Hantavirus Reservoirs: Current Status with an Emphasis on Data from Brazil
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Levels of Gene Flow in the California Vole (Microtus Californicus) Are Consistent Across Spatial Scales," Western North American Naturalist: Vol
Western North American Naturalist Volume 70 Number 3 Article 3 10-11-2010 High levels of gene flow in the California olev (Microtus californicus) are consistent across spatial scales Rachel I. Adams Stanford University, Stanford, California, [email protected] Elizabeth A. Hadly Stanford University, Stanford, California, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Adams, Rachel I. and Hadly, Elizabeth A. (2010) "High levels of gene flow in the California vole (Microtus californicus) are consistent across spatial scales," Western North American Naturalist: Vol. 70 : No. 3 , Article 3. Available at: https://scholarsarchive.byu.edu/wnan/vol70/iss3/3 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 70(3), © 2010, pp. 296–311 HIGH LEVELS OF GENE FLOW IN THE CALIFORNIA VOLE (MICROTUS CALIFORNICUS) ARE CONSISTENT ACROSS SPATIAL SCALES Rachel I. Adams1,2 and Elizabeth A. Hadly1 ABSTRACT.—Gene flow links the genetic and demographic structures of species. Despite the fact that similar genetic and demographic patterns shape both local population structure and regional phylogeography, the 2 levels of population connectivity are rarely studied simultaneously. Here, we studied gene flow in the California vole (Microtus californicus), a small-bodied rodent with limited vagility but high local abundance. Within a 4.86-km2 preserve in central California, genetic diversity in 6 microsatellites was high, and Bayesian methods indicated a single genetic cluster. -
Cryptic Phylogeographic History Sheds Light on the Generation of Species Diversity in Sky-Island Mountains
bioRxiv preprint doi: https://doi.org/10.1101/199786; this version posted October 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cryptic phylogeographic history sheds light on the generation of species diversity in sky-island mountains Kai He1, 2, 3, #, Tao Wan 1, 4, Klaus-Peter Koepfli 5, 6, Wei Jin7, Shao-Ying Liu7, Xue-Long Jiang1, # 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Department of Biological Sciences, University of Manitoba, Winnipeg, MN R3T R3V, Canada 3 The Kyoto University Museum, Kyoto University, Kyoto 606-8501, Japan. 4 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China 5 Smithsonian Conservation Biology Institute, National Zoological Park, DC 20008, USA 6 Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, St. Petersburg 199034, RUSSIA 7 Sichuan Academy of Forest, Chengdu 610081, Sichuan, China Keywords: allopatry, Approximate Bayesian Computation, cryptic corridor, interglacial refugia, niche modeling, species delimitation Running title: Cryptic sky-island phylogeography # Correspondence: Kai He and Xue-Long Jiang, Fax: 86 871 6512 5226; E-mails: [email protected], [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/199786; this version posted October 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Interglacial Refugia Preserved High Genetic Diversity of the Chinese Mole Shrew in the Mountains of Southwest China
Heredity (2016) 116, 23–32 & 2016 Macmillan Publishers Limited All rights reserved 0018-067X/16 www.nature.com/hdy ORIGINAL ARTICLE Interglacial refugia preserved high genetic diversity of the Chinese mole shrew in the mountains of southwest China KHe1,2, N-Q Hu1,3, X Chen4,5, J-T Li6 and X-L Jiang1 The mountains of southwest China (MSC) harbor extremely high species diversity; however, the mechanism behind this diversity is unknown. We investigated to what degree the topography and climate change shaped the genetic diversity and diversification in these mountains, and we also sought to identify the locations of microrefugia areas in these mountains. For