Integration of Air Quality Modelling and Monitoring Methods: Review and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Integration of Air Quality Modelling and Monitoring Methods: Review and Applications Integration of air quality modelling and monitoring methods: review and applications Science Report – SC060037/SR1 Science Report - Integration of air quality modelling and monitoring methods: review and applications i SCHO0308BOAE-E-P The Environment Agency is the leading public body protecting and improving the environment in England and Wales. It’s our job to make sure that air, land and water are looked after by everyone in today’s society, so that tomorrow’s generations inherit a cleaner, healthier world. Our work includes tackling flooding and pollution incidents, reducing industry’s impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats. This report is the result of research commissioned and funded by the Environment Agency’s Science Programme. Published by: Author(s): Environment Agency, Rio House, Waterside Drive, Ball, Angela, Hill, Richard & Jenkinson, Peter Aztec West, Almondsbury, Bristol, BS32 4UD Tel: 01454 624400 Fax: 01454 624409 Dissemination Status: www.environment-agency.gov.uk Released to all regions Publicly available ISBN: 978-1-84432-896-3 Keywords: © Environment Agency – May 2008 Integrating, modelling, monitoring, network, design, air quality, assessment, data assimilation All rights reserved. This document may be reproduced with prior permission of the Environment Agency. Research Contractor: Westlakes Scientific Consulting Ltd The views and statements expressed in this report are Westlakes Science & Technology Park those of the author alone. The views or statements Moor Row expressed in this publication do not necessarily Cumbria represent the views of the Environment Agency and the CA24 3LN Environment Agency cannot accept any responsibility for such views or statements. Environment Agency’s Project Manager: Dr. Hope Brett, This report is printed on Cyclus Print, a 100% recycled Environment Agency, stock, which is 100% post consumer waste and is totally Lower Bristol Road, chlorine free. Water used is treated and in most cases Bath returned to source in better condition than removed. BA2 9ES Further copies of this report are available from: Collaborator(s): None The Environment Agency’s National Customer Contact Centre by emailing: Science Project Number: [email protected] SC060037 or by telephoning 08708 506506. Product Code: SCHO0308BOAE-E-P Science Report - Integration of air quality modelling and monitoring methods: review and applications ii Science at the Environment Agency Science underpins the work of the Environment Agency. It provides an up-to-date understanding of the world about us and helps us to develop monitoring tools and techniques to manage our environment as efficiently and effectively as possible. The work of the Environment Agency’s Science Department is a key ingredient in the partnership between research, policy and operations that enables the Environment Agency to protect and restore our environment. The science programme focuses on five main areas of activity: • Setting the agenda, by identifying where strategic science can inform our evidence-based policies, advisory and regulatory roles; • Funding science, by supporting programmes, projects and people in response to long-term strategic needs, medium-term policy priorities and shorter-term operational requirements; • Managing science, by ensuring that our programmes and projects are fit for purpose and executed according to international scientific standards; • Carrying out science, by undertaking research – either by contracting it out to research organisations and consultancies or by doing it ourselves; • Delivering information, advice, tools and techniques, by making appropriate products available to our policy and operations staff. Steve Killeen Head of Science Science Report - Integration of air quality modelling and monitoring methods: review and applications iii Executive summary The Environment Agency is responsible for the regulation of Part A(1) industrial activities in England and Wales. Ambient monitoring and air quality modelling are the tools most frequently used to assess the impact of industrial emissions to air and ultimately provide evidence upon which regulatory decisions are based. However, the use of either modelling or monitoring alone may introduce a high degree of uncertainty into air quality impact assessment. In reality, monitoring and modelling are often used independently of one another. However, it is anticipated that by applying monitoring and modelling integration techniques, the strengths of both technologies can be complemented and the uncertainties associated with each technique reduced. The purpose of this report is to: i. Bring the Environment Agency up-to-date with recent developments in the field of monitoring and modelling integration methods; ii. Inform the Environment Agency of methods that could be used to resolve challenges to regulatory decisions, through the application of monitoring and modelling integration techniques; iii. Review the possibility of economic savings through more efficient use of the existing monitoring resources in England and Wales. To achieve effective integration, it may be necessary to increase investment in monitoring resources and ensure the optimal placement of monitoring sites. Existing monitoring networks such as the AURN are of limited use as they are often