Leveraging the Emerging Space Economy to Meet Critical Government Needs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mitchell Thomas JOS Article
H-SC Journal of Sciences (2017) Vol. VI Thomas Mars: A prospect for settlement Mitchell H. Thomas’17 Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943 The exploration of Mars was once left to the imagination. However, in recent years, the topic of exploring Mars has become more realistic and increasingly popular in news articles and scientific communities. Technology developed in the previous half-century have already allowed humans to send rovers to Mars in order to retrieve some basic data about the planet. Current technological advancements are resulting in reusable rockets that could one day travel between Earth and Mars. Exploration and colonization of Mars are important for the development of research on the planet and the search for life. Current data is limited, but shows that the conditions on Mars could have supported life in the past. To further our knowledge of the red planet, The atmosphere surrounding Earth is nearly organizations like NASA and companies like SpaceX one-hundred times denser than that of Mars and its are developing plans to colonize Mars. Many composition is crucial to life. According to NASA, the obstacles stand in the way before humans can reach Earth’s atmosphere is comprised of 78% Nitrogen, and colonize the red planet. However, Mars is the 21% Oxygen, and 1% Other. On Mars, the sparse best option for interplanetary colonization and the atmosphere is comprised of nearly 96% Carbon most feasible way to research current and future life Dioxide, less than 2% Argon, less than 2% Nitrogen, on a planet other than Earth. -
Aviation Week & Space Technology
$14.95 JUNE 29-JULY 12, 2020 Quest for Speed BOOM XB-1 TAKES SHAPE RICH MEDIA EXCLUSIVE Europe’s Hydrogen- Powered Aircraft Push PRIME TIME FOR How Safe Are HYPERSONICS Aircraft Cabins? Canada’s Fighter RICH MEDIA EXCLUSIVE Strategy Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa. -
Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports
Commercial Space Transportation 2006 Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports January 2006 HQ003606.INDD 2006 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encour- age, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2006 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2006 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Significant 2005 Events . .4 Space Competitions . .6 Expendable Launch Vehicles . .9 Current Expendable Launch Vehicle Systems . .9 Atlas 5 - Lockheed Martin Corporation . -
Planned Yet Uncontrolled Re-Entries of the Cluster-Ii Spacecraft
PLANNED YET UNCONTROLLED RE-ENTRIES OF THE CLUSTER-II SPACECRAFT Stijn Lemmens(1), Klaus Merz(1), Quirin Funke(1) , Benoit Bonvoisin(2), Stefan Löhle(3), Henrik Simon(1) (1) European Space Agency, Space Debris Office, Robert-Bosch-Straße 5, 64293 Darmstadt, Germany, Email:[email protected] (2) European Space Agency, Materials & Processes Section, Keplerlaan 1, 2201 AZ Noordwijk, Netherlands (3) Universität Stuttgart, Institut für Raumfahrtsysteme, Pfaffenwaldring 29, 70569 Stuttgart, Germany ABSTRACT investigate the physical connection between the Sun and Earth. Flying in a tetrahedral formation, the four After an in-depth mission analysis review the European spacecraft collect detailed data on small-scale changes Space Agency’s (ESA) four Cluster II spacecraft in near-Earth space and the interaction between the performed manoeuvres during 2015 aimed at ensuring a charged particles of the solar wind and Earth's re-entry for all of them between 2024 and 2027. This atmosphere. In