these purposes, we sampled extensively to estimate the intraspecific phylogenetic pattern of the Chinese mole shrew (Anourosorex squamipes)in southwest China throughout its range of distribution. Two mitochondrial genes, namely, cytochrome b (CYT B) and NADH dehydrogenase subunit 2 (ND2), from 383 archived specimens from 43 localities were determined for phylogeographic and demographic analyses. We used the continuous-diffusion phylogeographic model, extensive Bayesian skyline plot species distribution modeling (SDM) and approximate Bayesian computation (ABC) to explore the changes in population size and distribution through time of the species. Two phylogenetic clades were identified, and significantly higher genetic diversity was preserved in the southern subregion of the mountains. The results of the SDM, continuous-diffusion phylogeographic model, extensive Bayesian skyline plot and ABC analyses were congruent and supported that the Last Interglacial Maximum (LIG) was an unfavorable period for the mole shrews because of a high degree of seasonality; A. squamipes survived in isolated interglacial refugia mainly located in the southern subregion during the LIG and rapidly expanded during the last glacial period. -
Mammals of the California Desert
MAMMALS OF THE CALIFORNIA DESERT William F. Laudenslayer, Jr. Karen Boyer Buckingham Theodore A. Rado INTRODUCTION I ,+! The desert lands of southern California (Figure 1) support a rich variety of wildlife, of which mammals comprise an important element. Of the 19 living orders of mammals known in the world i- *- loday, nine are represented in the California desert15. Ninety-seven mammal species are known to t ':i he in this area. The southwestern United States has a larger number of mammal subspecies than my other continental area of comparable size (Hall 1981). This high degree of subspeciation, which f I;, ; leads to the development of new species, seems to be due to the great variation in topography, , , elevation, temperature, soils, and isolation caused by natural barriers. The order Rodentia may be k., 2:' , considered the most successful of the mammalian taxa in the desert; it is represented by 48 species Lc - occupying a wide variety of habitats. Bats comprise the second largest contingent of species. Of the 97 mammal species, 48 are found throughout the desert; the remaining 49 occur peripherally, with many restricted to the bordering mountain ranges or the Colorado River Valley. Four of the 97 I ?$ are non-native, having been introduced into the California desert. These are the Virginia opossum, ' >% Rocky Mountain mule deer, horse, and burro. Table 1 lists the desert mammals and their range 1 ;>?-axurrence as well as their current status of endangerment as determined by the U.S. fish and $' Wildlife Service (USWS 1989, 1990) and the California Department of Fish and Game (Calif. -
Geographic Distribution of Hantaviruses Associated with Neotomine and Sigmodontine Rodents, Mexico Mary L
Geographic Distribution of Hantaviruses Associated with Neotomine and Sigmodontine Rodents, Mexico Mary L. Milazzo,1 Maria N.B. Cajimat,1 Hannah E. Romo, Jose G. Estrada-Franco, L. Ignacio Iñiguez-Dávalos, Robert D. Bradley, and Charles F. Fulhorst To increase our knowledge of the geographic on the North American continent are Bayou virus, Black distribution of hantaviruses associated with neotomine or Creek Canal virus (BCCV), Choclo virus (CHOV), New sigmodontine rodents in Mexico, we tested 876 cricetid York virus, and Sin Nombre virus (SNV) (3–7). Other rodents captured in 18 Mexican states (representing at hantaviruses that are principally associated with neotomine least 44 species in the subfamily Neotominae and 10 or North American sigmodontine rodents include Carrizal species in the subfamily Sigmodontinae) for anti-hantavirus virus (CARV), Catacamas virus, El Moro Canyon virus IgG. We found