(19) United States (12) Patent Application Publication (10) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(19) United States (12) Patent Application Publication (10) Pub US 20120149714A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0149714 A1 Heise et al. (43) Pub. Date: Jun. 14, 2012 (54) EFFECTS OF INHIBITORS OF FGFR3 ON (60) Provisional application No. 60/748,944, ?led on Dec. GENE TRANSCRIPTION 8, 2005. (76) Inventors: Carla Heise, Benicia, CA (US); Publication Classi?cation Esther Masih-Khan, Ontario (CA); 51 I Cl Edward Moler Walnut Creek CA ( ) nt' ' (US); Michael. Rowe,’ Oakland,’ CA A61K 31/497 (2006.01) (US),_ Keith. Stewart, Scottsdale, G01N 33/53 (2006.01) AZ (US) Suzanne Trudel Ontario G01N 33/566 (200601) (CA) ’ ’ C12Q 1/68 (2006.01) (52) US. Cl. ................ .. 514/253.07; 435/611; 435/612; (21) Appl. No.: 13/400,833 435/79; 435/792; 436/501 (22) Filed: Feb. 21, 2012 (57) ABSTRACT Related U‘s‘ Application Data Methods of utilizing blomarkers to 1dent1fy patients for treat ment or to momtor response to treatment are taught herein. (62) Division of application No, 12/096,222, ?led on Jun, Alterations in levels of gene expression of the biomarkers, 19, 2008, now Pat. No. 8,158,360, ?led as application particularly in response to FGFR3 inhibition, are measured No. PCT/US2006/061766 on Dec. 7, 2006. and identi?cations or adjustments may be made accordingly. US 2012/0149714 A1 Jun. 14, 2012 EFFECTS OF INHIBITORS OF FGFR3 ON [0007] An individual’s response to a particular treatment or GENE TRANSCRIPTION predisposition to disease and the correlation to a particular gene of interest has been documented. It is noW believed that BACKGROUND OF THE INVENTION cancer chemotherapy is limited by the predisposition of spe ci?c populations to drug toxicity or poor drug response. For a [0001] The present invention relates generally to the ?eld of revieW of the use of germline polymorphisms in clinical pharmacogenomics and in particular to the use of biomarkers oncology, see LenZ, H.-J. (2004) J. Clin. Oncol. 22(1 3):25 l 9 for identifying patients suitable for treatment as Well as to 2521 . For a revieW of pharmacogenctic and pharmacogenom methods of following their response to methods of treatment. ics in therapeutic antibody development for the treatment of [0002] An effort to understand an individual patient’s cancer, see Yan and Beckman (2005) Biotechniques 39:565 response or disease progression is the topic of present day 568. research. Indeed, the ?eld of pharmacogenomics or pharma [0008] Results from numerous studies suggest several cogenetics utiliZes genomic data, pharmacology, and medi genes may play a major role in the principal pathWays of cine, and often relies on advanced research tools to correlate cancer progression and recurrence, and that the correspond genetic variability to one or more of predisposition to a dis ing germ-line polymorphisms may lead to signi?cant differ ease and/or its progression, as Well as therapeutic response to ences at transcriptional and/or translational levels. Polymor a drug or therapeutic regimen. Typically, multiple genes are phism has been linked to cancer susceptibility (oncogenes, analyZed simultaneously in a large-scale, genome-Wide tumor suppressor genes, and genes of enZymes involved in approach. metabolic pathWays) of individuals. In patients younger than [0003] Proliferative cell disorders such as cancers usually 35 years, several markers for increased cancer risk have been develop through the accumulation of a series of mutations in identi?ed. Cytochrome P4501Al and gluthathione S-trans the patient’s DNA Within a subpopulation of cells. These ferase Ml genotypes in?uence the risk of developing prostate mutations may confer a survival advantage on the cells that cancer in younger patients. Similarly, mutations in the tumor causes them to groW and spread in an uncontrolled manner suppressor gene, p53, are associated With brain tumors in that is deleterious to the surrounding tissues. The particular young adults. set of mutations may be unique to an individual patient’s [0009] This approach may be extended to mutations that tumor. Cancers of the same tissue or organ in different indi are speci?c to cancer cells, and not otherWise found in the viduals may have originated from different sets of mutations, patient’s genome. For instance, it has been demonstrated though certain mutations may be prevalent among particular clinically in patients With gastrointestinal stromal tumors cancer types. The characteristic set of mutations Will deter (GIST) treated With the drug Gleevec (imatinib mesylate; mine hoW the cancer cells behave, and in particular, their Novartis) that particular activating mutations in the genes likelihood of response to a given therapeutic regimen. KIT and PDGFA are linked to higher response rates to the [0004] One may characterize the genetic alterations in a drug, see JClin Oncol. 