order to explore the magnetosphere was done to contain any debris from the re-entry event Cluster II spacecraft occupy HEOs with initial near- to southern latitudes and hence minimise the risk for polar with orbital period of 57 hours at a perigee altitude people on ground, which was enabled by the relative of 19 000 km and apogee altitude of 119 000 km. The stability of the orbit under third body perturbations. four spacecraft have a cylindrical shape completed by Small differences in the highly eccentric orbits of the four long flagpole antennas. The diameter of the four spacecraft will lead to various different spacecraft is 2.9 m with a height of 1.3 m. -
Managing Supply Chain Risks in an International Organisation - European Space Agency
Managing Supply Chain Risks in an International Organisation - European Space Agency Britta Schade 23/10/2018 ESA UNCLASSIFIED - For Official Use ESA Facts and Figures . Over 50 years of experience . 22 Member States . Eight sites/facilities in Europe, about 2300 staff . 5.75 billion Euro budget (2017) . Over 80 satellites designed, tested and operated in flight ESA UNCLASSIFIED - For Official Use Britta Schade | ESA-TECQ-HO-011192 | ESTEC | 23/10/2018 | Slide 2 Purpose of ESA “To provide for and promote, for exclusively peaceful purposes, cooperation among European states in space research and technology and their space applications.” Article 2 of ESA Convention ESA UNCLASSIFIED - For Official Use Britta Schade | ESA-TECQ-HO-011192 | ESTEC | 23/10/2018 | Slide 3 Member States ESA has 22 Member States: 20 states of the European Union (Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, Netherlands, Poland, Portugal, Romania, Sweden, United Kingdeom) plus Norway and Switzerland. Six other European Union (EU) states have Cooperation Agreements with ESA: Bulgaria, Cyprus, Latvia, Lithuania, Malta and Slovakia. Discussions are ongoing with Croatia. Slovenia is an Associate Member. Canada takes part in some programmes under a long-standing Cooperation Agreement. ESA UNCLASSIFIED - For Official Use Britta Schade | ESA-TECQ-HO-011192 | ESTEC | 23/10/2018 | Slide 4 ESA Locations Salmijaervi (Kiruna) Moscow Brussels ESTEC (Noordwijk) ECSAT (Harwell) EAC (Cologne) Washington Maspalomas Houston ESA HQ (Paris) ESOC (Darmstadt) Santa Maria Oberpfaffenhofen Kourou Toulouse New Norcia ESEC (Redu) Malargüe ESAC (Madrid) ESRIN (Rome) ESA sites Cebreros Offices ESA Ground Station + Offices ESA Ground Station ESA sites + ESA Ground Station ESA UNCLASSIFIED - For Official Use Britta Schade | ESA-TECQ-HO-011192 | ESTEC | 23/10/2018 | Slide 5 Activities space science human spaceflight exploration ESA is one of the few space agencies in the world to combine responsibility in nearly all areas of space activity. -
List of Missions Using SPICE (PDF)
1/7/20 Data Restorations Selected Past Users Current/Pending Users Examples of Possible Future Users Apollo 15, 16 [L] Magellan [L] Cassini Orbiter NASA Discovery Program Mariner 2 [L] Clementine (NRL) Mars Odyssey NASA New Frontiers Program Mariner 9 [L] Mars 96 (RSA) Mars Exploration Rover Lunar IceCube (Moorehead State) Mariner 10 [L] Mars Pathfinder Mars Reconnaissance Orbiter LunaH-Map (Arizona State) Viking Orbiters [L] NEAR Mars Science Laboratory Luna-Glob (RSA) Viking Landers [L] Deep Space 1 Juno Aditya-L1 (ISRO) Pioneer 10/11/12 [L] Galileo MAVEN Examples of Users not Requesting NAIF Help Haley armada [L] Genesis SMAP (Earth Science) GOLD (LASP, UCF) (Earth Science) [L] Phobos 2 [L] (RSA) Deep Impact OSIRIS REx Hera (ESA) Ulysses [L] Huygens Probe (ESA) [L] InSight ExoMars RSP (ESA, RSA) Voyagers [L] Stardust/NExT Mars 2020 Emmirates Mars Mission (UAE via LASP) Lunar Orbiter [L] Mars Global Surveyor Europa Clipper Hayabusa-2 (JAXA) Helios 1,2 [L] Phoenix NISAR (NASA and ISRO) Proba-3 (ESA) EPOXI Psyche Parker Solar Probe GRAIL Lucy EUMETSAT GEO satellites [L] DAWN Lunar Reconnaissance Orbiter MOM (ISRO) Messenger Mars Express (ESA) Chandrayan-2 (ISRO) Phobos Sample Return (RSA) ExoMars 2016 (ESA, RSA) Solar Orbiter (ESA) Venus Express (ESA) Akatsuki (JAXA) STEREO [L] Rosetta (ESA) Korean Pathfinder Lunar Orbiter (KARI) Spitzer Space Telescope [L] [L] = limited use Chandrayaan-1 (ISRO) New Horizons Kepler [L] [S] = special services Hayabusa (JAXA) JUICE (ESA) Hubble Space Telescope [S][L] Kaguya (JAXA) Bepicolombo (ESA, JAXA) James Webb Space Telescope [S][L] LADEE Altius (Belgian earth science satellite) ISO [S] (ESA) Armadillo (CubeSat, by UT at Austin) Last updated: 1/7/20 Smart-1 (ESA) Deep Space Network Spectrum-RG (RSA) NAIF has or had project-supplied funding to support mission operations, consultation for flight team members, and SPICE data archive preparation. -
Vendor Performance Tracking Report
Vendor Performance Tracking Report Printed: 3/1/2015 2:30:43AM Vendor Name FEIN Overall Performance to Invoicing Delivery Customer Actual Potential Rating Specification Rating Rating Service Rating Rating Rating Rating Submissions Submissions Florida Hospital Medical Group Inc XXXXXX4635 3.00 3.00 3.00 3.00 3.00 4 4 : STG Contracting Group, Inc XXXXXX9629 3.00 3.00 3.00 3.00 3.00 1 1 1 Hour Signs, Inc. XXXXXX1644 3.00 3.00 3.00 3.00 3.00 4 4 1000 Friends of Florida, Inc. XXXXXX1163 3.00 3.00 3.00 3.00 3.00 1 1 1-800- Asphalt, Inc. XXXXXX8118 5.00 5.00 5.00 5.00 5.00 1 1 180-Change XXXXXX5241 3.00 3.00 3.00 3.00 3.00 2 2 2 Cool Air Conditioning Inc XXXXXX3591 3.45 3.60 3.40 3.40 3.40 5 5 20/20 Media Holdings, Inc XXXXXX6900 3.00 3.00 3.00 3.00 3.00 1 1 22nd Century Technologies, Inc XXXXXX2121 4.19 4.25 4.00 4.25 4.25 4 4 2M Solutions Inc XXXXXX6900 3.00 3.00 3.00 3.00 3.00 1 1 3 H Service system, Inc. XXXXXX9343 5.00 5.00 5.00 5.00 5.00 6 7 378 5th Photo Corp. XXXXXX2518 5.00 5.00 5.00 5.00 5.00 1 1 3dp interiors, Inc. XXXXXX2997 4.50 4.50 4.50 4.50 4.50 2 2 3M Cogent, Inc. XXXXXX5768 3.15 3.10 3.20 3.20 3.10 10 14 3M Company XXXXXX7775 3.00 3.00 3.00 3.00 3.00 16 16 3Wire Group Inc XXXXXX8438 3.38 3.50 3.00 3.50 3.50 2 2 49er Communications XXXXXX3189 4.00 4.00 4.00 4.00 4.00 1 1 4imprint XXXXXX7105 3.50 3.44 3.44 3.44 3.67 9 9 835 GLEM INC. -
Filed by Genesis Park Acquisition Corp. Pursuant To
Filed by Genesis Park Acquisition Corp. pursuant to Rule 425 under the Securities Act of 1933, as amended and deemed filed pursuant to Rule 14a-12 under the Securities Exchange Act of 1934, as amended Subject Company: Genesis Park Acquisition Corp. (Commission File No. 001-39733) SpaceX launches solar array on space station for power system upgrade Texas News Daily Martin Ricker 3 June 2021 The SpaceX Falcon 9 rocket departed after the International Space Station, which thundered from Florida on Thursday and carried over 7,000 pounds of supplies. Science gear And other hardware includes the first two of six new rollout solar wings to power up your lab. The new array, rolled up like a 10-foot-wide carpet, is angled to the lab’s existing solar wings and accumulates in the carbon composite unwinding after the latch is released. It expands automatically using the “strain energy” that has been created. Boom on both sides. “They don’t want to be rolled up. They want to roll out,” said Andrew Rush, president and chief operating officer of Redwire, the parent company that supplied Boeing with the new array under contract. “We only release the restraint mechanisms, they are deployed via their own strain energy …. reduce complexity.” The new array reinforces the eight large wings that are part of the station’s original equipment and compensates for aging. When all six new arrays are installed with a $ 103 million upgrade, the overall power generation will increase by 20-30%, which is about the same as the output when the new array was introduced. -
