Desk-Based Study of Current Knowledge on Veterinary Medicines in Drinking Water and Estimation of Potential Levels

Total Page:16

File Type:pdf, Size:1020Kb

Desk-Based Study of Current Knowledge on Veterinary Medicines in Drinking Water and Estimation of Potential Levels DESK-BASED STUDY OF CURRENT KNOWLEDGE ON VETERINARY MEDICINES IN DRINKING WATER AND ESTIMATION OF POTENTIAL LEVELS Alistair B A Boxall, Karen Tiede, Gareth Bryning, Ruth Bevan, Christina Tam and Len S Levy December 2011 1 TABLE OF CONTENTS 1. INTRODUCTION ............................................................................................................... 6 2. FATE AND OCCURRENCE OF VETERINARY MEDICINES IN WATER BODIES ........ 7 2.1. SORPTION IN SOIL ........................................................................................................ 7 2.2. PERSISTENCE IN SOIL ................................................................................................... 7 2.3. TRANSPORT IN SOIL SYSTEMS ....................................................................................... 8 2.3.1. Leaching to groundwater ................................................................................... 8 2.3.2. Runoff ................................................................................................................ 8 2.3.3. Drain flow ........................................................................................................... 9 2.3.4. Surface waters ................................................................................................... 9 2.3.5. Occurrence ........................................................................................................ 9 3. SCREENING-LEVEL PRIORITISATION OF VETERINARY MEDICINES IN USE IN THE UK 22 3.1. INTRODUCTION ........................................................................................................... 22 3.1.1. Compilation of active substance list and pre-screening .................................. 22 3.1.2. Calculation of environmental exposure ........................................................... 23 3.1.3. Risk-based prioritisation .................................................................................. 24 4. DETAILED EXPOSURE ASSESSMENT OF PRIORITY COMPOUNDS ....................... 28 4.1. INTRODUCTION ........................................................................................................... 28 4.2. PREDICTION OF CONCENTRATIONS IN SOURCE WATERS ................................................ 28 4.2.1. Groundwaters .................................................................................................. 28 4.2.2. Surface waters ................................................................................................. 29 4.2.3. Predicted concentrations ................................................................................. 31 4.2.4. Predicted removal during water treatment processes ..................................... 36 5. DETAILED REVIEW OF TOXICOLOGICAL INFORMATION AND HEALTH RISK ASSESSMENT ........................................................................................................................ 45 5.1. TOXICOLOGICAL DATA SEARCH STRATEGY ................................................................... 45 5.2. RISKS TO HUMAN HEALTH ........................................................................................... 46 6. DISCUSSION AND RECOMMENDATIONS ................................................................... 62 7. REFERENCES ................................................................................................................ 64 2 General Information Sponsor and funder: Drinking Water Inspectorate 55 Whitehall London SW1A 2EY Sponsor’s Representative: Dr Jim Foster Sponsor’s Reference Number: 70/2/235 Project lead organisation: The Food and Environment Research Agency Sand Hutton York N Yorkshire YO41 1LZ UK Contract Manager: Alistair Boxall [email protected] Tel +44 (0)1904 462142 Fax +44 (0)1904 462111 Disclaimer The views expressed in this report do not necessarily reflect the views of the Drinking Water Inspectorate. 