antibodies against hantavirus in 35 (4.0%) rodents. Nucleotide sequence data from 5 antibody-positive (ELMCV), Huitzilac virus (HUIV), Limestone Canyon rodents indicated that Sin Nombre virus (the major cause of virus (LSCV), Montano virus (MTNV), Muleshoe virus hantavirus pulmonary syndrome [HPS] in the United States) (MULV), Playa de Oro virus, and Rio Segundo virus is enzootic in the Mexican states of Nuevo León, San Luis (RIOSV) (8–14). Potosí, Tamaulipas, and Veracruz. However, HPS has not Specifi c rodents (usually 1 or 2 closely related been reported from these states, which suggests that in species) are the principal hosts of the hantaviruses, northeastern Mexico, HPS has been confused with other for which natural host relationships have been well rapidly progressive, life-threatening respiratory diseases. -
Wild Mammals of the Annapurna Conservation Area Cggk"0F{ ;+/If0f If]Qsf :Tgwf/L Jgohgt' Wild Mammals of the Annapurna Conservation Area - 2019
Wild Mammals of the Annapurna Conservation Area cGgk"0f{ ;+/If0f If]qsf :tgwf/L jGohGt' Wild Mammals of the Annapurna Conservation Area - 2019 ISBN 978-9937-8522-8-9978-9937-8522-8-9 9 789937 852289 National Trust for Nature Conservation Annapurna Conservation Area Project Khumaltar, Lalitpur, Nepal Hariyo Kharka, Pokhara, Kaski, Nepal National Trust for Nature Conservation P.O. Box: 3712, Kathmandu, Nepal P.O. Box: 183, Kaski, Nepal Tel: +977-1-5526571, 5526573, Fax: +977-1-5526570 Tel: +977-61-431102, 430802, Fax: +977-61-431203 Annapurna Conservation Area Project Email: [email protected] Email: [email protected] Website: www.ntnc.org.np Website: www.ntnc.org.np 2019 Wild Mammals of the Annapurna Conservation Area cGgk"0f{ ;+/If0f If]qsf :tgwf/L jGohGt' National Trust for Nature Conservation Annapurna Conservation Area Project 2019 Wild Mammals of the Annapurna Conservation Area cGgk"0f{ ;+/If0f If]qsf :tgwf/L jGohGt' Published by © NTNC-ACAP, 2019 All rights reserved Any reproduction in full or in part must mention the title and credit NTNC-ACAP. Reviewers Prof. Karan Bahadur Shah (Himalayan Nature), Dr. Naresh Subedi (NTNC, Khumaltar), Dr. Will Duckworth (IUCN) and Yadav Ghimirey (Friends of Nature, Nepal). Compilers Rishi Baral, Ashok Subedi and Shailendra Kumar Yadav Suggested Citation Baral R., Subedi A. & Yadav S.K. (Compilers), 2019. Wild Mammals of the Annapurna Conservation Area. National Trust for Nature Conservation, Annapurna Conservation Area Project, Pokhara, Nepal. First Edition : 700 Copies ISBN : 978-9937-8522-8-9 Front Cover : Yellow-bellied Weasel (Mustela kathiah), back cover: Orange- bellied Himalayan Squirrel (Dremomys lokriah). -
Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2. -
Hantavirus Disease Were HPS Is More Common in Late Spring and Early Summer in Seropositive in One Study in the U.K
Hantavirus Importance Hantaviruses are a large group of viruses that circulate asymptomatically in Disease rodents, insectivores and bats, but sometimes cause illnesses in humans. Some of these agents can occur in laboratory rodents or pet rats. Clinical cases in humans vary in Hantavirus Fever, severity: some hantaviruses tend to cause mild disease, typically with complete recovery; others frequently cause serious illnesses with case fatality rates of 30% or Hemorrhagic Fever with Renal higher. Hantavirus infections in people are fairly common in parts of Asia, Europe and Syndrome (HFRS), Nephropathia South America, but they seem to be less frequent in North America. Hantaviruses may Epidemica (NE), Hantavirus occasionally infect animals other than their usual hosts; however, there is currently no Pulmonary Syndrome (HPS), evidence that they cause any illnesses in these animals, with the possible exception of Hantavirus Cardiopulmonary nonhuman primates. Syndrome, Hemorrhagic Nephrosonephritis, Epidemic Etiology Hemorrhagic Fever, Korean Hantaviruses are members of the genus