Zootaxa,New Species of Anillinus Casey (Carabidae: Trechinae

Total Page:16

File Type:pdf, Size:1020Kb

Zootaxa,New Species of Anillinus Casey (Carabidae: Trechinae Zootaxa 1542: 1–20 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) New species of Anillinus Casey (Carabidae: Trechinae: Bembidiini) from Great Smoky Mountains National Park, U.S.A. and phylogeography of the A. langdoni species group IGOR M. SOKOLOV1, YULIYA Y. SOKOLOVA2 & CHRISTOPHER E. CARLTON1 1Louisiana State Arthropod Museum, Department of Entomology, LSU Agricultural Center, Baton Rouge, Louisiana, 70803, USA. E-mail: [email protected]; [email protected] 2Laboratory for Insect Pathology, Department of Entomology, LSU Agricultural Center, Baton Rouge, Louisiana, 70803, USA. E-mail: [email protected] Abstract The Anillinus langdoni–species group is characterized and two new species are described, Anillinus cieglerae Sokolov and Carlton sp. nov. and A. pusillus Sokolov and Carlton sp. nov., both from Great Smoky Mountains National Park. The langdoni–group includes four species at present, three apparently endemic to the Great Smoky Mountains and adjacent mountains of western North Carolina/Tennessee, and a fourth from South Mountains of middle North Carolina. They are distinguished mainly using characters of the male genitalia and to a lesser extent, differences in shapes of female sper- mathecae. Phylogenetic analyses based on aedeagal morphology and COI gene sequences yielded conflicting results, with the later providing a phylogeny that was more parsimonious with expectations based on geographic distributions. Speciation within the group may derive from ecological constraints and altitudinal fluctuations of habitat corridors dur- ing past climate changes combined with the impact of local watersheds as fine scale isolating mechanisms. Key words: Coleoptera, Adephaga, Carabidae, Anillinus, South Appalachians, new species, taxonomy, identification key, COI gene sequences, phylogeography Introduction The genus Anillinus Casey is one of the most diverse genera of carabid beetles in the Southern Appalachian region of eastern United States. Species representing several distinct forms adapted to certain types of habitats inhabit different altitude zones. Localities within each zone may harbor up to three morphologically distinct lineages that presumably reflect a long and complicated history of speciation in the region. In the last review of the genus (Sokolov et al. 2004) morphological characters of these lineages were summarized. That paper provided a basis for character analysis within complexes of Anillinus species across the region. The Great Smoky Mountains of eastern Tennessee and western North Carolina, and Great Smoky Mountains National Park (GSMNP) in particular, is exceptionally important as an area of Anillinus species radiation. Five species of the genus have been described from GSMNP to date (l.c.), and each of these species represents a morpho- logically distinct lineage with putative relatives in other localities of the Southern Appalachian region. During the past three years of sampling of the litter fauna at the GSMNP, we have discovered two new species that are similar to Anillinus langdoni Sokolov and Carlton externally, including microsculpture pat- terns. In this paper we describe these species, provide a determination key for all extensively microsculptured species of Anillinus from the Southern Appalachians, and discuss the evolutionary history of the langdoni– species group as inferred from distributional data, morphology, and analysis of cytochrome oxidase I (COI) gene sequences. Accepted by I. Ribera: 23 May 2007; published: 6 Aug. 2007 1 The mitochondrial gene encoding COI has proven useful in assessing species status and evolutionary rela- tionships among different groups of Carabidae (Emerson et al. 2000; Kim et al. 2000; Clarke et al. 2001; Marek and Kavanaugh 2005; Zhang et al. 2005). The chosen region of the COI gene, from E3 to E6 structural regions (Lunt et al. 1996), is