Identification and Characterization of Novel Genetic Causes of Dystonia

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Characterization of Novel Genetic Causes of Dystonia From the Institute of Neurogenetics of the University of Lübeck Director: Prof. Dr. med. Christine Klein Identification and characterization of novel genetic causes of dystonia Dissertation for Fulfilment of the Requirements for the Doctoral Degree at the University of Lübeck from the Department of Natural Sciences Submitted by Hauke Baumann from Celle Lübeck, 2020 First referee: Prof. Dr. rer. nat. Katja Lohmann Second referee: Prof. Dr. rer. nat. Henrik Oster Date of oral examination: 24.07.2020 Approved for printing, Lübeck, 28.07.2020 To Bernd Baumann LIST OF CONTENTS 1. ABSTRACT ................................................................................................................................................ 1 2. ZUSAMMENFASSUNG .............................................................................................................................. 3 3. INTRODUCTION........................................................................................................................................ 5 3.1 CLINICAL CHARACTERISTICS OF DYSTONIA ......................................................................................................... 5 3.2 GENETICS OF DYSTONIA................................................................................................................................ 6 3.2.1 DYT-KMT2B dystonia ......................................................................................................................... 7 3.2.2 GNB1-related disorders ..................................................................................................................... 8 3.2.3 VAC14-related disorders ................................................................................................................. 10 3.2.4 DYT-THAP1 dystonia ........................................................................................................................ 11 3.3 REDUCED PENETRANCE IN GENETIC DYSTONIAS ............................................................................................... 12 3.4 CONVERGING PATHWAYS OF GENETIC DYSTONIAS ............................................................................................ 13 3.5 AIMS ...................................................................................................................................................... 14 4. PATIENTS, MATERIALS, AND METHODS ................................................................................................. 16 4.1 PATIENTS ................................................................................................................................................ 16 4.2 MATERIALS ............................................................................................................................................. 18 4.2.1 Solutions .......................................................................................................................................... 18 4.2.2 Factors for differentiation ............................................................................................................... 19 4.2.3 Technical equipment ....................................................................................................................... 19 4.2.4 Kits ................................................................................................................................................... 20 4.2.5 Antibodies ....................................................................................................................................... 20 4.2.6 Laboratory supplies and reagents ................................................................................................... 21 4.2.7 Primer .............................................................................................................................................. 23 4.3 METHODS ............................................................................................................................................... 24 4.3.1 Mammalian cell culture ................................................................................................................... 25 4.3.1.1 Fibroblasts .............................................................................................................................................. 25 4.3.1.2 Reprogramming of skin fibroblasts into iPSCs ........................................................................................ 25 4.3.1.3 Coating ................................................................................................................................................... 26 4.3.1.4 iPSC culture ............................................................................................................................................. 27 4.3.1.5 Embryoid body formation ....................................................................................................................... 28 4.3.1.6 Differentiation of iPSCs into cortical neurons ......................................................................................... 28 4.3.1.7 Mycoplasma detection ........................................................................................................................... 29 4.3.2 Nucleic acid-based methods ........................................................................................................... 30 4.3.2.1 Extraction of nucleic acids ...................................................................................................................... 30 4.3.2.2 First-strand cDNA synthesis .................................................................................................................... 30 4.3.2.3 Quantitative real-time PCR (qRT-PCR) .................................................................................................... 31 4.3.2.4 Polymerase chain reaction (PCR) ............................................................................................................ 31 4.3.2.5 Sanger sequencing .................................................................................................................................. 32 4.3.2.6 Short tandem repeat (STR) analysis ........................................................................................................ 33 4.3.2.7 RNA integrity number (RIN) .................................................................................................................... 33 4.3.2.8 SNP karyotype analysis ........................................................................................................................... 33 4.3.2.9 Whole transcriptome analysis ................................................................................................................ 34 4.3.3 Molecular cloning ............................................................................................................................ 34 4.3.3.1 Insert generation and ligation ................................................................................................................ 