located far from industrial sources and the potential to attribute pollutant concentrations to such sources may be difficult due to the interference of pollution from roads and urban areas. It is essential that any monitoring resource must be optimised in terms of the number and placement of monitors, both to ensure cost effectiveness and to optimise the potential for effective integration of monitoring and modelling data. This can be achieved with the adoption of decision-support tools, which are able to prioritise multiple objectives such as population protection, ecosystem protection or targeting specific air quality metrics and are invaluable in designing an effective monitoring network. Improving the accuracy of modelled data is also crucial to the effective integration of modelling and monitoring data. This may be achieved through the use of more representative meteorological data and the application of more appropriate background correction factors. Data assimilation (model calibration) methods applied to the Kincaid SO2 validation data set indicated that the optimum number of monitoring sites necessary to maximise the accuracy of data assimilation methods is between 10 and 15. However, the success of the more complex integration techniques, e.g. kriging, is limited. Of the simple techniques, the simple ratio method provided the best calibration using both the Kincaid data set and the Aire Valley data set. The linear regression method performed on a similar level to the simple ratio method when using a higher number of data points, but the performance of this method decreased dramatically when less than three monitoring points were used to calibrate the modelled data. It should be noted that calibration is designed to reduce uncertainty in model outputs caused by systematic errors and is of limited use when uncertainty is due to random errors. The application of modelling and monitoring integration methods to improve the extrapolation of short-term monitoring campaigns, currently calculated using the Environment Agency pro-rata extrapolation method, proved of limited value. The Science Report - Integration of air quality modelling and monitoring methods: review and applications iv Integration Scaling Method showed an improvement in the consistency of measured and predicted exceedences compared to the pro-rata method, although overall uncertainty was still high. A full set of recommendations for the Environment Agency stemming from this review is listed in Section 8 of this report. Science Report - Integration of air quality modelling and monitoring methods: review and applications v Contents 1 Introduction 1 2 Monitoring ambient air quality 2 2.1 The history of air quality monitoring in the UK 2 2.2 Legislation and air quality monitoring 6 2.3 Industrial processes and air quality monitoring 10 2.4 Uncertainties in air quality monitoring 18 3 Modelling ambient air quality 21 3.1 Modelling ambient air quality in the UK 21 3.2 Uncertainties in air quality modelling 21 4 Summary: uncertainty in monitoring and modelling 32 5 Integration of modelling and monitoring 33 5.1 Model validation 33 5.2 Data assimilation 38 5.3 Inverse modelling 54 5.4 Optimisation of monitoring network design 54 5.5 Emerging technologies 61 6 Application of integration techniques: The extrapolation of short-term monitoring data 62 6.1 Testing the Environment Agency pro-rata extrapolation method 62 6.2 Integration Scaling Method (ISM) 65 6.3 Meteorology-based extrapolation method 71 7 Application of integration techniques: Exploring integration methods for model calibration 74 7.1 Methodology 75 7.2 Results 79 7.3 Discussion 85 8 Recommendations 87 8.1 Towards more effective integration of monitoring and modelling data 87 8.2 Expansion of the monitoring infrastructure 87 8.3 Optimisation of the monitoring infrastructure 87 8.4 Determination of effective calibration methods 88 8.5 Application of suitable background correction factors 89 8.6 Extrapolating from short-term monitoring campaigns 89 References 91 Science Report - Integration of air quality modelling and monitoring methods: review and applications vi Appendices 97 Appendix
Recommended publications
  • On the Uses of a New Linear Scheme for Stratospheric Methane in Global Models: Water Source, Transport Tracer and Radiative Forc
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 12, 479–523, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/479/2012/ Chemistry doi:10.5194/acpd-12-479-2012 and Physics © Author(s) 2012. CC Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing B. M. Monge-Sanz1, M. P. Chipperfield1, A. Untch2, J.-J. Morcrette2, A. Rap1, and A. J. Simmons2 1Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, UK 2European Centre for Medium-Range Weather Forecasts, Reading, UK Received: 10 October 2011 – Accepted: 5 November 2011 – Published: 6 January 2012 Correspondence to: B. M. Monge-Sanz ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 479 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract A new linear parameterisation for stratospheric methane (CoMeCAT) has been devel- oped and tested. The scheme is derived from a 3-D full chemistry transport model (CTM) and tested within the same chemistry model itself, as well as in an independent 5 general circulation model (GCM). The new CH4/H2O scheme is suitable for any global model and here is shown to provide realistic profiles in the 3-D TOMCAT/SLIMCAT CTM and in the ECMWF (European Centre for Medium-Range Weather Forecasts) GCM.
