Aspirin a Curriculum Resource for Post-16 Chemistry and Science Courses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pain-Relievers
Pain-Relievers Pain. It is a common experience though the cause Ibuprofen/Naproxen and severity differ greatly. Lucky for us there are pain-relievers (analgesics). Purpose: To reduce inflammation, reduce pain (E.g. Headache, mild or moderate pain. More Which pain- effective than aspirin or reliever will be acetaminophen for relief the most menstrual cramps effective one (dysmenorrhea). for you? Adverse Reactions: Commonly used nausea, heartburn, pain relievers diarrhea, indigestion, are not only abdominal discomfort, used for mild bleeding and ulcers. pain but also fever reduction and inflammation. Choose your pain reliever wisely for the most Examples: Advil, Motrin, Nuprin, Metaprin. effective treatment possible. The following Aleve and naproxen are similar to ibuprofen, information will give you a brief outline for each but last longer. All must be taken with food. commonly used pain relieving substance. Not recommended for use by pregnant or There are generic forms of each of the pain breast-feeding women. relievers. The generic pain relievers are as effective as the “Name Brand” pain relievers, and Avoid if any history of aspirin sensitivity. cost considerably less. For more information ask your pharmacist or health practitioner. Acetaminophen Aspirin Purpose: reduce pain, reduce fever Purpose: To reduce inflammation, pain, fever, (E.g. headache, and low intensity pain (E.g. headache, joint fever) pain, muscle pain) Adverse Adverse Reactions: skin rash, hives, shortness Reactions: of breath, asthma, shock, edema (swelling), Stomach irritation, stomach irritation, bleeding and ulcers. skin rash much less common than with Examples: Bayer aspirin. Aspirin, Bayer Timed Release, generic Examples: Tylenol, Panadol, Aspirin Free, aspirin. Anacin and Apap. -
Synthesis of Aspirin
SYNTHESIS OF ASPIRIN I. OBJECTIVES AND BACKGROUND You will: synthesize acetylsalicylic acid (aspirin) by carrying out a simple organic reaction, separate your product from the reaction mixture by vacuum filtration, purify your product by recrystallization, perform a chemical test to identify the change in functional group from reactant to product, and determine the success of your synthesis by calculating the percentage yield of your product. INTRODUCTION Aspirin is one of the most widely used medications in the world. It is employed as an analgesic (pain relief), an anti-pyretic (fever control) and an anti-inflammatory. More recently, studies have indicated that daily intake of small doses of aspirin can lower the risk of heart attack and stroke in high-risk patients. The history of aspirin and its precursor dates back to ancient times. Documents attributed to Hippocrates, the father of modern medicine, from the 4th century B.C. refer to the alleviation of pain by chewing on the bark of a willow tree or ingesting a powder made from the bark and leaves of the willow. This remedy was passed on from generation to generation. Fast forward now to the 19th century, where the field of organic chemistry began to experience tremendous growth. By 1838, chemists had managed to isolate, purify and identify the component of willow bark that provided the analgesic benefit. The compound was named salicylic acid, which was based on the genus name of the willow. Efforts to market salicylic acid met with failure, due to an unfortunate side effect-- prolonged ingestion of salicylic acid led to stomach pain, and in some cases, ulcers. -
Attenuated Total Reflection Infrared Spectroscopy (ATR-IR) As an in Situ Technique for Dissolution Studies Abe S
Seton Hall University eRepository @ Seton Hall Seton Hall University Dissertations and Theses Seton Hall University Dissertations and Theses (ETDs) Summer 8-2011 Attenuated Total Reflection Infrared Spectroscopy (ATR-IR) as an In Situ Technique for Dissolution Studies Abe S. Kassis Seton Hall University Follow this and additional works at: https://scholarship.shu.edu/dissertations Part of the Biochemistry Commons Recommended Citation Kassis, Abe S., "Attenuated Total Reflection Infrared Spectroscopy (ATR-IR) as an In Situ Technique for Dissolution Studies" (2011). Seton Hall University Dissertations and Theses (ETDs). 