35 4.3.3.2 Site-directed mutagenesis ...................................................................................................................... 36 4.3.3.3 Transformation ....................................................................................................................................... 36 4.3.3.4 Gel extraction ......................................................................................................................................... 36 4.3.3.5 Plasmid extraction .................................................................................................................................. 37 4.3.3.6 Subcloning of genomic DNA fragments .................................................................................................. 37 4.3.3.7 Lentiviral transduction ............................................................................................................................ 38 4.3.4 Immunofluorescence ...................................................................................................................... 38 4.3.5 Western blotting ............................................................................................................................. 38 4.3.6 Cytometry ........................................................................................................................................ 39 V 4.3.7 Systematic literature search ............................................................................................................ 39 4.3.8 Statistical analysis............................................................................................................................ 40 5. RESULTS ................................................................................................................................................. 41 5.1 KMT2B GENE EXPRESSION ANALYSIS ............................................................................................................ 41 5.2 FUNCTIONAL EVALUATION OF GNB1 MUTATIONS ........................................................................................... 42 5.3 MOLECULAR CHARACTERIZATION OF VAC14 ................................................................................................. 44 5.4 CLINICAL SPECTRUM AND GENETIC ANALYSIS OF DYT-THAP1 PATIENTS .............................................................. 47 5.4.1
Recommended publications
  • Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach
    Mafalda Rita Avó Bacalhau Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach Tese de doutoramento do Programa de Doutoramento em Ciências da Saúde, ramo de Ciências Biomédicas, orientada pela Professora Doutora Maria Manuela Monteiro Grazina e co-orientada pelo Professor Doutor Henrique Manuel Paixão dos Santos Girão e pela Professora Doutora Lee-Jun C. Wong e apresentada à Faculdade de Medicina da Universidade de Coimbra Julho 2017 Faculty of Medicine Establishing the pathogenicity of novel mitochondrial DNA sequence variations: a cell and molecular biology approach Mafalda Rita Avó Bacalhau Tese de doutoramento do programa em Ciências da Saúde, ramo de Ciências Biomédicas, realizada sob a orientação científica da Professora Doutora Maria Manuela Monteiro Grazina; e co-orientação do Professor Doutor Henrique Manuel Paixão dos Santos Girão e da Professora Doutora Lee-Jun C. Wong, apresentada à Faculdade de Medicina da Universidade de Coimbra. Julho, 2017 Copyright© Mafalda Bacalhau e Manuela Grazina, 2017 Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os direitos de autor são pertença do autor da tese e do orientador científico e que nenhuma citação ou informação obtida a partir dela pode ser publicada sem a referência apropriada e autorização. This copy of the thesis has been supplied on the condition that anyone who consults it recognizes that its copyright belongs to its author and scientific supervisor and that no quotation from the
    [Show full text]
  • Anti-VAC14 (Aa 711-760) Polyclonal Antibody (CABT-BL5957) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-VAC14 (aa 711-760) polyclonal antibody (CABT-BL5957) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Rabbit polyclonal antibody to Human VAC14. Antigen Description The content of phosphatidylinositol 3, 5-bisphosphate (PtdInsP2) in endosomal membranes changes dynamically with fission and fusion events that generate or absorb intracellular transport vesicles. VAC14 is a component of a trimolecular complex that tightly regulates the level of PtdInsP2. Other components of this complex are the PtdInsP2-synthesizing enzyme PIKFYVE (MIM 609414) and the PtdInsP2 phosphatase FIG4 (MIM 609390). VAC14 functions as an activator of PIKFYVE (Sbrissa et al., 2007 Immunogen Synthetic peptide, corresponding to a region within C terminal amino acids 711-760 (QLLSHRLQCV PNPELLQTED SLKAAPKSQK ADSPSIDYAE LLQHFEKVQN) of Human VAC14. Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Immunogen affinity purified Conjugate Unconjugated Sequence Similarities Belongs to the VAC14 family.Contains 6 HEAT repeats. Cellular Localization Endosome membrane. Microsome membrane. Mainly associated with membranes of the late endocytic pathway. Format Liquid Size 50 μg Buffer 97% PBS, 2% Sucrose Preservative None Storage Shipped at 4°C. Upon delivery aliquot and store at -20°C. Avoid repeated freeze/thaw cycles. 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved BACKGROUND Introduction The content of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) in endosomal membranes changes dynamically with fission and fusion events that generate or absorb intracellular transport vesicles. VAC14 is a component of a trimolecular complex that tightly regulates the level of PtdIns(3,5)P2.
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • TMEM106B in Humans and Vac7 and Tag1 in Yeast Are Predicted to Be Lipid Transfer Proteins
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.435176; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. TMEM106B in humans and Vac7 and Tag1 in yeast are predicted to be lipid transfer proteins Tim P. Levine* UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom. ORCID 0000-0002-7231-0775 *Corresponding author and lead contact: [email protected] Data availability statement: The data that support this study are freely available in Harvard Dataverse at https://dataverse.harvard.edu/dataverse/LEA_2. Acknowledgements: work was funded by the Higher Education Funding Council for England and the NIHR Moorfields Biomedical Research Centre Conflict of interest disclosure: the author declares that there is no conflict of interest Keywords: Structural bioinformatics, Lipid transfer protein, LEA_2, TMEM106B, Vac7, YLR173W, Endosome, Lysosome Running Title: TMEM106B & Vac7: lipid transfer proteins 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.435176; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract TMEM106B is an integral membrane protein of late endosomes and lysosomes involved in neuronal function, its over-expression being associated with familial frontotemporal lobar degeneration, and under-expression linked to hypomyelination. It has also been identified in multiple screens for host proteins required for productive SARS-CoV2 infection. Because standard approaches to understand TMEM106B at the sequence level find no homology to other proteins, it has remained a protein of unknown function.
