MICROBIOLOGY of HYDRAULIC FRACTURING WASTEWATER By

Total Page:16

File Type:pdf, Size:1020Kb

MICROBIOLOGY of HYDRAULIC FRACTURING WASTEWATER By MICROBIOLOGY OF HYDRAULIC FRACTURING WASTEWATER by Daniel Lipus Bachelor of Science in Environmental Science, Iona College, 2012 Master of Science in Civil Engineering, University of Pittsburgh, 2014 Submitted to the Graduate Faculty of Swanson School of Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2017 UNIVERSITY OF PITTSBURGH SWANSON SCHOOL OF ENGINEERING This dissertation was presented by Daniel Lipus It was defended on June 15, 2017 and approved by Kyle J. Bibby, Ph.D., Assistant Professor, Civil and Environmental Engineering Department Radisav D. Vidic, Ph.D., Professor, Civil and Environmental Engineering Department Leanne Gilbertston, Ph.D., Assistant Professor, Civil and Environmental Engineering Department Kelvin Gregory, Professor, Department of Civil and Environmental Engineering (Carnegie Mellon University) Dissertation Director: Kyle J. Bibby, Ph.D., Assistant Professor, Civil and Environmental Engineering Department ii Copyright © by Daniel Lipus 2017 iii MICROBIOLOGY OF HYDRAULIC FRACTURING WASTEWATER Daniel Lipus, Ph.D. University of Pittsburgh, 2017 The extraction of natural gas and oil from shale formations using hydraulic fracturing generates large volumes of wastewater, often termed produced water. One of the biggest challenges associated with produced water management is microbial activity. Microorganisms growing in produced water may have the ability to form biofilms and produce acids and sulfides, which can contribute to biocorrosion and gas souring. This dissertation investigates the microbial ecology of microorganisms living in produced water by studying their community structure and metabolic potential as well as the active, genetic response of Pseudomonas biofilms to the biocide sodium hypochlorite to inform microbial control. First, storage guidelines for hydraulic fracturing produced waters intended for microbiological analysis were developed. Results suggested microbial communities in produced water samples to remain stable when stored at 4oC for three days or less. Next, the microbial ecology of 42 Marcellus Shale produced water samples was analyzed. Samples were dominated by the taxa Halanaerobiales, specifically the genus Halanaerobium. Subsequently, metagenomic sequencing and binning allowed the recovery and annotation of a Halanaerobium draft genome. Annotation results suggested Halanaerobium to have the metabolic potential for acid production and sulfide production through thiosulfate reduction. Microbiological assessment of produced waters from 18 Bakken Shale wells, sampled across a six-month time frame, confirmed the presence of Halanaerobium in produced water. iv However, the microbial community structure was found to change temporally, and the majority of the samples were dominated by the order Bacillales. Finally, the active, genetic response to the broad-spectrum biocide sodium hypochlorite, which is also used for microbial control in hydraulic fracturing operations, was assessed. Pseudomonas fluorescens biofilms were exposed to sublethal concentrations of sodium hypochlorite and differential genes expression was analyzed. Results suggested genes involved in oxidative stress response pathways and multidrug efflux mechanisms to be upregulated, demonstrating genetic components to be involved in sodium hypochlorite resistance. Ultimately, findings from this dissertation enhance the current understanding of microbial community dynamics in produced water and may help to limit corrosion, control fouling and souring issues, protect well infrastructure, and minimize unnecessary biocide application. v TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................... XII LIST OF FIGURES ................................................................................................................... XIII ACKNOWLEDGEMENTS ......................................................................................................... XV 1.0 INTRODUCTION ................................................................................................................ 1 1.1 MOTIVATION AND OBJECTIVE ...................................................................... 1 1.1.1 Advances in hydraulic fracturing and importance of produced water management ....................................................................................................... 1 1.1.2 Microbial activity in hydraulic fracturing systems and its role in produced water management ............................................................................................. 2 1.1.3 Economic impact of microbial activity on the oil and gas industry .................. 