<I>Ramularia</I> Species (Hyphomycetes)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Genome of the Emerging Barley Pathogen Ramularia Collo-Cygni Graham R
McGrann et al. BMC Genomics (2016) 17:584 DOI 10.1186/s12864-016-2928-3 RESEARCHARTICLE Open Access The genome of the emerging barley pathogen Ramularia collo-cygni Graham R. D. McGrann1*†, Ambrose Andongabo2†, Elisabet Sjökvist1,4†, Urmi Trivedi5, Francois Dussart1, Maciej Kaczmarek1,6, Ashleigh Mackenzie1, James M. Fountaine1,7, Jeanette M. G. Taylor1, Linda J. Paterson1, Kalina Gorniak1, Fiona Burnett1, Kostya Kanyuka3, Kim E. Hammond-Kosack3, Jason J. Rudd3, Mark Blaxter4,5 and Neil D. Havis1 Abstract Background: Ramularia collo-cygni is a newly important, foliar fungal pathogen of barley that causes the disease Ramularia leaf spot. The fungus exhibits a prolonged endophytic growth stage before switching life habit to become an aggressive, necrotrophic pathogen that causes significant losses to green leaf area and hence grain yield and quality. Results: The R. collo-cygni genome was sequenced using a combination of Illumina and Roche 454 technologies. The draft assembly of 30.3 Mb contained 11,617 predicted gene models. Our phylogenomic analysis confirmed the classification of this ascomycete fungus within the family Mycosphaerellaceae, order Capnodiales of the class Dothideomycetes. A predicted secretome comprising 1053 proteins included redox- related enzymes and carbohydrate-modifying enzymes and proteases. The relative paucity of plant cell wall degrading enzyme genes may be associated with the stealth pathogenesis characteristic of plant pathogens from the Mycosphaerellaceae. A large number of genes associated with secondary metabolite production, including homologs of toxin biosynthesis genes found in other Dothideomycete plant pathogens, were identified. Conclusions: The genome sequence of R. collo-cygni provides a framework for understanding the genetic basis of pathogenesis in this important emerging pathogen. -
Ramularia Collo-Cygni Epidemic
bioRxiv preprint doi: https://doi.org/10.1101/215418; this version posted November 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The evolutionary history of the current global Ramularia collo-cygni epidemic Remco Stam1§, Hind Sghyer1*, Martin Münsterkötter4,5*, Saurabh Pophaly2%, Aurélien Tellier2,Ulrich Güldener3, Ralph Hückelhoven1, Michael Hess1§ 1Chair of Phytopathology, 2Section of Population Genetics, 3 Chair of Genome-oriented Bioinformatics Center of Life and Food Sciences Weihenstephan, Technische Universität München, Germany 4Functional Genomics and Bioinformatics, University of Sopron, Hungary 5Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Germany * contributed equally to this work § correspondence: Remco Stam: [email protected] Michael Hess: m.hess@ tum .de % current address: Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden & Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Germany Abstract Ramularia Leaf Spot (RLS) has emerged as a threat for barley production in many regions of the world. Late appearance of unspecific symptoms caused that Ramularia collo-cygni could only by molecular diagnostics be detected as the causal agent of RLS. Although recent research has shed more light on the biology and genomics of the pathogen, the cause of the recent global spread remains unclear. To address urgent questions, especially on the emergence to a major disease, life-cycle, transmission, and quick adaptation to control measures, we de-novo sequenced the genome of R. -
Recovery Plan for Scots Pine Blister Rust Caused by Cronartium Flaccidum