3 SUMMARY Humans may potentially be exposed to veterinary medicines in the environment by a number of routes including the consumption of: 1) crops that have accumulated substances from soils as a result of exposure to contaminated manure and slurry; 2) livestock that have accumulated veterinary medicines from food material that has accumulated substances from contaminated soils or water; 3) fish exposed to treatments used in aquaculture; and 4) abstracted groundwater and surface waters containing veterinary medicines. Whilst veterinary medicines are routinely monitored in target food materials to ensure that concentrations are below the maximum residue limits, the magnitude of the exposure via many of the routes listed and the health impacts of such exposure have not been extensively quantified. While assessments for human medicines in the USA and UK indicates that consumption of humans medicines via drinking waters poses no appreciable risk to human health, our knowledge of the risks of veterinary medicines in drinking waters is much less developed. This project therefore addressed this knowledge gap by exploring the occurrence of veterinary medicines in raw and treated waters, assessing potential exposure for veterinary medicines in use in England and Wales and carrying out a desk-based assessment of the health risks. In the first instance, a review was performed of the published and grey literature on the fate and occurrence of veterinary medicines in the environment. Following this review a systematic evaluation of the potential levels of contamination and health risks of veterinary medicines in use in England and Wales was performed. Data were obtained on the usage, treatment regimes, metabolism, environmental fate and toxicity of around 450 active ingredients in use in the UK. Simple modelling approaches were then used to identify those active ingredients that are likely to pose the greatest risk to human health. Twenty six substances were identified of potential concern and these were then evaluated using more complex modelling approaches for estimating exposure levels in raw waters and for estimating removal in different drinking water treatment processes. The outputs from these exposure predictions were then combined with data on toxicity to assess potential risks to adults, toddlers and infants. The exposure modelling considered concentrations in waterbodies in close proximity to fields where veterinary medicines are applied. In reality, there would be significant dilution of the water between an area of veterinary medicine use and a drinking water abstraction point. The exposure predictions and subsequent risk assessments therefore provide a highly conservative assessment of risks of veterinary medicines to consumers. Even though a conservative approach was used, with the exception of a few cases where more information on exposure, toxicokinetics or toxicology is required, the results of this risk assessment were judged to be highly reassuring. For 14 of the 26 selected priority veterinary medicines, the estimated intakes from conventional or advanced treated water were less than 10% of the Acceptable Daily Intake (ADI) for all sections of the population evaluated. It is concluded, therefore, that these 14 veterinary medicines — albendazole, amoxicillin, chlortetracycline, chlorsulon, cypermethrin, cyromazine, diazinon, enrofloxacin, eprinomectin, lasalocid, salinomycin, tiamulin, trimethoprim and tylosin — are not a potential risk to consumer health. Very minor exceedences of the guide value (equivalent to 10% of the ADI) in all populations assessed were found for a further two compounds: halofuginone and tilmicosin. However, these were not considered to be a potential risk to consumer health. 4 For the remaining 10 compounds (acetyl salicylic acid, altrenogest, apramycin, cefapirin, dicyclanil, florfenicol, lincomycin, luprostiol, monensin, sulfadiazine), the worst case predicted exposure levels, based on consumption of either raw (environmental) water or conventionally treated water were close to or exceeded ADI values. In some cases the predicted levels of exposure significantly exceeded ADI values. The highest exceedences of ADI values arose from exposure to water sourced from groundwater. There is some evidence that the groundwater model, that was used in the study, significantly over estimates actual concentrations in the real environment. In the advanced water treatment scenario, which is widely used in England and Wales, worst case predicted exposure estimates only exceeded the ADI value for four compounds (acetylsalicylic acid, florfenicol, lincomycin and luprostiol). All of these ADI exceedences were related to the groundwater scenario. Whilst concentrations above an ADI do not necessarily imply a risk to human health, a risk for these substances cannot currently be ruled out. As the approach used in this study was modelling-based, used a number of conservative assumptions and employed conservative defaults where model input data were not available for individual compounds, further work may be required on these compounds to better establish the potential risks. 5 1. INTRODUCTION Medicines play an important role in the treatment and prevention of disease in humans and animals. Whilst the side effects on human and animal health have been widely documented, only recently have the occurrence and fate and effects of such medicines in the environment been considered. Veterinary medicines are widely used in livestock treatment, and will be released to land either directly in faeces or urine, or indirectly through the application of slurry and