3 1.1.4 The importance of biocide efficacy during produced water management ........ 5 1.2 DISSERTATION ORGANIZATION ................................................................... 6 2.0 A REVIEW OF THE MICROBIOLOGY ASSOCIATED WITH HYDRAULIC FRACTURING PRODUCED WATER ........................................................................... 11 2.1 INTRODUCTION ............................................................................................... 11 2.2 MICROBIAL COMMUNITY STRUCTURE AND BIOLOGICAL ACTIVITY IN PRODUCED WATER FROM THE MARCELLUS SHALE REGION ............ ............................................................................................................................. 12 2.3 MICROORGANISMS IN PRODUCED WATERS FROM BARNETT SHALE WELLS ................................................................................................................. 20 vi 2.4 MICROBIAL ECOLOGY IN PRODUCED WATERS FROM THE ANTRIM SHALE GAS REGION......................................................................................... 23 2.5 MICROBIAL ECOLOGY IN PRODUCED WATERS FROM THE BAKKEN SHALE REGION.................................................................................................. 25 2.6 USE OF BIOCIDES TO CONTROL MICROBIAL ACTIVITY IN PRODUCED WATERS .............................................................................................................. 26 2.7 CONCLUSIONS ................................................................................................. 32 3.0 THE INFLUENCE OF SAMPLE STORAGE CONDITIONS ON MICROBIAL COMMUNITY COMPOSITION OF HYDRAULIC FRACTURING PRODUCED WATER ............................................................................................................................... 34 3.1 INTRODUCTION ............................................................................................... 35 3.2 MATERIALS AND METHODS ........................................................................ 36 3.2.1 Sampling .......................................................................................................... 36 3.2.2 Sample Processing ........................................................................................... 37 3.2.3 Chemical analysis ............................................................................................ 37 3.2.4 DNA Extraction ............................................................................................... 38 3.2.5 DNA processing and sequencing ..................................................................... 38 3.2.6 Computational analysis.................................................................................... 39 3.3 RESULTS AND DISCUSSION .......................................................................... 40 3.3.1 Sampling and geochemical characterization ................................................... 40 3.3.2 Changes in microbial community structure ..................................................... 40 3.3.3 Changes in microbial diversity within and between samples .......................... 42 3.3.4 Implications and produced water storage recommendations ........................... 46 3.4 SUMMARY AND CONCLUSIONS .................................................................. 48 4.0 PREDOMINANCE AND METABOLIC POTENTIAL OF HALANAEROBIUM IN PRODUCED WATER FROM HYDRAULICALLY FRACTURED MARCELLUS SHALE WELLS ................................................................................................................. 49 vii 4.1 INTRODUCTION ............................................................................................... 50 4.2 MATERIALS AND METHODS ........................................................................ 53 4.2.1 Samples ............................................................................................................ 53 4.2.2 Chemical analysis ............................................................................................ 53 4.2.3 DNA extraction, PCR, and sequencing ........................................................... 54 4.2.4 qPCR ................................................................................................................ 55 4.2.5 16S rRNA gene data processing ...................................................................... 55 4.2.6 Correlation analysis ......................................................................................... 56 4.2.7 Metagenome library preparation ..................................................................... 56 4.2.8 Quality control and assembly .......................................................................... 57 4.2.9 Reference genome mappings ..........................................................................