Recovery Plan for Scots Pine Blister Rust caused by Cronartium flaccidum (Alb. & Schwein.) G. Winter and Peridermium pini (Pers.) Lév. [syn. C. asclepiadeum (Willd.) Fr., Endocronartium pini (Pers.) Y. Hiratsuka] March 12 2009 Contents page –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Executive Summary 2 Contributors and Reviewers 4 I. Introduction 4 II. Symptoms 5 III. Spread 6 IV. Monitoring and Detection 7 V. Response 8 VI. USDA Pathogens Permits 9 VII. Economic Impact and Compensation 10 VIII. Mitigation and Disease Management 11 IX. Infrastructure and Experts 14 X. Research, Extension, and Education Priorities 15 References 17 Web Resources 20 Appendix 21 –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– This recovery plan is one of several disease-specific documents produced as part of the National Plant Disease Recovery System (NPDRS) called for in Homeland Security Presidential Directive Number 9 (HSPD-9). The purpose of the NPDRS is to insure that the tools, infrastructure, communication networks, and capacity required for mitigating impacts of high-consequence, plant-disease outbreaks are in place so that a reasonable level of crop production is maintained. Each disease-specific plan is intended to provide a brief primer on the disease, assess the status of critical recovery components, and identify disease management research, extension, and education needs. These documents are not intended to be stand-alone documents that address all of the many and varied aspects of plant disease outbreak and all of the decisions that must be made and actions taken to achieve effective response and recovery. They are, however, documents that will help USDA guide further efforts directed toward plant disease recovery. 1 Executive Summary Scots pine blister rust (caused by the fungi Cronartium flaccidum and Peridermium pini) infects many Eurasian pines including Pinus sylvestris (Scots pine), Pinus pinaster, P. -
Bryophyte Diversity and Vascular Plants
DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 75 BRYOPHYTE DIVERSITY AND VASCULAR PLANTS NELE INGERPUU TARTU 2002 DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 75 DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 75 BRYOPHYTE DIVERSITY AND VASCULAR PLANTS NELE INGERPUU TARTU UNIVERSITY PRESS Chair of Plant Ecology, Department of Botany and Ecology, University of Tartu, Estonia The dissertation is accepted for the commencement of the degree of Doctor philosophiae in plant ecology at the University of Tartu on June 3, 2002 by the Council of the Faculty of Biology and Geography of the University of Tartu Opponent: Ph.D. H. J. During, Department of Plant Ecology, the University of Utrecht, Utrecht, The Netherlands Commencement: Room No 218, Lai 40, Tartu on August 26, 2002 © Nele Ingerpuu, 2002 Tartu Ülikooli Kirjastuse trükikoda Tiigi 78, Tartu 50410 Tellimus nr. 495 CONTENTS LIST OF PAPERS 6 INTRODUCTION 7 MATERIAL AND METHODS 9 Study areas and field data 9 Analyses 10 RESULTS 13 Correlation between bryophyte and vascular plant species richness and cover in different plant communities (I, II, V) 13 Environmental factors influencing the moss and field layer (II, III) 15 Effect of vascular plant cover on the growth of bryophytes in a pot experiment (IV) 17 The distribution of grassland bryophytes and vascular plants into different rarity forms (V) 19 Results connected with nature conservation (I, II, V) 20 DISCUSSION 21 CONCLUSIONS 24 SUMMARY IN ESTONIAN. Sammaltaimede mitmekesisus ja seosed soontaimedega. Kokkuvõte 25 < TÄNUSÕNAD. Acknowledgements 28 REFERENCES 29 PAPERS 33 2 5 LIST OF PAPERS The present thesis is based on the following papers which are referred to in the text by the Roman numerals. -
Changes of Seasonal Characters in Populations of Melampyrum Sylvaticum Along an Altitudinal Gradient
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien. Frueher: Verh.des Zoologisch-Botanischen Vereins in Wien. seit 2014 "Acta ZooBot Austria" Jahr/Year: 2012 Band/Volume: 148_149 Autor(en)/Author(s): Stech Milan Artikel/Article: Changes of seasonal characters in populations of Melampyrum sylvaticum along an altitudinal gradient. 137-144 © Zool.-Bot. Ges. Österreich, Austria; download unter www.biologiezentrum.at Verh. Zool.