Recommended publications
  • Antiseptics and Disinfectants for the Treatment Of
    Verstraelen et al. BMC Infectious Diseases 2012, 12:148 http://www.biomedcentral.com/1471-2334/12/148 RESEARCH ARTICLE Open Access Antiseptics and disinfectants for the treatment of bacterial vaginosis: A systematic review Hans Verstraelen1*, Rita Verhelst2, Kristien Roelens1 and Marleen Temmerman1,2 Abstract Background: The study objective was to assess the available data on efficacy and tolerability of antiseptics and disinfectants in treating bacterial vaginosis (BV). Methods: A systematic search was conducted by consulting PubMed (1966-2010), CINAHL (1982-2010), IPA (1970- 2010), and the Cochrane CENTRAL databases. Clinical trials were searched for by the generic names of all antiseptics and disinfectants listed in the Anatomical Therapeutic Chemical (ATC) Classification System under the code D08A. Clinical trials were considered eligible if the efficacy of antiseptics and disinfectants in the treatment of BV was assessed in comparison to placebo or standard antibiotic treatment with metronidazole or clindamycin and if diagnosis of BV relied on standard criteria such as Amsel’s and Nugent’s criteria. Results: A total of 262 articles were found, of which 15 reports on clinical trials were assessed. Of these, four randomised controlled trials (RCTs) were withheld from analysis. Reasons for exclusion were primarily the lack of standard criteria to diagnose BV or to assess cure, and control treatment not involving placebo or standard antibiotic treatment. Risk of bias for the included studies was assessed with the Cochrane Collaboration’s tool for assessing risk of bias. Three studies showed non-inferiority of chlorhexidine and polyhexamethylene biguanide compared to metronidazole or clindamycin. One RCT found that a single vaginal douche with hydrogen peroxide was slightly, though significantly less effective than a single oral dose of metronidazole.
    [Show full text]
  • Tonsillopharyngitis - Acute (1 of 10)
    Tonsillopharyngitis - Acute (1 of 10) 1 Patient presents w/ sore throat 2 EVALUATION Yes EXPERT Are there signs of REFERRAL complication? No 3 4 EVALUATION Is Group A Beta-hemolytic Yes DIAGNOSIS Streptococcus (GABHS) • Rapid antigen detection test infection suspected? (RADT) • roat culture No TREATMENT EVALUATION No A Supportive management Is GABHS confi rmed? B Pharmacological therapy (Non-GABHS) Yes 5 TREATMENT A EVALUATE RESPONSEMIMS Supportive management TO THERAPY C Pharmacological therapy • Antibiotics Poor/No Good D Surgery, if recurrent or complicated response response REASSESS PATIENT COMPLETE THERAPY & REVIEW THE DIAGNOSIS© Not all products are available or approved for above use in all countries. Specifi c prescribing information may be found in the latest MIMS. B269 © MIMS Pediatrics 2020 Tonsillopharyngitis - Acute (2 of 10) 1 ACUTE TONSILLOPHARYNGITIS • Infl ammation of the tonsils & pharynx • Etiologies include bacterial (group A β-hemolytic streptococcus, Haemophilus infl uenzae, Fusobacterium sp, etc) & viral (infl uenza, adenovirus, coronavirus, rhinovirus, etc) pathogens • Sore throat is the most common presenting symptom in older children TONSILLOPHARYNGITIS 2 EVALUATION FOR COMPLICATIONS • Patients w/ sore throat may have deep neck infections including epiglottitis, peritonsillar or retropharyngeal abscess • Examine for signs of upper airway obstruction Signs & Symptoms of Sore roat w/ Complications • Trismus • Inability to swallow liquids • Increased salivation or drooling • Peritonsillar edema • Deviation of uvula
    [Show full text]
  • Veterinary Guide to Resistance & Parasites
    Veterinary Guide to Resistance & Parasites How to make the Get Rotation Right deworming strategy part of your equine health wellness protocol. ||||||||||||||||||||||||||||||||||||||||| GET ROTATION RIGHT Resistant parasites – veterinary involvement is needed now. Deworming has come a long way in the past 50 years – from products that were nearly toxic and required complicated tubing to the easy-to-administer dewormers we know now. As more horse owners recognize the value of regular deworming, past troublemakers such as large strongyles have become much less of a threat. Still, deworming is nothing to take lightly. As internal parasites become more resistant, your expertise is needed Horseowners unknowingly more than ever to make sure deworming programs remain efficient contribute to resistance. and effective. Only with veterinary involvement will we control parasite • Rotating brand names, not populations, combat resistance