1432. https://scholarship.shu.edu/dissertations/1432 Attenuated Total Reflection Infrared Spectroscopy (ATR-IR) as an In Situ Technique for Dissolution Studies by Abe S. Kassis Ph.D. DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry and Biochemistry of Seton Hall University Seton Hall University Department of Chemistry and Biochemistry 400 South Orange Avenue South Orange, New Jersey 07079 August 2011 DISSERTATION COMMITTEE APPROVALS We certify that we have read this thesis and that in our opinion it is sufficient in scientific scope and quality as a dissertation for the degree of Doctor of Philosophy APPROVED BY: Advisor, Seton Hall University Nicholas H. Snow, Ph.D. Member of Dissertation Committee, Seton Hall University Tarun ~el, Ph.D. Member of Dissertation Committee, Novartis Pharmaceuticals Corporation Q\A"b A lM~ en P. KeI;y, Ph.D. Chair, Department ofChemistry and Biochemistry, Seton Hall University [ii] "Although nature commences with reason and ends in experience it is necessary for us to do the opposite, that is to commence with experience and from this to proceed to investigate the reason." -Leonardo da Vinci [iii] Abstract Attenuated Total Reflection Infrared Spectroscopy (ATR-IR) as an in situ Technique for Dissolution Studies Dissolution studies are critical tests for measuring the performance, or rate of release, of a drug product. -
The Detection and Determination of Esters
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1958 The etD ection and Determination of Esters. Mohd. Mohsin Qureshi Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Qureshi, Mohd. Mohsin, "The eD tection and Determination of Esters." (1958). LSU Historical Dissertations and Theses. 501. https://digitalcommons.lsu.edu/gradschool_disstheses/501 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Copright by Mohcl Mohsin Qureshi 1959 THE DETECTION AND DETERMINATION OF ESTERS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Mohd. Mohsin Qureshi M.Sc., Aligarh University, 1944 August, 1958 ACKNOWLEDGMENT The author wishes to express his sincere apprecia tion and gratitude to Dr. Philip W. West under whose guidance this research was carried out. He is grateful to Dr. James G. Traynham for sup plying him with a number of esters and for his many helpful suggestions. The financial support given to him by the Continental Oil Company is gratefully acknowledged. He offers his sincere thanks to Miss Magdalena Usategul for her valuable suggestions and her ungrudging help during the course of this investigation. Dr. Anil K. -
Flavored Tobacco Products, Effective As of January 1, 2021
ORDINANCE NO. ______ (CODE AMENDMENT NO. 772) AN ORDINANCE OF THE CITY COUNCIL OF THE CITY OF EL MONTE AMENDING CHAPTER 8.10 (RETAIL SALES OF TOBACCO PRODUCTS) OF TITLE 8 (HEALTH AND SAFETY) OF THE EL MONTE MUNICIPAL CODE TO PROHIBIT THE SALE OF FLAVORED TOBACCO PRODUCTS, EFFECTIVE AS OF JANUARY 1, 2021 WHEREAS, the potential failure of tobacco retailers to comply with tobacco control laws, particularly laws prohibiting the sale of tobacco products to minors, presents a threat to the public health, safety, and welfare of the residents of the City of El Monte (the “City”); WHEREAS, the federal Family Smoking Prevention and Tobacco Control Act (Tobacco Control Act), enacted in 2009, prohibited candy- and fruit-flavored cigarettes,i largely because these flavored products were marketed to youth and young adults,ii and younger smokers were more likely than older smokers to have tried these products;iii WHEREAS, although the manufacture and distribution of flavored cigarettes (excluding menthol) are banned by federal law,iv neither federal law nor California law restricts the sale of menthol cigarettes or flavored non-cigarette tobacco products, such as cigars, cigarillos, smokeless tobacco, hookah tobacco, electronic smoking devices, and the solutions used in these devices; WHEREAS, flavored tobacco products are very common in California tobacco retailers as evidenced by the following: • 97.4% of stores that sell cigarettes sell menthol cigarettes;v • 94.5% of stores that sell little cigars sell them in flavored varieties;vi • 84.2% of stores -
Preparation of Aspirin, Methyl Salicylate and Nylon Experiment #6