-Bot. Ges. Österreich 148/149, 2012, 137–144 Changes of seasonal characters in populations of * Melampyrum sylvaticum along an altitudinal gradient ) 1) Milan ŠTECH Melampyrum sylvaticum agg. represents a critical taxonomic group. Many infraspecific taxa have been described based on so-called seasonal characters. This study analyzes the variation of seasonal characters in the populations along a steep altitudinal gradient. The most important seasonal characters are the same at the level of the individual plant. Despite clear differentiation at the population level, any delimitation of taxa based on mere seasonal characters seems to be artificial and groundless. STECH M., 2012: Veränderung saisonaler Merkmale in Populationen von Melam- pyrum sylvaticum entlang eines Höhengradienten. Melampyrum sylvaticum agg. ist ein kritischer taxonomischer Komplex. Auf Grund so genannter saisonaler Merkmale sind bereits viele infraspezifische Taxa beschrieben worden. Eine Analyse der saisonalen Veränderlichkeit in Populationen entlang eines steilen Höhengradienten ergab, dass die wichtigsten saisonalen Merkmale auf Ebene der Einzelpflanze durchgehend gleich sind. Obwohl auf Populationsebene eine deut- liche Differenzierung festgestellt wurde, scheint eine Abgrenzung von Taxa nur auf Grund saisonaler Merkmale künstlich und ist daher ungerechtfertigt. Keywords: Melampyrum sylvaticum, seasonal variation, infraspecific taxa. -
A New Rust Species of Diaphanopellis on Rhododendron Oreodoxa from Southern China
Phytotaxa 309 (1): 055–065 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.309.1.5 A new rust species of Diaphanopellis on Rhododendron oreodoxa from Southern China JING CAO1, CHENG-MING TIAN1, YING-MEI LIANG2 & CHONG-JUAN YOU1* 1The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China 2Museum of Beijing Forestry University, Beijing 100083, China *Corresponding author: [email protected] Abstract A novel rust species Diaphanopellis purpurea on Rhododendron oreodoxa collected in Southern China was identified and described. Light and scanning electron microscopy observations indicated that this rust species was morphologically distinct from other known Diaphanopellis species and Chrysomyxa species in teliospore morphology and urediniospore surface structure. Diaphanopellis purpurea can be phylogenetically separated from other Chrysomyxa species based on analysis of internal transcribed spacer (ITS) partial gene sequences. The aecial stage of the new species was also confirmed. Keywords: Molecular phylogeny, phylogeny, Pucciniales, taxonomy Introduction Rust genus Diaphanopellis was established by Crane with the type species Diaphanopellis forrestii P. E. Crane occurring on Rhododendron selense Franch (Crane 2005, Kirk et al. 2008). Diaphanopellis is characterized by the teliospores enclosed in hyaline sheaths, and the uredinia surrounded by a peridium with ornamented cells (Barclay 1891, Balfour-Browne 1955, Crane 2005). Most rusts infecting Rhododendron belong to the genus Chrysomyxa, which are morphologically different from Diaphanopellis species in having uredinial peridium and distinct teliospores. Chrysomyxa species produce catenulate teliospores without gelatineous layers and uredinia covered by an inconspicuous peridium (Berndt 1999). -
Dissertation Pdf .Odt
The floodplain meadows of Soomaa National Park, Estonia Vegetation – Dispersal – Regeneration Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät III – Biologie und vorklinische Medizin – der Universität Regensburg vorgelegt von Jaan Palisaar aus Kiel Edertal, April 2006 Promotionsgesuch eingereicht am 10. April 2006 Tag der mündlichen Prüfung 26. Juli 2006 Die Arbeit wurde angeleitet von Prof. Dr. Peter Poschlod Prüfungsausschuß: Prof. Dr. Jürgen Heinze Prof. Dr. Peter Poschlod Prof. Dr. Karl-Georg Bernhardt Prof. Dr. Christoph Oberprieler Contents List of figures.........................................................................................................................III List of tables...........................................................................................................................VI Acknowledgments................................................................................................................IX A. Foreword.............................................................................................................................1 B. Study area............................................................................................................................3 1 Physical setting...............................................................................................................3 2 Land use...........................................................................................................................8 C. Vegetation -