comparatively conserved, and therefore was particularly recommended for infer- ence of phylogenetic relationships among species and genera of insects (Zhang and Hewitt 1996). Material and methods Sampling, measurements, dissections, terms, and illustrations This study was based on examination of more than 200 specimens of Anillinus belonging to the langdoni– species group. Specimens were collected in Great Smoky Mountains National Park (GSMNP) using com- monly employed techniques, either Berlese funnels or hand sifting of forest litter. For DNA analyses speci- mens were stored in 100% ethanol. Verbatim label data are given for type specimens of all newly described species, with label breaks indicated by a slash (“/”). Type depositions are indicated under each species treat- ment. All specimens were measured electronically using a Leica Z16 APO microscope equipped with a Syn- croscopy AutoMontage photomicroscopy system (SYNCROSCOPY, Synoptics Ltd.). Measurements for vari- ous body parts are encoded as follows: ABL = apparent body length, from clypeus to apex of elytra; WH = width of head, at level of first orbital setae; WPm = maximal width across pronotum; WPa = width across anterior angles of pronotum; WPp = width across posterior angles of pronotum; LP = length of pronotum from base to apex along midline; WE = width of elytra, at level of 2nd discal setae; LE = length of the elytra, from apex of scutellum to apex of left elytron. ABL measurements are given in mm; others are presented as eight ratios: mean widths–WH/WPm and WPm/We and body parts–WPa/WPp, WPm/WPp, WPm/LP, LE/ABL and WE/ABL. All values are given as mean ± standard deviation. Dissections of male genitalia were made using standard techniques as described by Sokolov et al. (2004). Female genitalia were dissected from abdomens of specimens previously softened in boiling water for 3–5 minutes. Contents of the abdomen were cleared using 10% KOH for 24 hrs to remove internal tissues then washed in hot water before examination. Terminology of female genitalia structures follows Maddison (1993) with only one difference. We call the ramus only the protruding area of attachment of the spermathecal gland. Other parts are defined as follows: the nodulus is the basal section of the spermatheca, near the attachment of the spermathecal duct; the cornu is the portion adjacent to the attachment of the spermathecal gland. In the species under consideration the area of attachment of the spermathecal gland is flat and not protruding, so we consider the ramus to be poorly developed. Photographs of the dorsal habitus of new species were taken with the AutoMontage system. Line draw- ings of selected body parts were made using a camera lucida on an Olympus BX 50 compound microscope. Maps of species distribution were generated using MapDisplay software (Great Smoky Mountains Map Dis- play, 2003, M. Kunze, U. S. National Park Service). Cladistic analysis Morphological characters of the external and internal aedeagal structures (Table 1) were coded and parsi- mony analysis was executed using PAUP* version 4.0b10 (Swofford 2002). External aedeagal characters: 1. Shape of apex of median lobe (MLA), 0–of normal proportions, width of apex equal or less than 1/4 width of aedeagus at position of apical parts of dorsal sclerites; 1–enlarged, width of apex equal to or greater than 1/3 width of aedeagus at position of apical parts of dorsal sclerites. 2. Direction of ventral margin of median lobe (MLD), 0–straight, 1–curved to apex. 2 · Zootaxa 1542 © 2007 Magnolia Press SOKOLOV ET AL. 3. Condition of ventral margin of median lobe (MLV), 0–of normal proportions, width of ventral margin equal to or less than 1/4 width of aedeagus at position of apical parts of dorsal sclerites; 1–enlarged, width of ventral margin equal to or greater than 1/3 width of aedeagus at the position of apical parts of dorsal sclerites. 