and get rotation right. chemical classes – general confusion about when and RESISTANCE IS REAL: MULTIPLE DRUGS, MULTIPLE PARASITES. how to use different classes • No new drug class since avermectins in 1981. of dewormers. • Benzimidazole resistance in cyathostomes.1-3 • Lack of knowledge about • Pyrantel resistance in cyathostomes and ascarids.4-8,11 resistance issues. • Ivermectin and moxidectin resistance among ascarids.8,9,11 • Deworming many horses more • Early warning signs of macrocyclic-lactone-resistant cyathostomes.10 frequently than necessary. • Health-related issues caused by parasites: • Misunderstanding about the ~ Ascarids (roundworms) unique properties of larvicidal Verminous pneumonia: cough, nasal discharge, low-grade fever treatments and how to maximize Unthriftiness – rough hair coat their efficacy. Intestinal obstruction/colic • Underdosing their horses. Intestinal perforation leading to peracute death Decreased performance and reduced weight gain ~ Cyathostomes (small strongyles) Most common in young and old horses, but can afflict any horse.
    [Show full text]
  • Report Name:Ukraine's Mrls for Veterinary Drugs
    Voluntary Report – Voluntary - Public Distribution Date: November 05,2020 Report Number: UP2020-0051 Report Name: Ukraine's MRLs for Veterinary Drugs Country: Ukraine Post: Kyiv Report Category: FAIRS Subject Report Prepared By: Oleksandr Tarassevych Approved By: Robin Gray Report Highlights: Ukraine adopted several maximum residue levels (MRLs) for veterinary drugs, coccidiostats and histomonostats in food products of animal origin. Ukraine also adopted a list of drugs residues that are not allowed in food products. THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY The Office of Agricultural Affairs of USDA/Foreign Agricultural Service in Kyiv, Ukraine prepared this report for U.S. exporters of domestic food and agricultural products. While every possible care was taken in the preparation of this report, information provided may not be completely accurate either because policies have changed since the time this report was written, or because clear and consistent information about these policies was not available. It is highly recommended U.S. exporters verify the full set of import requirements with their foreign customers, who are normally best equipped to research such matters with local authorities, before any goods are shipped. This FAIRS Subject Report accompanies other reports on Maximum, Residue Limits established by Ukraine in 2020. Related reports could be found under the following links: 1.) Ukraine's MRLs for Microbiological Contaminants_Kyiv_Ukraine_04-27-2020 2.) Ukraine's MRLs for Certain Contaminants_Kyiv_Ukraine_03-06-2020 Food Products of animal origin and/or ingredients of animal origin are not permitted in the Ukrainian market if they contain certain veterinary drugs residues in excess of the maximum residue levels established in Tables 1 and 2.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • Summary of Product Characteristics 1. Name Of
    Revised: July 2020 AN: 00391/2020 SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE VETERINARY MEDICINAL PRODUCT Chronogest CR, 20 mg controlled release vaginal sponge for sheep. 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each polyester polyurethane sponge contains Active substance(s) Flugestone acetate, 20 mg. List of excipients Excipients qsp 1 sponge. For a full list of excipients, see section 6.1 3. PHARMACEUTICAL FORM Vaginal sponge. White cylindrical polyester polyurethane foam equipped with string. 4. CLINICAL PARTICULARS 4.1 Target species Sheep (ewes and ewe-lambs). 4.2 Indications for use In ewes and ewe lambs, in combination with PMSG (Pregnant Mare Serum Gonadotrophin) - Induction and synchronization of oestrus and ovulation (non cycling ewes during seasonal anoestrus and ewe lambs). - Synchronization of oestrus and ovulation (cycling ewes and ewe-lambs). 4.3 Contraindications Please refer to section 4.7 and section 4.8. 4.4 Special warnings None. Page 1 of 5 Revised: July 2020 AN: 00391/2020 4.5 Special precautions for use (i) Special precautions for use in animals - The repeated treatment with the product combined with PMSG may trigger the appearance of PMSG antibodies in some ewes. This in turn may affect the time of ovulation and result in reduced fertility when combined with fixed time artificial insemination at 55h following sponge removal. - The repeated use of sponges within one year has not been studied. - The use of a vaginal applicator designed for ewes or ewe lambs is recommended to correctly insert sponges and to avoid vaginal injuries. (ii) Special precautions to be taken by the person administering the medicinal product to animals - Direct contact with the skin should be avoided.