2003 Dec. 1; 2l(23):4342-9. tumor by using advanced research tools that measure the [0010] By measuring changes in gene expression of cancer genetic sequence of the tumor’s DNA, or the RNA or proteins cell lines induced by treatment With a particular therapeutic that are the expression of the altered DNA. It is a goal of agent, one may characteriZe the cells’ response to that agent. current research to identify characteristics of an individual’s This approach provides insight into the mechanism of the tumor that are predictive of the likelihood of that tumor’s drug, including What biological processes or pathWays it response to various therapeutic treatments. Thus, one or more impacts. Such information can help guide the treatment of genes Would be identi?ed Where presence of particular patients, by providing expectations as to Which genes Will genetic mutations in the DNA, or their levels of expression, change in response to treatment. An assay of those genes from either as RNA transcripts or as proteins, or a combination of a sample collected from a patient post-treatment could then these factors, Would be predictive of the likelihood that a be used to determine Whether the drug Was having the particular treatment Would affect the tumor in a manner that intended effect, and by extension, Whether the dose or sched Would be bene?cial to the patient. ule should be altered, or the regimen discontinued. This [0005] One main purpose is to determine Which variations approach Would improve e?icacy by ensuring that patients receive the most appropriate treatment. in individuals or subpopulations, associated With their genet ics or the genetic characteristics of their disease, factor into drug e?icacy and to create suitable tests, including diagnostic SUMMARY OF THE INVENTION tests. Drugs that are tailored for patients With a particular [0011] One embodiment of the invention relates to a genetic sequence, or for diseases characterized by particular method of identifying a patient for treatment. The method genetic alterations, may thus be produced. The tests may also may optionally include an administration of an FGFR3 be used to guide treatment decisions, such as Which drug or inhibitor to the patient prior to measurement of gene expres drug combination is mostly likely to be bene?cial to the sion on a sample obtained from the patient. The gene expres patient, and What dosing and schedule is most appropriate. sion analysis is intended to detect the presence and/ or alter Diagnostic tests and genetic pro?ling Will help avoid the ation in level of expression of biomarkers disclosed herein. expense and the potentially detrimental trial-and-error Notable detection or alteration in the levels compared to approach to the suitability of a particular treatment regimen or baseline levels is indicative of the candidacy of the patient for a particular dosage level. treatment. [0006] While the era of customiZed drugs may be coming, [0012] Another embodiment of the invention comprises a methods that utiliZe genetic information to identify speci?c method of monitoring response of a patient to treatment. The individuals or subgroups for a particular type of treatment or method may include the step of administration of an FGFR3 optimiZation of a treatment may be immediately put to use inhibitor to the patient prior to measurement of gene expres today. sion on a sample obtained from the patient. Alternatively, US 2012/0149714 A1 Jun. 14, 2012 monitoring may be conducted on a sample obtained from a explicitly stated, that the reagents described herein are merely patient Who has previously been treated so that an adminis exemplary and that equivalents of