Small Satellite Launchers
SMALL SATELLITE LAUNCHERS NewSpace Index 2020/04/20 Current status and time from development start to the first successful or planned orbital launch NEWSPACE.IM Northrop Grumman Pegasus 1990 Scorpius Space Launch Demi-Sprite ? Makeyev OKB Shtil 1998 Interorbital Systems NEPTUNE N1 ? SpaceX Falcon 1e 2008 Interstellar Technologies Zero 2021 MT Aerospace MTA, WARR, Daneo ? Rocket Lab Electron 2017 Nammo North Star 2020 CTA VLM 2020 Acrux Montenegro ? Frontier Astronautics ? ? Earth to Sky ? 2021 Zero 2 Infinity Bloostar ? CASIC / ExPace Kuaizhou-1A (Fei Tian 1) 2017 SpaceLS Prometheus-1 ? MISHAAL Aerospace M-OV ? CONAE Tronador II 2020 TLON Space Aventura I ? Rocketcrafters Intrepid-1 2020 ARCA Space Haas 2CA ? Aerojet Rocketdyne SPARK / Super Strypi 2015 Generation Orbit GoLauncher 2 ? PLD Space Miura 5 (Arion 2) 2021 Swiss Space Systems SOAR 2018 Heliaq ALV-2 ? Gilmour Space Eris-S 2021 Roketsan UFS 2023 Independence-X DNLV 2021 Beyond Earth ? ? Bagaveev Corporation Bagaveev ? Open Space Orbital Neutrino I ? LIA Aerospace Procyon 2026 JAXA SS-520-4 2017 Swedish Space Corporation Rainbow 2021 SpinLaunch ? 2022 Pipeline2Space ? ? Perigee Blue Whale 2020 Link Space New Line 1 2021 Lin Industrial Taymyr-1A ? Leaf Space Primo ? Firefly 2020 Exos Aerospace Jaguar ? Cubecab Cab-3A 2022 Celestia Aerospace Space Arrow CM ? bluShift Aerospace Red Dwarf 2022 Black Arrow Black Arrow 2 ? Tranquility Aerospace Devon Two ? Masterra Space MINSAT-2000 2021 LEO Launcher & Logistics ? ? ISRO SSLV (PSLV Light) 2020 Wagner Industries Konshu ? VSAT ? ? VALT -
Los Motores Aeroespaciales, A-Z
Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 < aeroteca.com > Depósito Legal B 9066-2016 Título: Los Motores Aeroespaciales A-Z. © Parte/Vers: 1/12 Página: 1 Autor: Ricardo Miguel Vidal Edición 2018-V12 = Rev. 01 Los Motores Aeroespaciales, A-Z (The Aerospace En- gines, A-Z) Versión 12 2018 por Ricardo Miguel Vidal * * * -MOTOR: Máquina que transforma en movimiento la energía que recibe. (sea química, eléctrica, vapor...) Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 Este facsímil es < aeroteca.com > Depósito Legal B 9066-2016 ORIGINAL si la Título: Los Motores Aeroespaciales A-Z. © página anterior tiene Parte/Vers: 1/12 Página: 2 el sello con tinta Autor: Ricardo Miguel Vidal VERDE Edición: 2018-V12 = Rev. 01 Presentación de la edición 2018-V12 (Incluye todas las anteriores versiones y sus Apéndices) La edición 2003 era una publicación en partes que se archiva en Binders por el propio lector (2,3,4 anillas, etc), anchos o estrechos y del color que desease durante el acopio parcial de la edición. Se entregaba por grupos de hojas impresas a una cara (edición 2003), a incluir en los Binders (archivadores). Cada hoja era sustituíble en el futuro si aparecía una nueva misma hoja ampliada o corregida. Este sistema de anillas admitia nuevas páginas con información adicional. Una hoja con adhesivos para portada y lomo identifi caba cada volumen provisional. Las tapas defi nitivas fueron metálicas, y se entregaraban con el 4 º volumen. O con la publicación completa desde el año 2005 en adelante. -Las Publicaciones -parcial y completa- están protegidas legalmente y mediante un sello de tinta especial color VERDE se identifi can los originales. -
Spacewatchafrica October 2020 Edition
