Surface composition and properties of Ganymede: updates from ground-based observations with the near-infrared imaging spectrometer SINFONI/VLT/ESO. Ligier N. 1, Paranicas C. 2, Carter J. 3, Poulet F. 3, Calvin W.M. 4, Nordheim T.A. 5, Snodgrass C. 1,6, Ferellec L. 3 1School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK. 2Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723, USA. 3Institut d’Astrophysique Spatiale, Université Paris-Saclay, 91405 Orsay Cedex, France. 4Geological Sciences & Engineering, University of Nevada, Reno, NV 89557, USA. 5Jet Propulsion Laboratory, Pasadena, CA 91109, USA. 6School of Physics and Astronomy, University of Edinburgh, Edinburgh EH8 9YL, UK. First author’s e-mail:
[email protected] ABSTRACT Ganymede’s surface exhibits great geological diversity, with old dark terrains, expressed through the surface composition, which is known to be dominated by two constituents: H2O-ice and an unidentified darkening agent. In this paper, new investigations of the composition of Ganymede’s surface at global scale are presented. The analyses are derived from the linear spectral modeling of a high spectral resolution dataset, acquired with the near-infrared (1.40 – 2.50 µm) ground-based integral field spectrometer SINFONI (SINgle Faint Object Near-IR Investigation) of the Very Large Telescope (VLT hereafter) located in Chile. We show that, unlike the neighboring moon Europa, photometric corrections cannot be performed using a simple Lambertian model. However, we find that the Oren- Nayar (1994) model, generalizing the Lambert’s law for rough surfaces, produces excellent results. Spectral modeling confirms that Ganymede’s surface composition is dominated by H2O-ice, which is predominantly crystalline, as well as a darkening agent, but it also clearly highlights the necessity of secondary species to better fit the measurements: sulfuric acid hydrate and salts, likely sulfates and chlorinated.