such are knoWn in the art. tration step by one practicing the method of monitoring [0022] The terms “polynucleotide” and “oligonucleotide” response is not required. Detection of an alteration in the level are used interchangeably and refer to a polymeric form of of expression of at least one biomarker compared to baseline nucleotides of any length, either deoxyribonucleotides or is indicative of a favorable response of the patient to the ribonucleotides or analogs thereof. Polynucleotides can have treatment. any three-dimensional structure and may perform any func [0013] Another aspect of the invention is a method of uti tion, knoWn or unknown. The folloWing are non-limiting liZing a biomarker in treatment of a patient. An FGFR3 inhibi examples of polynucleotides: a gene or gene fragment (for tor may be administered and gene expression level of one or example, a probe, primer, EST or SAGE tag), exons, introns, more biomarkers tested. Thereafter, the same or a different messenger RNA (mRNA), transfer RNA, ribosomal RNA, inhibitor may be administered in the treatment. riboZymes, cDNA, recombinant polynucleotides, branched [0014] Yet another aspect of the invention is a method of polynucleotides, plasmids, vectors, isolated DNA of any treatment for multiple myeloma. The method utiliZes an agent sequence, isolated RNA of any sequence, nucleic acid probes, that alters the level of expression of one or more of the and primers.
Recommended publications
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • Molecular Genetics of Microcephaly Primary Hereditary: an Overview
    brain sciences Review Molecular Genetics of Microcephaly Primary Hereditary: An Overview Nikistratos Siskos † , Electra Stylianopoulou †, Georgios Skavdis and Maria E. Grigoriou * Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; [email protected] (N.S.); [email protected] (E.S.); [email protected] (G.S.) * Correspondence: [email protected] † Equal contribution. Abstract: MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate. Keywords: microcephaly; MCPH; MCPH1–MCPH27; molecular genetics; cell cycle 1. Introduction Citation: Siskos, N.; Stylianopoulou, Microcephaly, from the Greek word µικρoκεϕαλi´α (mikrokephalia), meaning small E.; Skavdis, G.; Grigoriou, M.E. head, is a term used to describe a cranium with reduction of the occipitofrontal head circum- Molecular Genetics of Microcephaly ference equal, or more that teo standard deviations
    [Show full text]
  • Supplemental Figures
    Supplemental Figures Development of a new macrophage-specific TRAP mouse (MacTRAP) and definition of the renal macrophage translational signature Andreas Hofmeister, Maximilian C. Thomassen, Sabrina Markert, André Marquardt, Mathieu Preußner, Martin Rußwurm, Ralph Schermuly, Ulrich Steinhoff, Hermann-Josef Gröne, Joachim Hoyer, Benjamin D. Humphreys, Ivica Grgic Correspondence: Ivica Grgic MD, Klinikum der Philips-Universität Marburg, Baldingerstrasse 1, 35043 Marburg. Phone: +4964215861736, email: [email protected] Sup. Fig. S1 Δ6.7fmsGFP-L10a plasmid (pGL2 backbone) Sup. Fig. S1: Plasmid map of the engineered c-fms-eGFP-L10a expression vector. Mlu1/Sal1 digestion was used for linearization and extraction of the transgene. Sup. Fig. S2 A Neutrophils Monocytes Lymphocytes B Monocytes Monocytes Neutrophils Lymphocytes H - TRAP Ly6g Count FSC CD115 Mac GFP GFP GFP GFP H - Ly6g Count FSC CD115 Wild Wild type GFP GFP GFP GFP Sup. Fig. S2: FACS analysis detects eGFP-L10a signals in monocytes but not in neutrophils or lymphocytes isolated from peripheral blood of MacTRAP mice. (A) Gating strategy to define monocyte, neutrophil and lymphocyte populations. Only single cells contributed to the analysis. (B) GFP-fluorescence was specifically detected in CD115+ monocytes, but not in Ly6g+ neutrophils or lymphocytes of MacTRAP mice. Blood samples from wild-type mice served as negative controls. Representative plots are shown, n=6. Sup. Fig. S3 A eGFP-L10a Ly6g merge+DAPI kidney 7d UUO B eGFP-L10a Ly6g merge+DAPI incision skin Tail Sup. Fig. S3: Immunostaining for mature neutrophils in fibrotic kidney tissue and tail skin biopsies from MacTRAP mice. (A) Only a very small fraction of Ly6g+ neutrophils is positive for eGFP-L10a in fibrotic kidneys after 7d UUO (0.42% ± 0.29%; 468 cells counted, n=3).