Recommended publications
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Arcobacter Butzleri – Lessons from a Meta- Analysis of Murine Infection Studies
    RESEARCH ARTICLE The Immunopathogenic Potential of Arcobacter butzleri – Lessons from a Meta- Analysis of Murine Infection Studies Greta Gölz1*, Thomas Alter1, Stefan Bereswill2, Markus M. Heimesaat2 1 Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany, 2 Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany * [email protected] Abstract a11111 Background Only limited information is available about the immunopathogenic properties of Arcobacter infection in vivo. Therefore, we performed a meta-analysis of published data in murine infection models to compare the pathogenic potential of Arcobacter butzleri with Campylobacter jejuni and commensal Escherichia coli as pathogenic and harmless reference bacteria, respectively. OPEN ACCESS Citation: Gölz G, Alter T, Bereswill S, Heimesaat MM Methodology / Principal Findings (2016) The Immunopathogenic Potential of -/- Arcobacter butzleri – Lessons from a Meta-Analysis Gnotobiotic IL-10 mice generated by broad-spectrum antibiotic compounds were perorally of Murine Infection Studies. PLoS ONE 11(7): infected with A. butzleri (strains CCUG 30485 or C1), C. jejuni (strain 81-176) or a commensal e0159685. doi:10.1371/journal.pone.0159685 intestinal E. coli strain. Either strain stably colonized the murine intestines upon infection. At Editor: Sergei Grivennikov, Fox Chase Cancer day 6 postinfection (p.i.), C. jejuni infected mice only displayed severe clinical sequelae such Center, UNITED STATES as wasting bloody diarrhea. Gross disease was accompanied by increased numbers of Received: March 10, 2016 colonic apoptotic cells and distinct immune cell populations including macrophages and Accepted: July 5, 2016 monocytes, T and B cells as well as regulatory T cells upon pathogenic infection. Whereas A.
    [Show full text]
  • Toll-Like Receptor-4 Dependent Small Intestinal Immune Responses Following Murine Arcobacter Butzleri Infection
    European Journal of Microbiology and Immunology 5 (2015) 4, pp. 333–342 Original article DOI: 10.1556/1886.2015.00042 TOLL-LIKE RECEPTOR-4 DEPENDENT SMALL INTESTINAL IMMUNE RESPONSES FOLLOWING MURINE ARCOBACTER BUTZLERI INFECTION Markus M. Heimesaat1,*, Gül Karadas2, André Fischer1, Ulf B. Göbel1, Thomas Alter2, Stefan Bereswill1, Greta Gölz2 1 Department of Microbiology and Hygiene, Charité – University Medicine Berlin, Berlin, Germany 2 Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany Received: October 27, 2015; Accepted: November 3, 2015 Sporadic cases of gastroenteritis have been attributed to Arcobacter butzleri infection, but information about the underlying im- munopathological mechanisms is scarce. We have recently shown that experimental A. butzleri infection induces intestinal, ex- traintestinal and systemic immune responses in gnotobiotic IL-10−/− mice. The aim of the present study was to investigate the immunopathological role of Toll-like Receptor-4, the receptor for lipopolysaccharide and lipooligosaccharide of Gram-negative bacteria, during murine A. butzleri infection. To address this, gnotobiotic IL-10−/− mice lacking TLR-4 were generated by broad- spectrum antibiotic treatment and perorally infected with two different A. butzleri strains isolated from a patient (CCUG 30485) or fresh chicken meat (C1), respectively. Bacteria of either strain stably colonized the ilea of mice irrespective of their genotype at days 6 and 16 postinfection. As compared to IL-10−/− control animals, TLR-4−/− IL-10−/− mice were protected from A. butzleri-induced ileal apoptosis, from ileal influx of adaptive immune cells including T lymphocytes, regulatory T-cells and B lymphocytes, and from increased ileal IFN-γ secretion. Given that TLR-4-signaling is essential for A.
    [Show full text]
  • 1 Microbial Transformations of Organic Chemicals in Produced Fluid From
    Microbial transformations of organic chemicals in produced fluid from hydraulically fractured natural-gas wells Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Morgan V. Evans Graduate Program in Environmental Science The Ohio State University 2019 Dissertation Committee Professor Paula Mouser, Advisor Professor Gil Bohrer, Co-Advisor Professor Matthew Sullivan, Member Professor Ilham El-Monier, Member Professor Natalie Hull, Member 1 Copyrighted by Morgan Volker Evans 2019 2 Abstract Hydraulic fracturing and horizontal drilling technologies have greatly improved the production of oil and natural-gas from previously inaccessible non-permeable rock formations. Fluids comprised of water, chemicals, and proppant (e.g., sand) are injected at high pressures during hydraulic fracturing, and these fluids mix with formation porewaters and return to the surface with the hydrocarbon resource. Despite the addition of biocides during operations and the brine-level salinities of the formation porewaters, microorganisms have been identified in input, flowback (days to weeks after hydraulic fracturing occurs), and produced fluids (months to years after hydraulic fracturing occurs). Microorganisms in the hydraulically fractured system may have deleterious effects on well infrastructure and hydrocarbon recovery efficiency. The reduction of oxidized sulfur compounds (e.g., sulfate, thiosulfate) to sulfide has been associated with both well corrosion and souring of natural-gas, and proliferation of microorganisms during operations may lead to biomass clogging of the newly created fractures in the shale formation culminating in reduced hydrocarbon recovery. Consequently, it is important to elucidate microbial metabolisms in the hydraulically fractured ecosystem.