4. Distribution of poriferous canals (MLC), 0–on apex and ventral margin only, 1–also on wall of median lobe. 5. Form of right paramere (PF), 0–elongate, 1–short. Internal aedeagal characters: 6. Form of dorsal sclerites, their curvature (DSF), 0–slightly curved, formed by sector of ~100°, 1– strongly curved, semicircular, formed by sector of ~180°. We homologized the dorsal sclerites of Anillinus species with the upper sclerotized platelets of Bembidion species, probably with the CH3–CH5 series pro- posed by Erwin and Kavanaugh (1981) for the B. erasum–group. 7. Contour of dorsal sclerites, number of parts (DSP), 0–as one curved piece, 1–as two curved pieces united at base. 8. Basal part of dorsal sclerites, length of prolongations (DSB), 0–short or absent, 1–elongate. In the parsimony analysis all characters were treated as unordered and unweighted. An exhaustive search option was utilized. Anillinus magazinensis Sokolov and Carlton was chosen as an outgroup because, in our opinion, it belongs to a different species group and exhibits more plesiomorphic aedeagal characters (Sokolov et al. 2004). DNA extraction, PCR amplification and sequencing Beetles were removed from alcohol and abdominal integuments were perforated. The whole insects were incubated in Proteinase K overnight at 55°C. Total DNA was extracted using DNeasy® Tissue kit (Qiagen Sciences, Maryland, USA) following manufacturer’s standard protocol for insects. Fragments of mitochondrial gene COI of approximately 750 bp were amplified by forward 5´GTA TTA GCA GGA GCT ATT AC 3´ (corresponding to UEA5 (Lunt et al. 1996), with slight modifications) and reverse 5´GAA ATT GTT GAT CCA ATA G 3´ primers. Two successive PCR reactions were run for each DNA sample, in which the product of the first reaction served as a DNA template for the second, using a Lab- systems thermocycler. The same program (initial denaturation of 3 minutes at 96°, followed by 35 cycles with denaturation of 15 sec at 94°, annealing of 30 sec at 55°, and extension of 60 sec at 72°, and the final exten- sion step of 7 min at 72°) and same concentrations of the reaction mix components (20 µM of each primer, 2/ 5µl of template, 10/25 µl of Failsafe PCR buffer E; and 0.2/0.5 µl of Failsafe PCR enzyme, Epicenter, Madi- son WI) were used in the 1st/ 2nd reactions with respective volumes of 20 and 50 µl.
Recommended publications
  • A New Species of Bembidion Latrielle 1802 from the Ozarks, with a Review
    A peer-reviewed open-access journal ZooKeys 147: 261–275 (2011)A new species of Bembidion Latrielle 1802 from the Ozarks... 261 doi: 10.3897/zookeys.147.1872 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A new species of Bembidion Latrielle 1802 from the Ozarks, with a review of the North American species of subgenus Trichoplataphus Netolitzky 1914 (Coleoptera, Carabidae, Bembidiini) Drew A. Hildebrandt1,†, David R. Maddison2,‡ 1 710 Laney Road, Clinton, MS 39056 USA 2 Department of Zoology, Oregon State University, Corvallis, OR 97331, USA † urn:lsid:zoobank.org:author:038776CA-F70A-4744-96D6-B9B43FB56BB4 ‡ urn:lsid:zoobank.org:author:075A5E9B-5581-457D-8D2F-0B5834CDE04D Corresponding author: David R. Maddison ([email protected]) Academic editor: T. Erwin | Received 31 July 2011 | Accepted 25 August 2011 | Published 16 November 2011 urn:lsid:zoobank.org:pub:52038529-10EA-41A8-BE4F-6B495B610900 Citation: Hildebrandt DA, Maddison DR (2011) A new species of Bembidion Latrielle 1802 from the Ozarks, with a review of the North American species of subgenus Trichoplataphus Netolitzky 1914 (Coleoptera, Carabidae, Bembidiini). In: Erwin T (Ed) Proceedings of a symposium honoring the careers of Ross and Joyce Bell and their contributions to scientific work. Burlington, Vermont, 12–15 June 2010. ZooKeys 147: 261–275. doi: 10.3897/zookeys.147.1872 Abstract A new species of Bembidion (Trichoplataphus Netolitzky) from the Ozark Plateau of Missouri and Arkan- sas is described (Bembidion ozarkense Maddison and Hildebrandt). It is distinguishable from the closely related species, B. rolandi Fall, by characteristics of the male genitalia, and sequences of the genes cyto- chrome oxidase I and 28S ribosomal DNA.