Phylogeny of the Quambalariaceae Fam. Nov., Including Important Eucalyptus Pathogens in South Africa and Australia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE STUDIES IN MYCOLOGY 55: 289–298. 2006. provided by Elsevier - Publisher Connector Phylogeny of the Quambalariaceae fam. nov., including important Eucalyptus pathogens in South Africa and Australia Z. Wilhelm de Beer1*, Dominik Begerow2, Robert Bauer2, Geoff S. Pegg3, Pedro W. Crous4 and Michael J. Wingfield1 1Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa; 2Lehrstuhl Spezielle Botanik und Mykologie, Institut für Biologie I, Universität Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany; 3Department of Primary Industries and Fisheries, Horticulture and Forestry Science, Indooroopilly, Brisbane 4068; 4Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands *Correspondence: Wilhelm de Beer, [email protected] Abstract: The genus Quambalaria consists of plant-pathogenic fungi causing disease on leaves and shoots of species of Eucalyptus and its close relative, Corymbia. The phylogenetic relationship of Quambalaria spp., previously classified in genera such as Sporothrix and Ramularia, has never been addressed. It has, however, been suggested that they belong to the basidiomycete orders Exobasidiales or Ustilaginales. The aim of this study was thus to consider the ordinal relationships of Q. eucalypti and Q. pitereka using ribosomal LSU sequences. Sequence data from the ITS nrDNA were used to determine the phylogenetic relationship of the two Quambalaria species together with Fugomyces (= Cerinosterus) cyanescens. In addition to sequence data, the ultrastructure of the septal pores of the species in question was compared. From the LSU sequence data it was concluded that Quambalaria spp. -
Red List of Vascular Plants of the Czech Republic: 3Rd Edition
Preslia 84: 631–645, 2012 631 Red List of vascular plants of the Czech Republic: 3rd edition Červený seznam cévnatých rostlin České republiky: třetí vydání Dedicated to the centenary of the Czech Botanical Society (1912–2012) VítGrulich Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, e-mail: [email protected] Grulich V. (2012): Red List of vascular plants of the Czech Republic: 3rd edition. – Preslia 84: 631–645. The knowledge of the flora of the Czech Republic has substantially improved since the second ver- sion of the national Red List was published, mainly due to large-scale field recording during the last decade and the resulting large national databases. In this paper, an updated Red List is presented and compared with the previous editions of 1979 and 2000. The complete updated Red List consists of 1720 taxa (listed in Electronic Appendix 1), accounting for more then a half (59.2%) of the native flora of the Czech Republic. Of the Red-Listed taxa, 156 (9.1% of the total number on the list) are in the A categories, which include taxa that have vanished from the flora or are not known to occur at present, 471 (27.4%) are classified as critically threatened, 357 (20.8%) as threatened and 356 (20.7%) as endangered. From 1979 to 2000 to 2012, there has been an increase in the total number of taxa included in the Red List (from 1190 to 1627 to 1720) and in most categories, mainly for the following reasons: (i) The continuing human pressure on many natural and semi-natural habitats is reflected in the increased vulnerability or level of threat to many vascular plants; some vulnerable species therefore became endangered, those endangered critically threatened, while species until recently not classified may be included in the Red List as vulnerable or even endangered. -
Pladias Database of the Czech Flora and Vegetation