    [Show full text]
  • WSAVA List of Essential Medicines for Cats and Dogs
    The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs .....................................................................................................................
    [Show full text]
  • WO 2012/148799 Al 1 November 2012 (01.11.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/148799 Al 1 November 2012 (01.11.2012) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/107 (2006.01) A61K 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A 61 47/10 (2006.0V) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/US2012/034361 HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 20 April 2012 (20.04.2012) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/480,259 28 April 201 1 (28.04.201 1) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant (for all designated States except US): BOARD UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, OF REGENTS, THE UNIVERSITY OF TEXAS SYS¬ TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, TEM [US/US]; 201 West 7th St., Austin, TX 78701 (US).
    [Show full text]
  • These Ain't Your Father's Parasites: Dewormer Resistance and New Strategies for Parasite Control in Horses
    These Ain't Your Father's Parasites: Dewormer Resistance and New Strategies for Parasite Control in Horses Ray M. Kaplan, DVM, PhD, DEVPC Department of Infectious Diseases College of Veterinary Medicine University of Georgia Athens, Georgia 30602 Summary Most veterinarians continue to recommend anthelmintic (dewormer) treatment programs for horses that are based on knowledge and concepts that are more than 40 years old. However, recent studies demonstrate that resistance and multiple-drug resistance in equine parasites is extremely common, but few horse owners or veterinarians take this into account when making treatment decisions. Parasites are highly over-dispersed in hosts, such that a small percentage of hosts (20%) harbor most (80%) of the parasites. The common practices of recommending the same treatment program for all horses despite great differences in parasite burdens, of recommending frequent preventive treatment of all horses without any indication of parasitic disease or knowing what species of parasites are present, of recommending the use of drugs without knowledge of their efficacy, of failing to perform fecal egg count surveillance and of failing to determine if treatments are effective, are all incompatible with achieving optimal and sustainable parasite control. Consequently, it is necessary that attitudes and approaches for parasite control in horses undergo a complete overhaul, and that both horse owners and veterinarians become educated in these important issues. Introduction The introduction of benzimidazole (BZ) anthelmintics (dewormers) led to a revolution in equine in parasite control (Drudge and Lyons 1966). With these new tools came new recommendations; horse owners were advised to deworm all horses every 8 weeks.
    [Show full text]
  • Comparative Genomics of the Major Parasitic Worms
    Comparative genomics of the major parasitic worms International Helminth Genomes Consortium Supplementary Information Introduction ............................................................................................................................... 4 Contributions from Consortium members ..................................................................................... 5 Methods .................................................................................................................................... 6 1 Sample collection and preparation ................................................................................................................. 6 2.1 Data production, Wellcome Trust Sanger Institute (WTSI) ........................................................................ 12 DNA template preparation and sequencing................................................................................................. 12 Genome assembly ........................................................................................................................................ 13 Assembly QC ................................................................................................................................................. 14 Gene prediction ............................................................................................................................................ 15 Contamination screening ............................................................................................................................
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]