Preparation of Aspirin, Methyl Salicylate and Nylon Experiment #6 Objective: To observe the contrasts in appearance and odor of two different esters of salicylic acid, namely aspirin and methyl salicylate. The preparation of nylon will be demonstrated. Introduction Salicylic acid is a phenolic acid, indicating it has two functional groups on the benzene ring, an -OH group and a -COOH group. Aspirin and oil of wintergreen are esters of salicylic acid. Aspirin is the ester of salicylic acid and acetic acid (acetyl salicylic acid), whereas oil of wintergreen is the ester of salicylic acid and methanol (methyl salicylate). The chemical name for aspirin, acetyl salicylic acid, is not easily recognized as the name of an ester. However, the chemical name for oil of wintergreen, methyl salicylate, should readily be recognized as the name of an ester. In the preparation of aspirin the -OH group of salicylic acid reacts with the acetyl group of acetic acid or acetic anhydride to form acetyl salicylic acid. The formation of aspirin will proceed faster if acetic anhydride is used in place of acetic acid. However, acetic anhydride will hydrolyze in the presence of water to form acetic acid, slowing down the reaction. Hence, the reaction vessel must be very DRY to ensure a complete reaction. Sulfuric acid, H2SO4, is used as a dehydrating agent. The aspirin will be isolated by filtration and washed several times with ice cold deionized water to remove the water soluble impurities (acetic acid and sulfuric acid). Aspirin is quite insoluble in ice cold water, but is relatively soluble in warm water (1 g dissolves in 100 mL water at 37EC). -
A History of Aspirin
Physicians, Fads, and Pharmaceuticals: A History of Aspirin Anne Adina Judith Andermann*, B.Sc., M.Phil. Cantab * To whom correspondence should be addressed: Faculty of Medicine, McGill University, 3655 Drummond St., Montreal, QC, Canada H3G 1Y6"Politics is not out there in society. Politics is down there in the laboratory." --Bruno Latour (1). Aspirin is a product of the late-nineteenth-century laboratory, pharmaceutical industry, and medical community. The prevailing scientific techniques, industrial approaches, and medical beliefs were instrumental in the development, promotion and reception of the drug. As a result, the present account does not extend further back than a few decades prior to the release of aspirin from the laboratories of Farbenfabriken vormals Friedrich Bayer & Co. in 1899. In contrast, much of the current literature on aspirin (2,3,4) attempts to trace the compound back to antiquity through the Ebers papyrus, the Hippocratic writings, and the works of Galen. Such histories tell a simple, linear tale of the numerous "discoveries" proposed to have led to the use of certain salicylate-containing plants, such as willow bark and wintergreen, or salicylate-related compounds, including salicilin and salicylic acid, as cures for a variety of ailments. Indeed, according to Mann and Plummer: Both [salicilin and salicylic acid] attacked fever and pain, and their partisans advocated the salicylates' use as antiseptics, mouthwashes, and water preservatives for ocean voyages; one important chemist further suggested (erroneously) that sodium salicylate, a chemical relative, would successfully treat scarlet fever, diphtheria, measles, syphilis, cholera, rabies and anthrax (5). However, it is difficult to establish what effect, if any, these examples of the "historical" uses of "proto-aspirin" had on the impetus for and modes of developing and using the actual drug called aspirin. -
Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi -
NINDS Custom Collection II
ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC -
Focuson MOUTHRINSES
v16F_mouthrinsetable_Layout 1 3/28/14 11:04 AM Page 30 FOCUSonMOUTHRINSES This informative table provides details about the therapeutic and cosmetic mouthrinses currently available. Do patients truly understand how mouthrinses work? Some may think of them as “magic bullets” that will cure their dental ailments with just a swish and spit. Oral health professionals, however, know that this is not the case. Patients still need advice on the proper usage and selection of mouthrinses, and the best resource for mouthrinse information is you—their dental hygienist. As the dental team member whose focus is prevention, your knowledge of mouthrinses is paramount to providing excellent patient care. With so many different mouthrinses on the market today, keeping up to date on the prod- ucts available is challenging. This Dimensions of Dental Hygiene mouthrinse guide is intended to help you sort through both the therapeutic and cosmetic mouthrinse options. When consider- ing over-the-counter therapeutic mouthrinses, noting which products have received the American Dental Association’s Seal of Acceptance is also helpful, as they have been evaluated for safety and efficacy. We hope you find this guide useful when making product recommen- dations to patients who wish to add rinsing to their daily oral care regimens. —Jill Rethman, RDH, BA Editor in Chief Note: Mouthrinse manufacturers in the United States were invited to submit information for this table. This list includes those companies that responded to our request for information. There may be inadvertent -