    [Show full text]
  • Zootaxa, Two New Species of Blind, Forest Litter-Inhabiting Ground
    TERM OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website site is prohibited. Zootaxa 1740: 37–44 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Two new species of blind, forest litter-inhabiting ground beetles from the subtribe Anillina (Carabidae: Trechinae: Bembidiini) from eastern U.S.A. IGOR M. SOKOLOV1 & CHRISTOPHER E. CARLTON2 Louisiana State Arthropod Museum, Department of Entomology, LSU Agricultural Center Baton Rouge, Louisiana, 70803, USA. E- mail: [email protected]; [email protected] Abstract Two new species of anilline ground beetles are described from the Appalachian Mountains of eastern United States. The description of Serranillus septentrionis n. sp. is based on specimens collected in montane areas of western Virginia (37°25.33’N, 79°45.43’W). This species extends the range of the genus approximately 200 km north of its closest known congeners, S. dunavani (Jeannel) and S. jeanneli Barr, and differs from them mainly in characters of the male genitalia. A key is provided that will allow separation of these three species without dissection. The description of Anillinus cherokee n. sp. is based on specimens collected in Great Smoky Mountains National Park and nearby areas of Nantahala National Forest, western North Carolina (35°21.33’N, 83°56.05’W). The species is externally similar to A. loweae Sokolov and Carlton and A. steevesi Barr,
    [Show full text]
  • The Ground Beetle Fauna (Coleoptera, Carabidae) of Southeastern Altai R
    ISSN 0013-8738, Entomological Review, 2010, Vol. 90, No. 8, pp. ???–???. © Pleiades Publishing, Inc., 2010. Original Russian Text © R.Yu. Dudko, A.V. Matalin, D.N. Fedorenko, 2010, published in Zoologicheskii Zhurnal, 2010, Vol. 89, No. 11, pp. 1312–1330. The Ground Beetle Fauna (Coleoptera, Carabidae) of Southeastern Altai R. Yu. Dudkoa, A. V. Matalinb, and D. N. Fedorenkoc aInstitute of Animal Systematics and Ecology, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630091 Russia bMoscow Pedagogical State University, Moscow, 129243 Russia e-mail: [email protected] cInstitute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071 Russia Received October 1, 2009 Abstract—Long-term studies of the ground beetle fauna of Southeastern Altai (SEA) revealed 33 genera and 185 species; 3 and 15 species are reported for the first time from Russia and SEA, respectively. The following gen- era are the most diverse: Bembidion (47 species), Amara and Harpalus (21 each), Pterostichus (14), and Nebria (13). The subarid (35%) and boreal (32%) species prevail in the arealogical spectrum, while the mountain endem- ics comprise 13% of the fauna. The carabid fauna of SEA is heterogeneous in composition and differs significantly from that of the Western and Central Altai. The boreal mountain component mostly comprises tundra species with circum-boreal or circum-arctic ranges, while the subarid component (typical Mongolian together with Ancient Mediterranean species) forms more than one-half of the species diversity in the mountain basins. The species diver- sity increases from the nival mountain belt (15 species, predominantly Altai-Sayan endemics) to moss-lichen tun- dras (40, mostly boreal, species).
    [Show full text]
  • A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics.
    [Show full text]
  • Coleoptera: Carabidae) by Thomas C
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref TRECHOBLEMUS IN NORTH AMERICA, WITH A KEY TO NORTH AMERICAN GENERA OF TREX2HINAE (COLEOPTERA: CARABIDAE) BY THOMAS C. BARR, JR. The University of Kentucky, Lexington Trechoblemus Ganglbauer is a genus of trechine beetles (Tre- chinae: Trechini: Trechina) previously known only from Europe and Asia. It formed the type genus of Jeannel's "S6rie phyl6tique de Trechoblemus". and is generally regarded as closely related to cavernicolous trechines in Japan, the Carpathians and Transylvanian Alps of eastern Europe, and eastern United States (Barr, I969; Jeannel, I928, I962; U6no and Yoshida, I966). The large cave beetle genus Pseudanophthalmus Jeannel, with approximately 75 species in caves of ten eastern States, the monobasic genus Nea- phaenops Jeannel, from Kentucky caves, and the dibasic genus ]gelsonites Valentine, ]rorn Tennessee and Kentucky, are part of the Trechoblemus complex. The apparent restriction of Trechoblemus to Eurasia led previous investigators to conclude that, with respect to the richly diverse trechine fauna in caves of eastern United States, "there are no im- mediate, ancestral genera now present in North America" (Barr, 969, p. 83). Although there is at least one edaphobitic (obligate in soil) species of American Pseudanophthalmus known (P. sylvaticus Barr, I967), in the mountains of West Virginia, it has already lost eyes, wings, and pigment, and merely indicates that many of the "regressive" evolutionary changes in ancestral Pseudanohthal- mus may have taken place in the soil or deep humus before the beetles became restricted to caves. Most of the species of Pseuda- nophthalmus from eastern Europe (Barr, 964) are also eyeless edaphobites.