    [Show full text]
  • University of Reading Boundary-Layer Type Classification and Pollutant Mixing
    University of Reading Department of Meteorology Boundary-layer type classification and pollutant mixing Natalie Jane Harvey A thesis submitted for the degree of Doctor of Philosophy March 2013 Declaration I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Natalie Harvey Page ii Abstract In the atmospheric boundary layer the vertical distribution of heat, momentum, water and pollutants is controlled by mixing that is turbulent. This complex mixing is param- eterized in weather forecast and climate models. But are the parameterizations imple- mented in these models representative of the real world? For the first time, Doppler lidar and sonic anemometer data are used to objectively classify the observed boundary layer into nine different types based on the Met Office scheme. Examples of these types are decoupled stratocumulus cloud, cumulus capped and stable with no turbulent cloud. This method is applied to three years of data from the Chilbolton Observatory, UK, to create a climatology of boundary-layer type. This climatology exhibits clear seasonal and diurnal cycles with the most common type over the three years being a cloud-free stable boundary layer. The decoupled stratocumulus type and the cumulus cloud under a stratocumulus layer type are diagnosed 10.3% and 1.0% of the period respectively. This new observationally based boundary layer classification is used to evaluate the boundary-layer type diagnosed by the 4 km and 12 km resolution versions of the Met Office Unified Model. The model is found to predict too many decoupled stratocumulus boundary layers by a factor of 1.8, in both the stable and unstable regime.
    [Show full text]
  • Effects of Stratospheretroposphere Chemistry Coupling on Tropospheric Ozone
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D00M04, doi:10.1029/2009JD013515, 2010 Effects of stratosphere‐troposphere chemistry coupling on tropospheric ozone Wenshou Tian,1,2 Martyn P. Chipperfield,2 David S. Stevenson,3 Richard Damoah,3,4 Sandip Dhomse,2 Anu Dudhia,5 Hugh Pumphrey,3 and Peter Bernath6 Received 6 November 2009; revised 23 March 2010; accepted 13 April 2010; published 17 September 2010. [1] A new, computationally efficient coupled stratosphere‐troposphere chemistry‐climate model (S/T‐CCM) has been developed based on three well‐documented components: a64‐level general circulation model from the UK Met Office Unified Model, the tropospheric chemistry transport model (STOCHEM), and the UMSLIMCAT stratospheric chemistry module. This newly developed S/T‐CCM has been evaluated with various observations, and it shows good performance in simulating important chemical species and their interdependence in both the troposphere and stratosphere. The modeled total column ozone agrees well with Total Ozone Mapping Spectrometer observations. Modeled ozone profiles in the upper troposphere and lower stratosphere are significantly improved compared to runs with the stratospheric chemistry and tropospheric chemistry models alone, and they are in good agreement with Michelson Interferometer for Passive Atmospheric Sounding satellite ozone profiles. The observed CO tape recorder is also successfully captured by the new CCM, and ozone‐CO correlations are in accordance with Atmospheric Chemistry Experiment observations. However, because of limitations in vertical resolution, intrusion of CO‐rich air in the stratosphere from the mesosphere could not be simulated in the current version of S/T‐CCM. Additionally, the simulated stratosphere‐to‐troposphere ozone flux, which controls upper tropospheric OH and O3 concentrations, is found to be more realistic in the new coupled model compared to STOCHEM.