Orthohantavirus in the family Hantaviridae Hemorrhagic Fever and order Bunyavirales. As of 2017, 41 species of hantaviruses had officially accepted names, but there is ongoing debate about which viruses should be considered discrete species, and additional viruses have been discovered but not yet classified. Different Last Updated: September 2018 viruses tend to be associated with the two major clinical syndromes in humans, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary (or cardiopulmonary) syndrome (HPS). However, this distinction is not absolute: viruses that are usually associated with HFRS have been infrequently linked to HPS and vice versa. A mild form of HFRS in Europe is commonly called nephropathia epidemica. -
Advances in Cytogenetics of Brazilian Rodents: Cytotaxonomy, Chromosome Evolution and New Karyotypic Data
COMPARATIVE A peer-reviewed open-access journal CompCytogenAdvances 11(4): 833–892 in cytogenetics (2017) of Brazilian rodents: cytotaxonomy, chromosome evolution... 833 doi: 10.3897/CompCytogen.v11i4.19925 RESEARCH ARTICLE Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Advances in cytogenetics of Brazilian rodents: cytotaxonomy, chromosome evolution and new karyotypic data Camilla Bruno Di-Nizo1, Karina Rodrigues da Silva Banci1, Yukie Sato-Kuwabara2, Maria José de J. Silva1 1 Laboratório de Ecologia e Evolução, Instituto Butantan, Avenida Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil 2 Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP 05508-900, São Paulo, SP, Brazil Corresponding author: Maria José de J. Silva ([email protected]) Academic editor: A. Barabanov | Received 1 August 2017 | Accepted 23 October 2017 | Published 21 December 2017 http://zoobank.org/203690A5-3F53-4C78-A64F-C2EB2A34A67C Citation: Di-Nizo CB, Banci KRS, Sato-Kuwabara Y, Silva MJJ (2017) Advances in cytogenetics of Brazilian rodents: cytotaxonomy, chromosome evolution and new karyotypic data. Comparative Cytogenetics 11(4): 833–892. https://doi. org/10.3897/CompCytogen.v11i4.19925 Abstract Rodents constitute one of the most diversified mammalian orders. Due to the morphological similarity in many of the groups, their taxonomy is controversial. Karyotype information proved to be an important tool for distinguishing some species because some of them are species-specific. Additionally, rodents can be an excellent model for chromosome evolution studies since many rearrangements have been described in this group.This work brings a review of cytogenetic data of Brazilian rodents, with information about diploid and fundamental numbers, polymorphisms, and geographical distribution. -
Checklist of Rodents and Insectivores of the Mordovia, Russia
ZooKeys 1004: 129–139 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.1004.57359 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Checklist of rodents and insectivores of the Mordovia, Russia Alexey V. Andreychev1, Vyacheslav A. Kuznetsov1 1 Department of Zoology, National Research Mordovia State University, Bolshevistskaya Street, 68. 430005, Saransk, Russia Corresponding author: Alexey V. Andreychev ([email protected]) Academic editor: R. López-Antoñanzas | Received 7 August 2020 | Accepted 18 November 2020 | Published 16 December 2020 http://zoobank.org/C127F895-B27D-482E-AD2E-D8E4BDB9F332 Citation: Andreychev AV, Kuznetsov VA (2020) Checklist of rodents and insectivores of the Mordovia, Russia. ZooKeys 1004: 129–139. https://doi.org/10.3897/zookeys.1004.57359 Abstract A list of 40 species is presented of the rodents and insectivores collected during a 15-year period from the Republic of Mordovia. The dataset contains more than 24,000 records of rodent and insectivore species from 23 districts, including Saransk. A major part of the data set was obtained during expedition research and at the biological station. The work is based on the materials of our surveys of rodents and insectivo- rous mammals conducted in Mordovia using both trap lines and pitfall arrays using traditional methods. Keywords Insectivores, Mordovia, rodents, spatial distribution Introduction There is a need to review the species composition of rodents and insectivores in all regions of Russia, and the work by Tovpinets et al. (2020) on the Crimean Peninsula serves as an example of such research. Studies of rodent and insectivore diversity and distribution have a long history, but there are no lists for many regions of Russia of Copyright A.V. -