    [Show full text]
  • Coleoptera: Carabidae, Trechinae)
    Int. J. Speleo1.7 (1975), pp. 55-64. The Ecology of a Predaceous Troglobitic Beetle, Neaphaenops tellkampfii (Coleoptera: Carabidae, Trechinae) II. Adult Seasonality, Feeding and Recruitment. by Russell M. NORTON, Thomas C. KANE, Thomas L. POULSON INTRODUCTION This is the second of two papers dealing with the ecology of Neaphaenops. The procedure and a general introduction will be found in the first paper. RESULTS A. Adult Recruitment Recruitment of teneral adults in both Marion Avenue and Edwards Avenue shows a marked seasonality (Figure 7). Teneral adults emerge chiefly in late spring through early fall, although there is some emergence throughout the year. B. Adult Seasonality Census data for all adult Neaphaenops from the Marion Avenue and Edwards Ave- nue study areas are presented in Figures 5 and 6, respectively. Both areas show a summer through early fall population maximum coincident with the recruitment of teneral adults into the population, and a decrease through the rest of the year. Sex ratio data for both areas are presented in Table 3. Although the sex ratio for tenerals is 1: 1 (N)400), the sex ratio for fully sclerotized adults on sandy areas changes seasonally to a female majority (up to 2: I) just prior to the recruitment of sclerotized tenerals. C Adult Feeding The 46 feeding observations recorded for Neaphaenops to date are listed in Table 2. Of these, the ne plus ultra is a female in copula feeding on a Hadenoecus nymph. The two observations of Neaphaenops feeding on non cave-limited organisms were both made near entrances. About one third of the predated first instar Hadenoecus nymphs appeared to have been captured during emergence since they seemed to still be partially bound by the vitelline membrane.
    [Show full text]
  • U Tech Glossary
    URGLOSSARY used without permission revised the Ides of March 2014 glos·sa·ry Pronunciation: primarystressglässchwaremacron, -ri also primarystressglodots- Function: noun Inflected Form(s): -es Etymology: Medieval Latin glossarium, from Latin glossa difficult word requiring explanation + -arium -ary : a collection of textual glosses <an edition of Shakespeare with a good glossary> or of terms limited to a special area of knowledge <a glossary of technical terms> or usage <a glossary of dialectal words> Merriam Webster Unabridged tangent, adj. and n. [ad. L. tangens, tangent-em, pr. pple. of tangĕre to touch; used by Th. Fincke, 1583, as n. in sense = L. līnea tangens tangent or touching line. In F. tangent, -e adj., tangente n. (Geom.), Ger. tangente n.] c. In general use, chiefly fig. from b, esp. in phrases (off) at, in, upon a tangent, ie off or away with sudden divergence, from the course or direction previously followed; abruptly from one course of action, subject, thought, etc, to another. (http://dictionary.oed.com) As in off on a tangent. “Practice, repetition, and repetition of the repeated with ever increasing intensity are…the way.” Zen in the Art of Archery by Eugen Herrigel. For many terms, this glossary contains definitions from multiple sources, each with their own nuance, each authors variation emphasized. Reading the repeated definitions, with their slight variations, helps create a fuller, more overall understanding of the meaning of these terms. The etymology of the entries reinforces and may repeat the repetitions. Wax on, wax off. Sand da floor. For sometime, when I encounter a term I don’t understand (and there are very many), I have been looking them up in the oed and copying the definition into a Word document.
    [Show full text]
  • Arkansas Endemic Biota: an Update with Additions and Deletions H
    Journal of the Arkansas Academy of Science Volume 62 Article 14 2008 Arkansas Endemic Biota: An Update with Additions and Deletions H. Robison Southern Arkansas University, [email protected] C. McAllister C. Carlton Louisiana State University G. Tucker FTN Associates, Ltd. Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Botany Commons Recommended Citation Robison, H.; McAllister, C.; Carlton, C.; and Tucker, G. (2008) "Arkansas Endemic Biota: An Update with Additions and Deletions," Journal of the Arkansas Academy of Science: Vol. 62 , Article 14. Available at: http://scholarworks.uark.edu/jaas/vol62/iss1/14 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 62 [2008], Art. 14 The Arkansas Endemic Biota: An Update with Additions and Deletions H. Robison1, C. McAllister2, C. Carlton3, and G. Tucker4 1Department of Biological Sciences, Southern Arkansas University, Magnolia, AR 71754-9354 2RapidWrite, 102 Brown Street, Hot Springs National Park, AR 71913 3Department of Entomology, Louisiana State University, Baton Rouge, LA 70803-1710 4FTN Associates, Ltd., 3 Innwood Circle, Suite 220, Little Rock, AR 72211 1Correspondence: [email protected] Abstract Pringle and Witsell (2005) described this new species of rose-gentian from Saline County glades.