Extraction and Evaporation: Experiment 1 Separating the Components of a Mixture1 Week 1
Organic Chemistry I Laboratory Extraction and Evaporation: Experiment 1 Separating the Components of a Mixture1 Week 1 Background Reading Zubrick, J. W. The Organic Chem Lab Survival Manual, 4th edition, Wiley & Sons, Inc., New York, 1997. Keeping a Notebook: Pg 12-24. Interpreting Handbooks: Pg 26-31, 34-44. Extraction and Washing: Pg 148-168. Background Senario One of the many places organic chemists are employed is in private laboratories associated with consulting firms. The purpose of these labs is generally to provide chemical analysis or synthesis of material for customers. The first few labs in CHM 220 will teach you the basic techniques needed to analyze and purify mixtures to determine the individual components. This first lab will involve determining the composition of a possible pharmaceutical preparation. Watchdog agencies exist which monitor the pharmaceuticals sold over the counter in the United States. These agencies will use private laboratory firms to analyze products suspected of violating enforced standards. For example, a new brand of analgesic may appear on drugstore shelves at a low price. The label indicates that the tablets were manufactured in the United States by a legitimate pharmaceutical company. However, the labels may reveal discrepancies and the appearance/quality of the tablets could lead an investigator to suspect that they might be counterfeit. Such knockoffs of a domestic product can be manufactured cheaply elsewhere and smuggled into the US, where they are sold for high profits. This laboratory exercise places you in the position of analyzing a suspected counterfeit analgesic preparation. The label on the suspected bottle lists the ingredients per tablet as aspirin (200 mg), acetaminophen (250 mg), and sucrose (50 mg). -
Actarit (Rinn) Severe, Active Rheumatoid Arthritis and Active and Ацеметацин Actaritum; MS-932
Abatacept/Adalimumab 15 Preparations Acetanilide concentrations are reached in about 3 to 8 days and bio- Proprietary Preparations (details are given in Part 3) Acetanilida; Antifebrin. N-Phenylacetamide. availability is estimated to be 64%. The mean terminal Arg.: Berlofen; Bristaflam†; Austria: Beofenac†; Belg.: Air-Tal; Biofenac; Антифебрин; Ацетанилид half-life is about 2 weeks. Braz.: Aceflan†; Cecoflan†; Proflam; Chile: Airtal†; Bristaflam†; Denm.: C8H9NO = 135.2. ◊ References. Barcan; Fin.: Barcan; Fr.: Cartrex; Ger.: Beofenac; Gr.: Aceclonac; Arlina; CAS — 103-84-4. Biofenac; Sovipan; Hung.: Aflamin; India: Aceclo; Arrestin; Movon; Zero- 1. Nestorov I. Clinical pharmacokinetics of tumor necrosis factor dol; Ital.: Airtal; Gladio; Kafenac; Mex.: Bristaflam; Neth.: Biofenac; Norw.: antagonists. J Rheumatol 2005; 74 (suppl): 13–18. Barcan; Philipp.: Clanza; Port.: Airtal; Biofenac; Rus.: Airtal (Аэртал); Spain: Airtal; Airtal Difucrem; Falcol; Gerbin; Sanein; Swed.: Barcan; Switz.: Locomin†; UAE: Aceclofar; UK: Preservex; Venez.: Airtal†; Brista- O Uses and Administration flam. Adalimumab is a recombinant human monoclonal tumour necrosis factor (TNF) antibody that binds Multi-ingredient: India: Kinectine; Kinectine P; Kinectine-MR; Movon- N CH3 MR; Movon-P†; Zerodol-MR; Zerodol-P. H specifically to TNF-α and blocks its interaction with endogenous cell-surface TNF receptors. It also modu- Pharmacopoeias. In Fr. lates biological responses that are induced or regulated Profile by TNF. Elevated levels of TNF have been found in the Acemetacin (BAN, rINN) Acetanilide, a para-aminophenol derivative related to paraceta- affected tissues and fluids of patients with rheumatoid Acemetacina; Acémétacine; Acemetacinum; Asemetasin; Bay-f- mol (p.108), has analgesic and antipyretic properties. It was re- placed by safer analgesics.