    [Show full text]
  • The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment
    life Article The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment Sierra R. Athen, Shivangi Dubey and John A. Kyndt * College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA; [email protected] (S.R.A.); [email protected] (S.D.) * Correspondence: [email protected] Abstract: The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique Citation: Athen, S.R.; Dubey, S.; inland salt marsh environment.
    [Show full text]
  • Influence of External and Internal Environmental Factors on Intestinal Microbiota of Wild and Domestic Animals A
    Influence of external and internal environmental factors on intestinal microbiota of wild and domestic of animals factors on intestinal microbiota Influence of external and internal environmental Influence of external and internal environmental factors on intestinal microbiota of wild and domestic animals A. Umanets Alexander Umanets Propositions 1. Intestinal microbiota and resistome composition of wild animals are mostly shaped by the animals’ diet and lifestyle. (this thesis) 2. When other environmental factors are controlled, genetics of the host lead to species- or breed specific microbiota patterns. (this thesis) 3. Identifying the response of microbial communities to factors that only have a minor contribution to overall microbiota variation faces the same problems as the discovery of exoplanets. 4. Observational studies in microbial ecology using cultivation- independent methods should be considered only as a guide for further investigations that employ controlled experimental conditions and mechanistic studies of cause-effect relationships. 5. Public fear of genetic engineering and artificial intelligence is not helped by insufficient public education and misleading images created through mass- and social media. 6. Principles of positive (Darwinian) and negative selection govern the repertoire of techniques used within martial arts. Propositions belonging to the thesis, entitled Influence of external and internal environmental factors on intestinal microbiota of wild and domestic animals Alexander Umanets Wageningen, 17 October
    [Show full text]
  • Influencia De La Comunidad Bacteriana En Los Ciclos Biogeoquímicos Del Carbono Y El Nitrógeno En El Ecosistema De Manglar
    FACULTAD CIENCIAS DE LA SALUD BACTERIOLOGÍA Y LABORATORIO CLÍNICO BOGOTÁ D.C. 2020 Proyecto: INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR Meritoria: _____Si______ Laureada: ___________ Aprobada: ___________ JURADOS _____________________ ________________ ____________________ _________________ _________________________________________________ ASESOR(es) _________ Martha Lucía Posada Buitrago___________________ _________________________________________ ÉTICA, SERVICIO Y SABER INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA FACULTAD CIENCIAS DE LA SALUD PROGRAMA BACTERIOLOGÍA Y LABORATORIO CLÍNICO PROYECTO DE GRADO BOGOTÁ D.C 2020 INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR Danya Gabriela Ramírez Lozada Nicolás David Rojas Villamil Asesor interno PhD. Martha Lucía Posada Buitrago Monografía para optar al título de Bacteriólogo y Laboratorista Clínico UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA FACULTAD CIENCIAS DE LA SALUD PROGRAMA BACTERIOLOGÍA Y LABORATORIO CLÍNICO PROYECTO DE GRADO BOGOTÁ D.C 2020 INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA FACULTAD CIENCIAS DE LA SALUD PROGRAMA BACTERIOLOGÍA Y LABORATORIO CLÍNICO PROYECTO DE GRADO BOGOTÁ D.C 2020 DEDICATORIA A todas las personas y docentes que hicieron parte de nuestro proceso de formación profesional, a nuestras familias y amigos, que nos brindaron su apoyo, tiempo, consejos y paciencia en este camino que no ha culminado y aún está lleno de sueños, esperanzas y metas por alcanzar. AGRADECIMIENTOS Principalmente a nuestras familias porque han sido la base de nuestra formación aportando grandes cosas en nuestras vidas, por confiar y creer en nuestras capacidades y destrezas a lo largo de esta carrera.