    [Show full text]
  • Carabidae Recording Card A4
    Locality Grey cells for GPS RA77 COLEOPTERA: Carabidae (6453) Vice-county Grid reference users Recording Form Recorder Determiner Compiler Source (tick one) Date(s) from: Habitat (optional) Altitude Field to: (metres) Museum* *Source details No. No. No. Literature* OMOPHRONINAE 21309 Dyschirius politus 22335 Bembidion nigricorne 22717 Pterostichus niger 23716 Amara familiaris 24603 Stenolophus teutonus 25805 Dromius melanocephalus 20201 Omophron limbatum 21310 Dyschirius salinus 22336 Bembidion nigropiceum 22724 Pterostichus nigrita agg. 23717 Amara fulva 24501 Bradycellus caucasicus 25806 Dromius meridionalis CARABINAE 21311 Dyschirius thoracicus 22338 Bembidion normannum 22718 Pterostichus nigrita s.s. 23718 Amara fusca 24502 Bradycellus csikii 25807 Dromius notatus 20501 Calosoma inquisitor 21401 Clivina collaris 22339 Bembidion obliquum 22723 Pterostichus rhaeticus 23719 Amara infima 24503 Bradycellus distinctus 25808 Dromius quadrimaculatus 20502 Calosoma sycophanta 21402 Clivina fossor 22340 Bembidion obtusum 22719 Pterostichus oblongopunctatus 23720 Amara lucida 24504 Bradycellus harpalinus 25810 Dromius quadrisignatus 20401 Carabus arvensis BROSCINAE 22341 Bembidion octomaculatum 22703 Pterostichus quadrifoveolatus 23721 Amara lunicollis 24505 Bradycellus ruficollis 25811 Dromius sigma 20402 Carabus auratus 21501 Broscus cephalotes 22342 Bembidion pallidipenne 22720 Pterostichus strenuus 23722 Amara montivaga 24506 Bradycellus sharpi 25809 Dromius spilotus 20404 Carabus clathratus 21601 Miscodera arctica 22343 Bembidion prasinum
    [Show full text]
  • Coleoptera: Carabidae) Peter W
    30 THE GREAT LAKES ENTOMOLOGIST Vol. 42, Nos. 1 & 2 An Annotated Checklist of Wisconsin Ground Beetles (Coleoptera: Carabidae) Peter W. Messer1 Abstract A survey of Carabidae in the state of Wisconsin, U.S.A. yielded 87 species new to the state and incorporated 34 species previously reported from the state but that were not included in an earlier catalogue, bringing the total number of species to 489 in an annotated checklist. Collection data are provided in full for the 87 species new to Wisconsin but are limited to county occurrences for 187 rare species previously known in the state. Recent changes in nomenclature pertinent to the Wisconsin fauna are cited. ____________________ The Carabidae, commonly known as ‘ground beetles’, with 34, 275 described species worldwide is one of the three most species-rich families of extant beetles (Lorenz 2005). Ground beetles are often chosen for study because they are abun- dant in most terrestrial habitats, diverse, taxonomically well known, serve as sensitive bioindicators of habitat change, easy to capture, and morphologically pleasing to the collector. North America north of Mexico accounts for 2635 species which were listed with their geographic distributions (states and provinces) in the catalogue by Bousquet and Larochelle (1993). In Table 4 of the latter refer- ence, the state of Wisconsin was associated with 374 ground beetle species. That is more than the surrounding states of Iowa (327) and Minnesota (323), but less than states of Illinois (452) and Michigan (466). The total count for Minnesota was subsequently increased to 433 species (Gandhi et al. 2005). Wisconsin county distributions are known for 15 species of tiger beetles (subfamily Cicindelinae) (Brust 2003) with collection records documented for Tetracha virginica (Grimek 2009).