    [Show full text]
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • Structural Basis for the Regulatory Interactions of Proapoptotic Par-4
    Cell Death and Differentiation (2017) 24, 1540–1547 Official journal of the Cell Death Differentiation Association OPEN www.nature.com/cdd Structural basis for the regulatory interactions of proapoptotic Par-4 Udaya K Tiruttani Subhramanyam1,2, Jan Kubicek2,3, Ulf B Eidhoff2 and Joerg Labahn*,1,2 Par-4 is a unique proapoptotic protein with the ability to induce apoptosis selectively in cancer cells. The X-ray crystal structure of the C-terminal domain of Par-4 (Par-4CC), which regulates its apoptotic function, was obtained by MAD phasing. Par-4 homodimerizes by forming a parallel coiled-coil structure. The N-terminal half of Par-4CC contains the homodimerization subdomain. This structure includes a nuclear export signal (Par-4NES) sequence, which is masked upon dimerization indicating a potential mechanism for nuclear localization. The heteromeric-interaction models specifically showed that charge interaction is an important factor in the stability of heteromers of the C-terminal leucine zipper subdomain of Par-4 (Par-4LZ). These heteromer models also displayed NES masking capacity and therefore the ability to influence intracellular localization. Cell Death and Differentiation (2017) 24, 1540–1547; doi:10.1038/cdd.2017.76; published online 16 June 2017 Par-4 is a 332 amino-acid proapoptotic protein with tumor mainly shown to mediates the interaction with partner proteins suppressor activity. Par-4 had been predicted to be largely such as PKCζ,15 WT1,16 Akt1,13 apoptosis antagonizing disordered.1 Its downregulation or non-functional state
    [Show full text]
  • Genomic Approaches to Reproductive Disorders
    Genomic Approaches to Reproductive Disorders Aleksandar Rajkovic Dept Obstetrics Gynecology and Reproductive Sciences University of Pittsburgh Magee Womens Research Institute Pittsburgh, PA Preconceptional Care Scope • Half of Pregnancies are Unintended • Medical Conditions • Mental Conditions • Immunization History • Nutritional Issues • Family History/Genetic Risk • Occupational/Environmental Exposures • Tobacco/Drug Abuse • Social Issues Preconceptional genetic screening Ethnic: Sickle cell disease Tay–Sachs disease Pan-ethnic: cystic fibrosis fragile X syndrome Spinal muscular atrophy Mendelian Inheritance • 5593 phenotypes for which molecular basis known • 3452 genes with phenotype causing mutation • Over 15,000 mutations to date known Preconceptional Pan Ethnic Testing • Screens for known mutations in more than 100 genes, easy on genetic counsellors • The screen is pan-ethnic • Useful also for couples undergoing IVF and potentially PGD • 1:5 will be carriers of a Mendelian disorder. • $600 (529 Euros) for the couple Genetic Counselling • Objective of the test • Test Methodology • Type of sample required (parents, siblings) • Possible outcomes (abnormal results, result of unknown clinical significance) ClinVar Stars and their interpretation Number of golden stars No submitter provided an interpretation with assertion criteria (no assertion criteria provided), none or no interpretation was provided (no assertion provided) At least one submitter provided an interpretation with assertion criteria (criteria provided, single submitter)
    [Show full text]
  • Hyperphosphorylation Repurposes the CRL4B E3 Ligase to Coordinate Mitotic Entry and Exit
    Research Collection Doctoral Thesis Identification and Characterization of Novel Cullin 4-based E3 Ligases in Somatic Cell Division Author(s): da Graça Gilberto, Samuel Filipe Publication Date: 2017 Permanent Link: https://doi.org/10.3929/ethz-b-000219014 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 24583 Identification and characterization of novel Cullin 4-based E3 ligases in somatic cell division A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) Presented by SAMUEL FILIPE DA GRAÇA GILBERTO MSc in Biochemistry, University of Lisbon Born on 21.02.1988 Citizen of Portugal Accepted on the recommendation of Prof. Dr. Matthias Peter Prof. Dr. Anton Wutz 2017 Table of contents 1. General introduction ..................................................................................................................1 1.1. The ubiquitylation machinery ....................................................................................................... 1 1.2. Principles of cell cycle regulation: a focus on CRLs and the APC/C .............................................. 3 1.3. Cullin-4 RING E3 ligases: cell-cycle regulation and beyond ........................................................ 14 1.4. Functional distinctions between CUL4A and CUL4B ..................................................................
