE INDO-AUSTRALIAN ARCHIPELAGO MONOGRAPH 3. 1 2 1 3 4 ANDRÉ KOCH , THOMAS ZIEGLER , WOLFGANG BÖHME , EVY ARIDA , AND MARK AULIYA 1Zoologisches Forschungsmuseum Alexander Koenig & Leibniz Institute for Animal Biodiversity, Section of Herpetology, Adenauerallee 160, 53113 Bonn, Germany, email: [email protected] 2AG Zoologischer Garten Köln, Riehler Straße 173, 50735 Köln, Germany 3Museum Zoologicum Bogoriense, Jl. Raya Bogor km 46, 16911 Cibinong, Indonesia 4Helmholtz Centre for Environmental Research – UFZ, Department of Conservation Biology, Permoserstr. 15, 04318 Leipzig, Germany Copyright © 2013. André Koch. All Rights Reserved. Please cite this monograph as follows: Koch, André, Thomas Ziegler, Wolfgange Böhme, Evy Arida, and Mark Auliya. 2013. Pressing Problems: Distribution, threats, and conservation status of the monitor lizards (Varanidae: Varanus spp.) of Southeast Asia and the Indo-Australian Archipelago.
    [Show full text]
  • Evolutionary History of Spiny- Tailed Lizards (Agamidae: Uromastyx) From
    Received: 6 July 2017 | Accepted: 4 November 2017 DOI: 10.1111/zsc.12266 ORIGINAL ARTICLE Evolutionary history of spiny- tailed lizards (Agamidae: Uromastyx) from the Saharo- Arabian region Karin Tamar1 | Margarita Metallinou1† | Thomas Wilms2 | Andreas Schmitz3 | Pierre-André Crochet4 | Philippe Geniez5 | Salvador Carranza1 1Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), Barcelona, The subfamily Uromastycinae within the Agamidae is comprised of 18 species: three Spain within the genus Saara and 15 within Uromastyx. Uromastyx is distributed in the 2Allwetterzoo Münster, Münster, Germany desert areas of North Africa and across the Arabian Peninsula towards Iran. The 3Department of Herpetology & systematics of this genus has been previously revised, although incomplete taxo- Ichthyology, Natural History Museum of nomic sampling or weakly supported topologies resulted in inconclusive relation- Geneva (MHNG), Geneva, Switzerland ships. Biogeographic assessments of Uromastycinae mostly agree on the direction of 4CNRS-UMR 5175, Centre d’Écologie Fonctionnelle et Évolutive (CEFE), dispersal from Asia to Africa, although the timeframe of the cladogenesis events has Montpellier, France never been fully explored. In this study, we analysed 129 Uromastyx specimens from 5 EPHE, CNRS, UM, SupAgro, IRD, across the entire distribution range of the genus. We included all but one of the rec- INRA, UMR 5175 Centre d’Écologie Fonctionnelle et Évolutive (CEFE), PSL ognized taxa of the genus and sequenced them for three mitochondrial and three Research University, Montpellier, France nuclear markers. This enabled us to obtain a comprehensive multilocus time- calibrated phylogeny of the genus, using the concatenated data and species trees. We Correspondence Karin Tamar, Institute of Evolutionary also applied coalescent- based species delimitation methods, phylogenetic network Biology (CSIC-Universitat Pompeu Fabra), analyses and model- testing approaches to biogeographic inferences.
    [Show full text]