Satellite communications in disaster management VVVolVolVolVol o6 o6 66l l. .No. NoNo. No78 N N 55 oo5.. 10 October 2018 2020 AFRICA Nigeria AFRICA REPORT MIDDLE EAST SPACE RACE How GPS is driving SPECIALautomation REPORT in transport industry C O N T E N T S Vol. 8 No. 10 UAE participates in WSIS Forum 2020 DLR institute of space systems Editor in-chief Aliyu Bello UAE deploys another home-grown satellite Executive Manager Tonia Gerrald Jubilations as Nigeria ignites Africa's first satellite-based SA to the editor in-Chief Ngozi Okey augmentation service Head, Application Services M. Yakubu Gilat reports Q2 2020 results Editorial/ICT Services John Daniel Connectivity demand soars as leisure vessels become Usman Bello safer places to work and rest, reports IEC Telecom Alozie Nwankwo Arabsat partners Airbus as Saudi Arabia Juliet Nnamdi expands fleet of satellites Client Relations Sunday Tache Russia to launch Angosat-2 telecoms satellite Lookman Bello for Angola in March 2022 Safiya Thani When staying connected matters most, supportingPublic Marketing Offy Pat Health needs around the world Tunde Nathaniel How 21st century GIS technologies are supporting Wasiu Olatunde the global fight against outbreaks and epidemics Media Relations Favour Madu Khadijat Yakubu Irdeto offers enhanced security services Zacheous Felicia to Forthnet Finance Folarin Tunde Rack Centre plans $100m expansion to create West Africa's largest data centre PayTV operator challenges exclusive agreements in pay-tv industry Space Watch Magazine is a publication of Satellite communications in disaster management Communication Science, Inc. All correspondence should be addressed to editor, space Watch Magazine. How GPS is driving automation in transport industry Abuja office: Plot 2009, Awka Street, UTC Building, GF 11, Area 10, Garki, Abuja, Nigeria Tel: 234 80336471114, 07084706167, email: [email protected] LEGAL CONSULTANTS Idowu Oriola & Co. -
→ Esrin's Value to Italy
→ ESRIN’S VALUE TO ITALY Authored by: Gustavo Piga, Simone Borra, Alessandro Locatelli and Andrea Salustri Department of Economics and Finance University of Rome Tor Vergata Designed & edited by: ESA – EOGB (Earth Observation Graphic Bureau) Copyright: © 2018 European Space Agency content Executive Summary 04 1. A historical overview of ESRIN 06 The foundation of ESRIN (1964 – 1974) 06 The first steps of ESRIN within the European Space Agency (1975 – 1985) 06 The development of ESRIN and the consolidation of its role (1986 – 1995) 06 ESA corporate functions, EO international cooperation and new programmes (1996 – 2005) 07 ESRIN’s recent history (2006 – present) 08 2. ESRIN’s programme and activities 16 An in-depth analysis of Earth Observation at ESRIN 16 An in-depth analysis of the VEGA Programme 28 3. ESRIN’s economic benefits to Italy 35 The economic and strategic value of ESRIN to Italy 35 The direct, indirect and induced economic impact of ESRIN to Italy 52 The relational and scientific value of ESRIN to Italy 59 Selected literature 75 ESRIN’S VALUE TO ITALY 3 1) ESRIN, ESA Centre for Earth Observation European Defence Agency (EDA) and the European Global Navigation Satellite Systems Agency (GSA). ESRIN, located in Frascati, Italy, is the ESA Centre for Earth Observation and the reference centre for other space-related ESRIN site is managed using environmentally friendly innovation activities (VEGA, the European Small Launcher Programme, technologies (e.g. water consumption, earthquakes regulations Space Rider, the Near Earth Objects Coordination Centre) as well and renewable energy). The new ESRIN Host Agreement was as corporate functions (Information Technology, Communication signed in 2010, and its implementation, still ongoing, offers a and Security).