    [Show full text]
  • Assimila Blank
    NERC NERC Strategy for Earth System Modelling: Technical Support Audit Report Version 1.1 December 2009 Contact Details Dr Zofia Stott Assimila Ltd 1 Earley Gate The University of Reading Reading, RG6 6AT Tel: +44 (0)118 966 0554 Mobile: +44 (0)7932 565822 email: [email protected] NERC STRATEGY FOR ESM – AUDIT REPORT VERSION1.1, DECEMBER 2009 Contents 1. BACKGROUND ....................................................................................................................... 4 1.1 Introduction .............................................................................................................. 4 1.2 Context .................................................................................................................... 4 1.3 Scope of the ESM audit ............................................................................................ 4 1.4 Methodology ............................................................................................................ 5 2. Scene setting ........................................................................................................................... 7 2.1 NERC Strategy......................................................................................................... 7 2.2 Definition of Earth system modelling ........................................................................ 8 2.3 Broad categories of activities supported by NERC ................................................. 10 2.4 Structure of the report ...........................................................................................
    [Show full text]
  • Review of the Global Models Used Within Phase 1 of the Chemistry–Climate Model Initiative (CCMI)
    Geosci. Model Dev., 10, 639–671, 2017 www.geosci-model-dev.net/10/639/2017/ doi:10.5194/gmd-10-639-2017 © Author(s) 2017. CC Attribution 3.0 License. Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI) Olaf Morgenstern1, Michaela I. Hegglin2, Eugene Rozanov18,5, Fiona M. O’Connor14, N. Luke Abraham17,20, Hideharu Akiyoshi8, Alexander T. Archibald17,20, Slimane Bekki21, Neal Butchart14, Martyn P. Chipperfield16, Makoto Deushi15, Sandip S. Dhomse16, Rolando R. Garcia7, Steven C. Hardiman14, Larry W. Horowitz13, Patrick Jöckel10, Beatrice Josse9, Douglas Kinnison7, Meiyun Lin13,23, Eva Mancini3, Michael E. Manyin12,22, Marion Marchand21, Virginie Marécal9, Martine Michou9, Luke D. Oman12, Giovanni Pitari3, David A. Plummer4, Laura E. Revell5,6, David Saint-Martin9, Robyn Schofield11, Andrea Stenke5, Kane Stone11,a, Kengo Sudo19, Taichu Y. Tanaka15, Simone Tilmes7, Yousuke Yamashita8,b, Kohei Yoshida15, and Guang Zeng1 1National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand 2Department of Meteorology, University of Reading, Reading, UK 3Department of Physical and Chemical Sciences, Universitá dell’Aquila, L’Aquila, Italy 4Environment and Climate Change Canada, Montréal, Canada 5Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland 6Bodeker Scientific, Christchurch, New Zealand 7National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA 8National Institute of Environmental Studies (NIES), Tsukuba, Japan 9CNRM UMR 3589, Météo-France/CNRS,
    [Show full text]
  • The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 Configurations
    The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K. and Zerroukat, M. (2019) The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development, 12 (5). pp. 1909-1963. ISSN 1991-9603 doi: https://doi.org/10.5194/gmd-12-1909- 2019 Available at http://centaur.reading.ac.uk/83821/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.5194/gmd-12-1909-2019 Publisher: EGU All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Geosci. Model Dev., 12, 1909–1963, 2019 https://doi.org/10.5194/gmd-12-1909-2019 © Author(s) 2019.