    [Show full text]
  • Supplementary Data Genbank Or OSE Vs RO NIA Accession Gene Name Symbol FC B-Value H3073C09 11.38 5.62 H3126B09 9.64 6.44 H3073B0
    Supplementary Data GenBank or OSE vs RO NIA accession Gene name Symbol FC B-value H3073C09 11.38 5.62 H3126B09 9.64 6.44 H3073B08 9.62 5.59 AU022767 Exportin 4 Xpo4 9.62 6.64 H3073B09 9.59 6.48 BG063925 Metallothionein 2 Mt2 9.23 18.89 H3064B07 9.21 6.10 H3073D08 8.28 6.10 AU021923 Jagged 1 Jag1 7.89 5.93 H3070D08 7.54 4.58 BG085110 Cysteine-rich protein 1 (intestinal) Crip1 6.23 16.40 BG063004 Lectin, galactose binding, soluble 1 Lgals1 5.95 10.36 BG069712 5.92 2.34 BG076976 Transcribed locus, strongly similar to NP_032521.1 lectin, galactose binding, soluble 1 5.64 8.36 BG062930 DNA segment, Chr 11, Wayne State University 99, expressed D11Wsu99e 5.63 8.76 BG086474 Insulin-like growth factor binding protein 5 Igfbp5 5.50 15.95 H3002d11 5.13 20.77 BG064706 Keratin complex 1, acidic, gene 19 Krt1-19 5.06 9.07 H3007A09 5.05 2.46 H3065F02 4.84 5.43 BG081752 4.81 1.25 H3010E09 4.71 11.90 H3064c11 4.43 1.00 BG069711 Transmembrane 4 superfamily member 9 Tm4sf9 4.29 1.23 BG077072 Actin, beta, cytoplasmic Actb 4.29 3.01 BG079788 Hemoglobin alpha, adult chain 1 Hba-a1 4.26 6.63 BG076798 4.23 0.80 BG074344 Mesothelin Msln 4.22 6.97 C78835 Actin, beta, cytoplasmic Actb 4.16 3.02 BG067531 4.15 1.61 BG073468 Hemoglobin alpha, adult chain 1 Hba-a1 4.10 6.23 H3154H07 4.08 5.38 AW550167 3.95 5.66 H3121B01 3.94 5.94 H3124f12 3.94 5.64 BG073608 Hemoglobin alpha, adult chain 1 Hba-a1 3.84 5.32 BG073617 Hemoglobin alpha, adult chain 1 Hba-a1 3.84 5.75 BG072574 Hemoglobin alpha, adult chain 1 Hba-a1 3.82 5.93 BG072211 Tumor necrosis factor receptor superfamily,
    [Show full text]
  • The Genetic Program of Pancreatic Beta-Cell Replication in Vivo
    Page 1 of 65 Diabetes The genetic program of pancreatic beta-cell replication in vivo Agnes Klochendler1, Inbal Caspi2, Noa Corem1, Maya Moran3, Oriel Friedlich1, Sharona Elgavish4, Yuval Nevo4, Aharon Helman1, Benjamin Glaser5, Amir Eden3, Shalev Itzkovitz2, Yuval Dor1,* 1Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. 3Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 4Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah, The Institute for Medical Research Israel- Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 5Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel *Correspondence: [email protected] Running title: The genetic program of pancreatic β-cell replication 1 Diabetes Publish Ahead of Print, published online March 18, 2016 Diabetes Page 2 of 65 Abstract The molecular program underlying infrequent replication of pancreatic beta- cells remains largely inaccessible. Using transgenic mice expressing GFP in cycling cells we sorted live, replicating beta-cells and determined their transcriptome. Replicating beta-cells upregulate hundreds of proliferation- related genes, along with many novel putative cell cycle components. Strikingly, genes involved in beta-cell functions, namely glucose sensing and insulin secretion were repressed. Further studies using single molecule RNA in situ hybridization revealed that in fact, replicating beta-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in beta-cell function.