    [Show full text]
  • Carabidae: Trechinae: Bembidiini) from Great Smoky Mountains National Park, U.S.A
    Zootaxa 1542: 1–20 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) New species of Anillinus Casey (Carabidae: Trechinae: Bembidiini) from Great Smoky Mountains National Park, U.S.A. and phylogeography of the A. langdoni species group IGOR M. SOKOLOV1, YULIYA Y. SOKOLOVA2 & CHRISTOPHER E. CARLTON1 1Louisiana State Arthropod Museum, Department of Entomology, LSU Agricultural Center, Baton Rouge, Louisiana, 70803, USA. E-mail: [email protected]; [email protected] 2Laboratory for Insect Pathology, Department of Entomology, LSU Agricultural Center, Baton Rouge, Louisiana, 70803, USA. E-mail: [email protected] Abstract The Anillinus langdoni–species group is characterized and two new species are described, Anillinus cieglerae Sokolov and Carlton sp. nov. and A. pusillus Sokolov and Carlton sp. nov., both from Great Smoky Mountains National Park. The langdoni–group includes four species at present, three apparently endemic to the Great Smoky Mountains and adjacent mountains of western North Carolina/Tennessee, and a fourth from South Mountains of middle North Carolina. They are distinguished mainly using characters of the male genitalia and to a lesser extent, differences in shapes of female sper- mathecae. Phylogenetic analyses based on aedeagal morphology and COI gene sequences yielded conflicting results, with the later providing a phylogeny that was more parsimonious with expectations based on geographic distributions. Speciation within the group may derive from ecological constraints and altitudinal fluctuations of habitat corridors dur- ing past climate changes combined with the impact of local watersheds as fine scale isolating mechanisms. Key words: Coleoptera, Adephaga, Carabidae, Anillinus, South Appalachians, new species, taxonomy, identification key, COI gene sequences, phylogeography Introduction The genus Anillinus Casey is one of the most diverse genera of carabid beetles in the Southern Appalachian region of eastern United States.
    [Show full text]
  • Vol 4 Part 2. Coleoptera. Carabidae
    Royal Entomological Society HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS To purchase current handbooks and to download out-of-print parts visit: http://www.royensoc.co.uk/publications/index.htm This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 UK: England & Wales License. Copyright © Royal Entomological Society 2012 ROYAL ENTOMOLOGICAL SOCIETY OF LONDON . Vol. IV. Part 2 -HANDBOOKS FOR THE IDENTIFICATION / OF BRITISH INSECT-s COLEOPTERA CARABIDAE By CARL H. LINDROTH LONDON Published by the Society and Sold at its Rooms .p, Queen's Gate, S.W. 7 August I 974- HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS The aim of this series of publications is to provide illustrated keys to the whole of the British Insects (in so far as this is possible), in ten volumes, as follows: I. Part 1. General Introduction. Part 9. Ephemeroptera. , 2. Thysanura. , 10. Odonata. , 3. Protura. , 11. Thysanoptera. , 4. Collembola. , 12. Neuroptera. , 5. Dermaptera and , 13. Mecoptera. Orthoptera. , 14. Trichoptera. , 6. Plecoptera. , 15. Strepsiptera. , 7. Psocoptera. , 16. Siphonaptera. , 8. Anoplura. II. Hemiptera. III. Lepidoptera. IV. and V. Coleoptera. VI. Hymenoptera : Symphyta and Aculeata. VII. Hymenoptera : lchneumonoidea. VIII. Hymenoptera : Cynipoidea, Chalcidoidea, and Serphoidea. IX. Diptera: Nematocera and Brachycera. X. Diptera : Cyclorrhapha. Volumes II to X will be divided into parts of convenient size, but it is not possible to specifyin advance the taxonomic content of each part. Conciseness and cheapness are main objectives in this series, and each part is the work of a specialist, or of a group of specialists. Although much of the work is based on existing published keys, suitably adapted, much new and original matter is also included.
    [Show full text]