    [Show full text]
  • ARCOPOL the Atlantic Regions' Coastal Pollution Response
    Airborne Pollution Propagation from water incidents: State of the art of air pollution models Activity 4 Task 4.2.1 ARCOPOL The Atlantic Regions’ Coastal Pollution Response Version: Version 2 Last updated on: 05/11/2010 Author: Meteogalicia Responsible partner: IST Involved partners: CETMAR, Meteogalicia, INTECMAR, IST, CIIMAR, EGMASA, Irish Marine Institute, Bretagne Region, Aquitaine Region Table of contents 1. Executive Summary .............................................................................................................. 3 2. Context and aims of the task ............................................................................................... 3 2.1. Summary of the 2008 Air Quality Directive ..................................................... 4 2.1.1. Concepts and definitions..................................................................................... 4 2.2. Where does the Air Quality Directive apply? .................................................. 6 2.2.1. Limits and target values for the protection of human health......................... 7 2.2.2. Limits and target values for the protection of vegetation............................... 9 2.2.3. Air quality web portals in Europe .................................................................... 9 3. Methodology........................................................................................................................ 12 3.1. When can models be used for the assessment of existing air quality? ....... 12 3.2. Combined use of measurements
    [Show full text]
  • On the Uses of a New Linear Scheme for Stratospheric Methane in Global Models: Water Source, Transport Tracer and Radiative Forcing
    This is a repository copy of On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/76980/ Version: Published Version Article: Monge-Sanz, BM, Chipperfield, MP, Untch, A et al. (3 more authors) (2013) On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing. Atmospheric Chemistry and Physics, 13 (18). 9641 - 9660. ISSN 1680-7316 https://doi.org/10.5194/acp-13-9641-2013 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Atmos. Chem. Phys., 13, 9641–9660, 2013 Atmospheric Open Access www.atmos-chem-phys.net/13/9641/2013/ doi:10.5194/acp-13-9641-2013 Chemistry © Author(s) 2013.
    [Show full text]
  • Climate Change
    TRANSPORTATION RESEARCH Number E-C271 May 2021 Critical Issues in Aviation and the Environment 2021 TRANSPORTATION RESEARCH BOARD 2020 EXECUTIVE COMMITTEE OFFICERS Chair: Carlos M. Braceras, Executive Director, Utah Department of Transportation, Salt Lake City Vice Chair: Susan A. Shaheen, Adjunct Professor, Co-Director, Transportation Sustainability Research Center, University of California, Berkeley Division Chair for NRC Oversight: Chris Hendrickson, Hamerschlag University Professor Emeritus, Carnegie Mellon University, Pittsburgh, Pennsylvania Executive Director: Neil J. Pedersen, Transportation Research Board TRANSPORTATION RESEARCH BOARD 2020–2021 TECHNICAL ACTIVITIES COUNCIL Chair: Hyun-A C. Park, President, Spy Pond Partners, LLC, Arlington, Massachusetts Technical Activities Director: Ann M. Brach, Transportation Research Board Richard Bornhorst, Principal, FACTOR, Inc., Silver Spring, Maryland, Freight Systems Group Chair Michael Griffith, Director, Office of Safety Technologies, Federal Highway Administration, Washington, D.C., Safety and Operations Group Chair George Avery Grimes, CEO Advisor, Patriot Rail Company, Denver, Colorado, Rail Group Chair Brendon Hemily, Principal, Hemily and Associates, Toronto, Ontario, Public Transportation Group Chair Nikola Ivanov, Deputy Director, Center for Advanced Transportation Technology Laboratory, University of Maryland, College Park, Young Members Council Chair Pamela Keidel-Adams, Regional Vice President, Kimley-Horn and Associates, Inc., Mesa, Arizona, Aviation Group Chair C. James
    [Show full text]
  • The New Hadley Centre Climate Model (Hadgem1): Evaluation of Coupled Simulations
    1APRIL 2006 J OHNS ET AL. 1327 The New Hadley Centre Climate Model (HadGEM1): Evaluation of Coupled Simulations T. C. JOHNS,* C. F. DURMAN,* H. T. BANKS,* M. J. ROBERTS,* A. J. MCLAREN,* J. K. RIDLEY,* ϩ C. A. SENIOR,* K. D. WILLIAMS,* A. JONES,* G. J. RICKARD, S. CUSACK,* W. J. INGRAM,# M. CRUCIFIX,* D. M. H. SEXTON,* M. M. JOSHI,* B.-W. DONG,* H. SPENCER,@ R. S. R. HILL,* J. M. GREGORY,& A. B. KEEN,* A. K. PARDAENS,* J. A. LOWE,* A. BODAS-SALCEDO,* S. STARK,* AND Y. SEARL* *Met Office, Exeter, United Kingdom ϩNIWA, Wellington, New Zealand #Met Office, Exeter, and Department of Physics, University of Oxford, Oxford, United Kingdom @CGAM, University of Reading, Reading, United Kingdom &Met Office, Exeter, and CGAM, University of Reading, Reading, United Kingdom (Manuscript received 30 May 2005, in final form 9 December 2005) ABSTRACT A new coupled general circulation climate model developed at the Met Office’s Hadley Centre is pre- sented, and aspects of its performance in climate simulations run for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) documented with reference to previous models. The Hadley Centre Global Environmental Model version 1 (HadGEM1) is built around a new atmospheric dynamical core; uses higher resolution than the previous Hadley Centre model, HadCM3; and contains several improvements in its formulation including interactive atmospheric aerosols (sulphate, black carbon, biomass burning, and sea salt) plus their direct and indirect effects. The ocean component also has higher resolution and incorporates a sea ice component more advanced than HadCM3 in terms of both dynamics and thermodynamics.