    [Show full text]
  • The Best Paper Ever
    University of São Paulo “Luiz de Queiroz” College of Agriculture Isolation, identification and genotypic and phenotypic characterization of Arcobacter spp. isolated from Minas frescal cheese and raw milk Melina Luz Mary Cruzado Bravo Thesis presented to obtain the degree of Doctor in Science. Area: Food Science and Technology Piracicaba 2020 Melina Luz Mary Cruzado Bravo Agroindustrial Engineering Isolation, identification and genotypic and phenotypic characterization of Arcobacter spp. isolated from Minas frescal cheese and raw milk versão revisada de acordo com a resolução CoPGr 6018 de 2011 Advisor: Profa. Dra. CARMEN JOSEFINA CONTRERAS CASTILLO Co-Advisor: Prof. Dr. LUIS ROBERTO COLLADO GONZÁLEZ Thesis presented to obtain the degree of Doctor in Science. Area: Food Science and Technology Piracicaba 2020 Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA – DIBD/ESALQ/USP Cruzado Bravo, Melina Luz Mary Isolation, identification and genotypic and phenotypic characterization of Arcobacter spp. isolated from Minas frescal cheese and raw milk / Melina Luz Mary Cruzado Bravo. - - versão revisada de acordo com a resolução CoPGr 6018 de 2011. - - Piracicaba, 2020. 88 p. Tese (Doutorado) - - USP / Escola Superior de Agricultura “Luiz de Queiroz”. 1. Patógeno emergente 2. Produtos lácteos 3. Genes de virulência 4. Resistência aos antibióticos 5. Biofilmes I. Título DEDICATION Dedico este trabajo a mis padres Isabel y Nery, mis hermanitas Vanessa y Jheny, mis sobrinos Alexa, Antonio y Nerick y a mi querida Sunchubamba. ACKNOWLEDGEMENTS
    [Show full text]
  • Downloaded from Genome Website
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.18.388454; this version posted November 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Characterization of the first cultured free-living representative of 2 Candidatus Izimaplasma uncovers its unique biology 3 Rikuan Zheng1,2,3,4, Rui Liu1,2,4, Yeqi Shan1,2,3,4, Ruining Cai1,2,3,4, Ge Liu1,2,4, Chaomin Sun1,2,4* 1 4 CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea 5 Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China 2 6 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory 7 for Marine Science and Technology, Qingdao, China 3 8 College of Earth Science, University of Chinese Academy of Sciences, Beijing, 9 China 10 4Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China 11 12 * Corresponding author 13 Chaomin Sun Tel.: +86 532 82898857; fax: +86 532 82898857. 14 E-mail address: [email protected] 15 16 17 Key words: Candidatus Izimaplasma, uncultivation, biogeochemical cycling, 18 extracellular DNA, in situ, deep sea 19 Running title: Characterization of the first cultured Izimaplasma 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.18.388454; this version posted November 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 Abstract 23 Candidatus Izimaplasma, an intermediate in the reductive evolution from Firmicutes 24 to Mollicutes, was proposed to represent a novel class of free-living wall-less bacteria 25 within the phylum Tenericutes found in deep-sea methane seeps.