    [Show full text]
  • Of the T Cell by G-CSF and IL-10 Cell Mobilization Requires Direct Signaling Modification of T Cell Responses by Stem
    Downloaded from http://www.jimmunol.org/ by guest on September 29, 2021 is online at: average * The Journal of Immunology published online 28 February 2014 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2014/02/28/jimmun ol.1302315 Modification of T Cell Responses by Stem Cell Mobilization Requires Direct Signaling of the T Cell by G-CSF and IL-10 Kelli P. A. MacDonald, Laetitia Le Texier, Ping Zhang, Helen Morris, Rachel D. Kuns, Katie E. Lineburg, Lucie Leveque, Alistair L. Don, Kate A. Markey, Slavica Vuckovic, Frederik O. Bagger, Glen M. Boyle, Bruce R. Blazar and Geoffrey R. Hill J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2014/02/28/jimmunol.130231 5.DCSupplemental Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 29, 2021. Published February 28, 2014, doi:10.4049/jimmunol.1302315 The Journal of Immunology Modification of T Cell Responses by Stem Cell Mobilization Requires Direct Signaling of the T Cell by G-CSF and IL-10 Kelli P.
    [Show full text]
  • C9orf72-Associated SMCR8 Protein Binds in the Ubiquitin Pathway and with Proteins Linked with Neurological Disease John L
    Goodier et al. Acta Neuropathologica Communications (2020) 8:110 https://doi.org/10.1186/s40478-020-00982-x RESEARCH Open Access C9orf72-associated SMCR8 protein binds in the ubiquitin pathway and with proteins linked with neurological disease John L. Goodier1*, Alisha O. Soares1, Gavin C. Pereira1, Lauren R. DeVine2, Laura Sanchez3, Robert N. Cole2 and Jose Luis García-Pérez3,4 Abstract A pathogenic GGGCCC hexanucleotide expansion in the first intron/promoter region of the C9orf72 gene is the most common mutation associated with amyotrophic lateral sclerosis (ALS). The C9orf72 gene product forms a complex with SMCR8 (Smith-Magenis Syndrome Chromosome Region, Candidate 8) and WDR41 (WD Repeat domain 41) proteins. Recent studies have indicated roles for the complex in autophagy regulation, vesicle trafficking, and immune response in transgenic mice, however a direct connection with ALS etiology remains unclear. With the aim of increasing understanding of the multi-functional C9orf72-SMCR8-WDR41 complex, we determined by mass spectrometry analysis the proteins that directly associate with SMCR8. SMCR8 protein binds many components of the ubiquitin-proteasome system, and we demonstrate its poly-ubiquitination without obvious degradation. Evidence is also presented for localization of endogenous SMCR8 protein to cytoplasmic stress granules. However, in several cell lines we failed to reproduce previous observations that C9orf72 protein enters these granules. SMCR8 protein associates with many products of genes associated with various Mendelian neurological disorders in addition to ALS, implicating SMCR8-containing complexes in a range of neuropathologies. We reinforce previous observations that SMCR8 and C9orf72 protein levels are positively linked, and now show in vivo that SMCR8 protein levels are greatly reduced in brain tissues of C9orf72 gene expansion carrier individuals.