The Pattern of Color Change in Small Mammal
Sandoval Salinas et al. BMC Res Notes (2018) 11:424 https://doi.org/10.1186/s13104-018-3544-x BMC Research Notes RESEARCH NOTE Open Access The pattern of color change in small mammal museum specimens: is it independent of storage histories given museum‑specifc conditions? María Leonor Sandoval Salinas1,2*, José D. Sandoval1,3, Elisa M. Colombo1,3 and Rubén M. Barquez2 Abstract Objective: Determination of color and evaluating its variation form the basis for a broad range of research questions. For studies on taxonomy, systematics, etc., resorting to mammal specimens in museum collections has a number of advantages over using feld specimens. However, if museum specimens are to be for studying color, they should accurately represent the color of live animals, or we should understand how they difer. Basically, this study addresses this question: How does coat color vary when dealing with specimens of Akodon budini (Budin’s grass mouse, Thomas 1918), stored in one museum collection for diferent periods of time? Results: We measured color values through a spectroradiometer and a difuse illumination cabin and used the refectance values in the form of CIELab tri-stimulus values, considering CIE standard illuminant A. We observed that there is a relationship between specimen storage antiquity and pelage color and it seems that it is general for at least a number of small mammals and this could indicate a universal phenomenon across several mammal species and across several storage conditions. Our results, as others, emphasize the importance of considering storage time, among other circumstances, in research studies using mammal skins and where color is of importance. -
COMENIUS UNIVERSITY in BRATISLAVA Faculty of Natural Sciences
COMENIUS UNIVERSITY IN BRATISLAVA Faculty of Natural Sciences UNIVERSITY OF CAGLIARI Department of Biomedical Sciences MOLECULAR EPIDEMIOLOGY OF HANTAVIRUSES IN CENTRAL EUROPE AND ANTIVIRAL SCREENING AGAINST ZOONOTIC VIRUSES CAUSING HEMORRHAGIC FEVERS DISSERTATION 2017 RNDr. PaedDr. Róbert SZABÓ COMENIUS UNIVERSITY IN BRATISLAVA Faculty of Natural Sciences UNIVERSITY OF CAGLIARI Department of Biomedical Sciences MOLECULAR EPIDEMIOLOGY OF HANTAVIRUSES IN CENTRAL EUROPE AND ANTIVIRAL SCREENING AGAINST ZOONOTIC VIRUSES CAUSING HEMORRHAGIC FEVERS Dissertation Study program: Virology Molecular and Translational Medicine Field of Study: Virology Place of the study: Biomedical Research Center, SAS in Bratislava, Slovakia Department of Biomedical Sciences, Cittadella Universitaria, Monserrato, Italy Supervisors: RNDr. Boris Klempa, DrSc. Prof. Alessandra Pani Bratislava, 2017 RNDr. PaedDr. Róbert SZABÓ 25276874 Univerzita Komenského v Bratislave Prírodovedecká fakulta ZADANIE ZÁVEREČNEJ PRÁCE Meno a priezvisko študenta: RNDr. PaedDr. Róbert Szabó Študijný program: virológia (Jednoodborové štúdium, doktorandské III. st., denná forma) Študijný odbor: virológia Typ záverečnej práce: dizertačná Jazyk záverečnej práce: anglický Sekundárny jazyk: slovenský Názov: Molecular epidemiology of hantaviruses in Central Europe and antiviral screening against zoonotic viruses causing hemorrhagic fevers Molekulárna epidemiológia hantavírusov v strednej Európe a antivírusový skríning proti zoonotickým vírusom spôsobujúcim hemoragické horúčky Cieľ: Main objectives