    [Show full text]
  • Diversity of Mat-Forming Sulfide-Oxidizing Bacteria at Continental Margins
    Diversity of Mat-forming Sulfide-oxidizing Bacteria at Continental Margins Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften - Dr. rer. nat. - dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Stefanie Grünke Bremen, April 2010 Die vorliegende Doktorarbeit wurde in der Zeit von Juni 2006 bis April 2010 am Max- Planck-Institut für Marine Mikrobiologie und am Alfred-Wegener-Institut für Polar- und Meeresforschung angefertigt. 1. Gutachterin: Prof. Dr. Antje Boetius 2. Gutachter: Prof. Dr. Rudolf Amann Tag des Promotionskolloquiums: 4. Juni 2010 Diese Arbeit ist all denjenigen gewidmet, die ihre Segel setzen, um neue Welten gu erkunden. Seien sie sich gewiss, dass auf Sturm immer ruhiges Wasserfolgt. Wertrauen sie auf ihr größtes Gut — ihre Freunde und Familie. Nutgen sie ihre Schwächen, um neue Stärken gu finden. Soll Zuversicht ihr Kompass sein! Summary In the oceans, microbial mats formed by chemosynthetic sulfide-oxidizing bacteria are mostly found in so-called ‘reduced habitats’ that are characterized by chemoclines where energy-rich, reduced substances, like hydrogen sulfide, are transported into oxic or suboxic zones. There, these organisms often thrive in narrow zones or gradients of their electron donor (sulfide) and their electron acceptor (mostly oxygen or nitrate). Through the build up of large biomasses, mat-forming sulfide oxidizers may significantly contribute to primary production in their habitats and dense mats represent efficient benthic filters against the toxic gas hydrogen sulfide. As gradient organisms, these mat-forming sulfide oxidizers seem to be adapted to very defined ecological niches with respect to oxygen (or nitrate) and sulfide gradients. However, many aspects regarding their diversity as well as their geological drivers in marine sulfidic habitats required further investigation.
    [Show full text]
  • Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2010 Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi South Dakota School of Mines and Technology Shariff Osman Lawrence Berkeley National Laboratory Ravi K. Kukkadapu Pacific Northwest National Laboratory, [email protected] Mark Engelhard Pacific Northwest National Laboratory Parag A. Vaishampayan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Rastogi, Gurdeep; Osman, Shariff; Kukkadapu, Ravi K.; Engelhard, Mark; Vaishampayan, Parag A.; Andersen, Gary L.; and Sani, Rajesh K., "Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota" (2010). US Department of Energy Publications. 170. https://digitalcommons.unl.edu/usdoepub/170 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Gurdeep Rastogi, Shariff Osman, Ravi K. Kukkadapu, Mark Engelhard, Parag A. Vaishampayan, Gary L. Andersen, and Rajesh K. Sani This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/170 Microb Ecol (2010) 60:539–550 DOI 10.1007/s00248-010-9657-y SOIL MICROBIOLOGY Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi & Shariff Osman & Ravi Kukkadapu & Mark Engelhard & Parag A.
    [Show full text]
  • Arcobacter Butzleri</Em>
    The University of Notre Dame Australia ResearchOnline@ND Medical Papers and Journal Articles School of Medicine 2007 The complete genome sequence and analysis of the Epsilonproteobacterium Arcobacter butzleri William G. Miller Craig T. Parker Mark Rubenfield George L. Mendz University of Notre Dame Australia, [email protected] Marc MSM Wo See next page for additional authors Follow this and additional works at: https://researchonline.nd.edu.au/med_article Part of the Medicine and Health Sciences Commons This article was originally published as: Miller, W. G., Parker, C. T., Rubenfield, M., Mendz, G. L., o,W M. M., Ussery, D. W., Stolz, J. F., Binneweis, T. T., Hallin, P. F., Wang, G., Malek, J. A., Rogosin, A., Stanker, L. H., & Mandrell, R. E. (2007). The complete genome sequence and analysis of the Epsilonproteobacterium Arcobacter butzleri. PLoS ONE, 2 (12), e1358. http://doi.org/10.1371/journal.pone.0001358 This article is posted on ResearchOnline@ND at https://researchonline.nd.edu.au/med_article/1. For more information, please contact [email protected]. Authors William G. Miller, Craig T. Parker, Mark Rubenfield, George L. Mendz, Marc MSM Wo, David W. Ussery, John F. Stolz, Tim T. Binneweis, Peter F. Hallin, Guilin Wang, Joel A. Malek, Andrea Rogosin, Larry H. Stanker, and Robert E. Mandrell This article is available at ResearchOnline@ND: https://researchonline.nd.edu.au/med_article/1 The Complete Genome Sequence and Analysis of the Epsilonproteobacterium Arcobacter butzleri William G. Miller1*, Craig T. Parker1, Marc Rubenfield2, George L. Mendz3, Marc M. S. M. Wo¨sten4, David W. Ussery5, John F.
    [Show full text]