    [Show full text]
  • Identification of Novel Nuclear Targets of Human Thioredoxin 1*DS
    Research © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Identification of Novel Nuclear Targets of Human Thioredoxin 1*□S Changgong Wu‡§, Mohit Raja Jain‡§, Qing Li‡§, Shin-ichi Oka¶, Wenge Liʈ, Ah-Ng Tony Kong**, Narayani Nagarajan¶, Junichi Sadoshima¶, William J. Simmons‡, and Hong Li‡‡‡ The dysregulation of protein oxidative post-translational & Cellular Proteomics 13: 10.1074/mcp.M114.040931, 3507– modifications has been implicated in stress-related dis- 3518, 2014. eases. Trx1 is a key reductase that reduces specific di- sulfide bonds and other cysteine post-translational mod- ifications. Although commonly in the cytoplasm, Trx1 can Oxidative stress and redox signaling imbalance have been also modulate transcription in the nucleus. However, few implicated in the development of neurodegenerative diseases Trx1 nuclear targets have been identified because of the and tissue injuries (1). One of the most common features low Trx1 abundance in the nucleus. Here, we report the observed in the neuronal tissues of patients with Alzheimer or large-scale proteomics identification of nuclear Trx1 tar- Parkinson disease is the accumulation of misfolded proteins gets in human neuroblastoma cells using an affinity cap- with oxidative post-translational modifications (2). Cells have ture strategy wherein a Trx1C35S mutant is expressed. The wild-type Trx1 contains a conserved C32XXC35 motif, evolved to utilize diverse defense mechanisms to counter the and the C32 thiol initiates the reduction of a target disul- detrimental impact of oxidative post-translational modifica- 1 fide bond by forming an intermolecular disulfide with one tions, including the engagement of the thioredoxin (Trx) fam- of the oxidized target cysteines, resulting in a transient ily of proteins, which includes cytosolic Trx1 and mitochon- Trx1–target protein complex.
    [Show full text]
  • Critical Function for Nuclear Envelope Protein TMEM209 in Human
    Author Manuscript Published OnlineFirst on June 19, 2012; DOI: 10.1158/0008-5472.CAN-12-0159 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Critical function for nuclear envelope protein TMEM209 in human pulmonary carcinogenesis Takashi Fujitomo, 1 Yataro Daigo,1,2 Koichi Matsuda,1 Koji Ueda,3 Yusuke Nakamura1 1Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan 2Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu 520-2192, Japan 3Laboratory for Biomarker Development, Center for Genomic Medicine, RIKEN, Yokohama 230-0045, Japan Running title: TMEM209 involved in lung carcinogenesis. Key words: oncogene, cancer- testis antigen, therapeutic target, lung cancer, novel molecular target Corresponding Author Yusuke Nakamura, M.D., Ph.D. Laboratory of Molecular Medicine, Human Genome Center Institute of Medical Science, The University of Tokyo 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan. Phone: 81-3-5449-5372; Fax: 81-3-5449-5433 E-mail: [email protected] 1 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2012 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 19, 2012; DOI: 10.1158/0008-5472.CAN-12-0159 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Therapeutic targets for more effective and less toxic treatments of lung cancer remain important. Here we report the identification of the integral nuclear envelope protein TMEM209 as a critical driver of human lung cancer growth and survival.
    [Show full text]
  • Induction of Therapeutic Tissue Tolerance Foxp3 Expression Is
    Downloaded from http://www.jimmunol.org/ by guest on October 2, 2021 is online at: average * The Journal of Immunology , 13 of which you can access for free at: 2012; 189:3947-3956; Prepublished online 17 from submission to initial decision 4 weeks from acceptance to publication September 2012; doi: 10.4049/jimmunol.1200449 http://www.jimmunol.org/content/189/8/3947 Foxp3 Expression Is Required for the Induction of Therapeutic Tissue Tolerance Frederico S. Regateiro, Ye Chen, Adrian R. Kendal, Robert Hilbrands, Elizabeth Adams, Stephen P. Cobbold, Jianbo Ma, Kristian G. Andersen, Alexander G. Betz, Mindy Zhang, Shruti Madhiwalla, Bruce Roberts, Herman Waldmann, Kathleen F. Nolan and Duncan Howie J Immunol cites 35 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/09/17/jimmunol.120044 9.DC1 This article http://www.jimmunol.org/content/189/8/3947.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 2, 2021.