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Deletion of DDB1- and CUL4- Associated Factor-17 (Dcaf17) Gene
    www.nature.com/scientificreports OPEN Deletion of DDB1- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects Received: 27 October 2017 Accepted: 31 May 2018 and male infertility in mice Published: xx xx xxxx Asmaa Ali1, Bhavesh V. Mistry1, Hala A. Ahmed1, Razan Abdulla1, Hassan A. Amer3, Abdelbary Prince3, Anas M. Alazami2, Fowzan S. Alkuraya 2 & Abdullah Assiri 1,4,5 DDB1– and CUL4–associated factor 17 (Dcaf17) is a member of DCAF family genes that encode substrate receptor proteins for Cullin-RING E3 ubiquitin ligases, which play critical roles in many cellular processes. To unravel the function of DCAF17, we performed expression profling of Dcaf17 in diferent tissues of wild type mouse by qRT-PCR and generated Dcaf17 knockout mice by gene targeting. Expression profling of Dcaf17 showed highest expression in testis. Analyses of Dcaf17 transcripts during post-natal development of testis at diferent ages displayed gradual increase in Dcaf17 mRNA levels with the age. Although Dcaf17 disruption did not have any efect on female fertility, Dcaf17 deletion led to male infertility due to abnormal sperm development. The Dcaf17−/− mice produced low number of sperm with abnormal shape and signifcantly low motility. Histological examination of the Dcaf17−/− testis revealed impaired spermatogenesis with presence of vacuoles and sloughed cells in the seminiferous tubules. Disruption of Dcaf17 caused asymmetric acrosome capping, impaired nuclear compaction and abnormal round spermatid to elongated spermatid transition. For the frst time, these data indicate that DCAF17 is essential for spermiogenesis. Infertility is a global health problem that afects 15% of couples worldwide1,2. Almost half of these infertility cases are attributed to male infertility, where about 75% of all the male factor infertility attributed to defective sper- matogenesis3–5.
    [Show full text]
  • Diosynrhesis of Neopterin, Sepioprerin, Ond Diopterin in Rar Ond Humon Oculor Tissues
    768 INVESTIGATIVE OPHTHALMOLOGY b VISUAL SCIENCE / May 1985 Vol. 26 before and after the addition of beta-glucuronidase.4 ported by the Juvenile Diabetes Foundation and by the University In circumstances where the actual plasma free fluo- of London, Central Research Fund. The HPLC was purchased with an MRC grant to Dr. Michael J. Neal. Submitted for publi- rescein has not been measured, the term "plasma- cation: April 12, 1984. Reprint requests: Dr. P. S. Chahal, Depart- free fluorescence" should be quoted. It is then better ment of Medicine, Hammersmith Hospital, Du Cane Road, London to measure overall fluorescence (fluorescein and the W12 OHS, England. glucuronide metabolite) in protein-free plasma ultra- filtrate and the fluorescence appearing in the ocular References compartments using the same excitor and emission filters. 1. Araie M, Sawa M, Nagataki S, and Mishima S: Aqueous Fluorescein glucuronide is a potential source of humor dynamics in man as studied by oral fluorescein. Jpn J Ophthalmol 24:346, 1980. variability in studies of blood-ocular dynamics using 2. Zeimer RC, Blair NP, and Cunha-Vaz JG: Pharmacokinetic fluorescein. Its exact role has yet to be established. interpretation of vitreous fluorophotometry. Invest Ophthalmol VisSci 24:1374, 1983. Key words: Blood-ocular barriers, diabetes, plasma ultrafil- 3. Chen SC, Nakamura H, and Tamura Z: Studies on metabolite trate, fluorescein glucuronide, fluorescence, protein-binding of fluorescein in rabbit and human urine. Chem Pharmacol Acknowledgments. Technical assistance was given by Dr. Bull 28:1403, 1980. J. Cunningham, Ian Joy, and Margaret Foster. 4. Chen SC, Nakamura H, and Tamura Z: Determination of fluorescein and fluorescein monoglucuronide excreted in urine.
    [Show full text]