    [Show full text]
  • The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 Configurations
    The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open Access Walters, D., Brooks, M., Boutle, I., Melvin, T., Stratton, R., Vosper, S., Wells, H., Williams, K., Wood, N., Allen, T., Bushell, A., Copsey, D., Earnshaw, P., Edwards, J., Gross, M., Hardiman, S., Harris, C., Heming, J., Klingaman, N., Levine, R., Manners, J., Martin, G., Milton, S., Mittermaier, M., Morcrette, C., Riddick, T., Roberts, M., Sanchez, C., Selwood, P., Stirling, A., Smith, C., Suri, D., Tennant, W., Vidale, P. L., Wilkinson, J., Willett, M., Woolnough, S. and Xavier, P. (2017) The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geoscientific Model Development, 10 (4). pp. 1487-1520. ISSN 1991-9603 doi: https://doi.org/10.5194/gmd-10-1487-2017 Available at http://centaur.reading.ac.uk/69108/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.5194/gmd-10-1487-2017 Publisher: European Geosciences Union All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Geosci.
    [Show full text]
  • Technical Manual for PRECIS
    Technical Manual for PRECIS The Met Office Hadley Centre regional climate modelling system Version 2.0.0 www.metoffice.gov.uk/precis Simon Wilson, David Hassell, David Hein, Changgui Wang, Simon Tucker Richard Jones and Ruth Taylor November 16, 2015 Contents 1 Introduction 11 1.1 Background .............................. 11 1.2 Objectivesandstructureofthemanual . 12 2 Hardware, operating system and software environment 13 2.1 Recommended Hardware Configurations . 13 2.2 Multi-processorsystems . 14 2.3 InstallationofLinux ......................... 14 2.4 Compilers ............................... 16 2.5 System setup before installing PRECIS . 17 3 PRECIS software and installation 19 3.1 Introduction.............................. 19 3.2 Disklayout .............................. 20 3.3 Main steps in installation process . 21 3.4 Installation of PRECIS software and data . 22 3.5 InstallationofMetOfficedata . 26 3.5.1 Boundary data supplied on hard drive . 26 3.6 Installation verification . 28 3.7 InstallationofCDAT ......................... 29 4 Experimental design and setup 30 4.1 Experimentaldesign ......................... 30 4.1.1 Regional climate model . 30 2 4.1.2 Choice of driving model and forcing scenario . 30 4.1.3 CMIP5 Driving GCMs and Representative Concentration Pathways ........................... 37 4.1.4 Simulationlength. 40 4.1.5 Initial condition ensembles . 41 4.1.6 Choice of land surface scheme . 42 4.1.7 Outputdata.......................... 42 4.1.8 Spinup............................. 42 4.1.9 Choice of region . 43 4.1.10 Land-seamask ........................ 43 4.1.11 Altitude ............................ 45 4.1.12 Altitude of inland waters . 45 4.1.13 Soil and land cover . 45 4.1.14 RCM calendar and clock . 46 4.1.15 RCM Resolution . 46 4.1.16 Outputformat .......................
    [Show full text]