    [Show full text]
  • Plasticity and the Impact of Increasing Temperature on a Tropical Ectotherm
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Spring 2020 Plasticity and the Impact of Increasing Temperature on a Tropical Ectotherm Adam A. Rosso Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Bioinformatics Commons, Comparative and Evolutionary Physiology Commons, Evolution Commons, Integrative Biology Commons, Other Ecology and Evolutionary Biology Commons, and the Other Genetics and Genomics Commons Recommended Citation Rosso, Adam A., "Plasticity and the Impact of Increasing Temperature on a Tropical Ectotherm" (2020). Electronic Theses and Dissertations. 2069. https://digitalcommons.georgiasouthern.edu/etd/2069 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. PLASTICITY AND THE IMPAPCT OF INCREASING TEMPERATURE ON A TROPICAL ECTOTHERM by ADAM A. ROSSO (Under the direction of Christian L. Cox) ABSTRACT Organisms may respond to climate change through behavior, genetic adaptation, and/or phenotypic plasticity. Tropical ectotherms are thought to be especially vulnerable to climate change because most have a narrow range of thermal tolerance while living close to their upper thermal tolerance limits. Additionally, many tropical species live in closed-canopy forests, which provide homogenous thermal landscapes that prevent behavioral compensation for stressfully warm temperatures. Finally, tropical ectotherms are thought to have decreased capacity for phenotypic plasticity because they have evolved in thermally stable environments.
    [Show full text]
  • The Zinc Transporter Zip14 (Slc39a14) Affects Beta-Cell Function
    www.nature.com/scientificreports OPEN The zinc transporter Zip14 (SLC39a14) afects Beta-cell Function: Proteomics, Gene Received: 7 January 2019 Accepted: 24 May 2019 expression, and Insulin secretion Published: xx xx xxxx studies in INS-1E cells Trine Maxel1, Kamille Smidt2, Charlotte C. Petersen1, Bent Honoré1, Anne K. Christensen1, Per B. Jeppesen2,3, Birgitte Brock4, Jørgen Rungby5, Johan Palmfeldt2,6 & Agnete Larsen1 Insulin secretion from pancreatic beta-cells is dependent on zinc ions as essential components of insulin crystals, zinc transporters are thus involved in the insulin secretory process. Zip14 (SLC39a14) is a zinc importing protein that has an important role in glucose homeostasis. Zip14 knockout mice display hyperinsulinemia and impaired insulin secretion in high glucose conditions. Endocrine roles for Zip14 have been established in adipocytes and hepatocytes, but not yet confrmed in beta- cells. In this study, we investigated the role of Zip14 in the INS-1E beta-cell line. Zip14 mRNA was upregulated during high glucose stimulation and Zip14 silencing led to increased intracellular insulin content. Large-scale proteomics showed that Zip14 silencing down-regulated ribosomal mitochondrial proteins, many metal-binding proteins, and others involved in oxidative phosphorylation and insulin secretion. Furthermore, proliferation marker Mki67 was down-regulated in Zip14 siRNA-treated cells. In conclusion, Zip14 gene expression is glucose sensitive and silencing of Zip14 directly afects insulin processing in INS-1E beta-cells. A link between Zip14 and ribosomal mitochondrial proteins suggests altered mitochondrial RNA translation, which could disturb mitochondrial function and thereby insulin secretion. This highlights a role for Zip14 in beta-cell functioning and suggests Zip14 as a future pharmacological target in the treatment of beta-cell dysfunction.
    [Show full text]