Preslia 93: 1–87, 2021 1 Pladias Database of the Czech Flora and Vegetation Pladias – databáze české flóry a vegetace Milan Chytrý1, Jiří Danihelka1,2, Zdeněk Kaplan2,3, Jan Wild2, Dana Holubová1, Petr Novotný4, Marcela Řezníčková1, Martin Rohn5,PavelDřevojan1, Vít Grulich1, Jitka Klimešová3,6,JanLepš7, Zdeňka Lososová1,JanPergl2, Jiří Sádlo2, Petr Šmarda1, Petra Štěpánková1, Lubomír Tichý1, Irena Axmanová1, Alena Bartušková6,Petr Blažek7, Jindřich Chrtek Jr.2, Felícia M. Fischer1,Wen-YongGuo2,8, Tomáš Herben2,3, Zdeněk Janovský2,3, Marie Konečná7, Ingolf Kühn9, Lenka Moravcová2, Petr Petřík2, Simon Pierce10, Karel Prach7, Helena Prokešová1,11, Milan Štech7, Jakub Těšitel1, Tamara Těšitelová12, Martin Večeřa1, David Zelený13 & Petr Pyšek2,14 1Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlář- ská 2, 611 37 Brno, Czech Republic, e-mail: [email protected], [email protected], [email protected], [email protected], [email protected], grulich@ sci.muni.cz; [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], tesitel@ sci.muni.cz, [email protected]; 2Institute of Botany of the Czech Academy of Sci- ences, 252 43 Průhonice, Czech Republic, e-mail: [email protected], jan.wild@ ibot.cas.cz, [email protected], [email protected], [email protected], herben@ site.cas.cz, [email protected], [email protected], [email protected]; 3Depart- ment of Botany, Faculty of Science, Charles University, Benátská -
Haustorium #57, July 2010
HAUSTORIUM 57 July 2010 1 HAUSTORIUM Parasitic Plants Newsletter ISSN 1944-6969 Official Organ of the International Parasitic Plant Society (http://www.parasiticplants.org/) July 2010 Number 57 CONTENTS Page Message from the IPPS President (Jim Westwood)....………………………………………………………………2 Rafflesia in the Philippines: an era of discovery (Dan Nickrent)…………………….……………………………...2 Literature highlights: Evidence for nuclear theft (Ken Shirasu)……………………………...................................................................4 Cellular interactions at the host-parasite and pollen-pistil interfaces in flowering plants (Chris Thorogood)…………………………………………………….............................5 Obituary: Alfred M. Mayer (1926-2010) (Danny Joel)……………………………………..…………………………..…..6 Congratulations: Bristol botanist (Chris Thorogood) wins Linnean Society prize …………………………………………...……7 News: Striga quarantine lifted in South Carolina after a half century (Jim Westwood and Al Tasker)…………………7 Press releases: Affordable solution to costly pests (‘push-pull’/ stalk-borer/ Striga )…………………………………………..….8 Drought-tolerant and Striga-resistant maize for Ghana……………………………………………………..….…9 New varieties to boost maize output in West and Central Africa…………………………………..……………..9 Striga-resistant varieties to boost sorghum yields………………………………………………………………....9 Nigerian scientists introduce two new cowpea varieties…………………………………………………………10 Africa: scientists develop drought-resistant cowpea……………………………………………………………..10 Wetlands organization says rival group’s planting of parasite akin to a ‘restoration -
Elucidating the Ramularia Eucalypti Species Complex
Persoonia 34, 2015: 50–64 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X685670 Elucidating the Ramularia eucalypti species complex S.I.R. Videira1,3, J.Z. Groenewald1, A. Kolecka1, L. van Haren1, T. Boekhout1, P.W. Crous1,2,3 Key words Abstract The genus Ramularia includes numerous phytopathogenic species, several of which are economically important. Ramularia eucalypti is currently the only species of this genus known to infect Eucalyptus by causing Mycosphaerellaceae severe leaf-spotting symptoms on this host. However, several isolates identified as R. eucalypti based on mor- plant pathogen phology and on nrDNA sequence data of the ITS region have recently been isolated from other plant hosts, from species complex environmental samples and also from human clinical specimens. Identification of closely related species based systematics on morphology is often difficult and the ITS region has previously been shown to be unreliable for species level identification in several genera. In this study we aimed to resolve this species-complex by applying a polyphasic approach involving morphology, multi-gene phylogeny and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Six partial genes (ITS, ACT, TEF1-α, HIS3, GAPDH and RPB2) were amplified and sequenced for a total of 44 isolates representing R. eucalypti s.lat. and closely related species. A multi-gene Bayesian phylogenetic analysis and parsimony analysis were performed, and both the resulting trees showed significant support for separation of seven species in R. eucalypti s.lat., including two previously described (R. eucalypti and R. miae), four novel species here described (R.