Launch Capability for Lunar Exploration and Transformative Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Preparation of Papers for AIAA Journals
ASCEND 10.2514/6.2020-4000 November 16-18, 2020, Virtual Event ASCEND 2020 Cryogenic Fluid Management Technologies Enabling for the Artemis Program and Beyond Hans C. Hansen* and Wesley L. Johnson† NASA Glenn Research Center, Cleveland, Ohio, 44135, USA Michael L. Meyer‡ NASA Engineering Safety Center, Cleveland, Ohio, 44135, USA Arthur H. Werkheiser§ and Jonathan R. Stephens¶ NASA Marshall Space Flight Center, Huntsville, Alabama, 35808, USA NASA is endeavoring on an ambitious return to the Moon and eventually on to Mars through the Artemis Program leveraging innovative technologies to establish sustainable exploration architectures collaborating with US commercial and international partners [1]. Future NASA architectures have baselined cryogenic propulsion systems to support lunar missions and ultimately future missions to Mars. NASA has been investing in maturing CFM active and passive storage, transfer, and gauging technologies over the last decade plus primarily focused on ground development with a few small- scale microgravity fluid experiments. Recently, NASA created a Cryogenic Fluid Management (CFM) Technology Roadmap identifying the critical gaps requiring further development to reach a technology readiness level (TRL) of 6 prior to infusion to flight applications. To address the technology gaps the Space Technology Mission Directorate (STMD) strategically plans to invest in a diversified CFM portfolio approach through ground and flight demonstrations, collaborating with international partners, and leveraging Public Private Partnerships (PPPs) opportunities with US industry through Downloaded by Michele Dominiak on December 23, 2020 | http://arc.aiaa.org DOI: 10.2514/6.2020-4000 the Tipping Point and Announcement of Collaborative Opportunities (ACO) solicitations. Once proven, these system capabilities will enable the high performing cryogenic propellant systems needed for the Artemis Program and beyond. -
Why NASA's Planet-Hunting Astrophysics Telescope Is an Easy Budget Target, and What Defeat Would Mean PAGE 24
Q & A 12 ASTRONAUT’S VIEW 20 SPACE LAUNCH 34 Neil deGrasse Tyson A realistic moon plan SLS versus commercial SPECIAL REPORT SPACE DARK ENERGY DILEMMA Why NASA’s planet-hunting astrophysics telescope is an easy budget target, and what defeat would mean PAGE 24 APRIL 2018 | A publication of the American Institute of Aeronautics andd Astronautics | aeroaerospaceamerica.aiaa.orgerospaceamerica.aiaa.org 9–11 JULY 2018 CINCINNATI, OH ANNOUNCING EXPANDED TECHNICAL CONTENT FOR 2018! You already know about our extensive technical paper presentations, but did you know that we are now offering an expanded educational program as part of the AIAA Propulsion and Energy Forum and Exposition? In addition to our pre-forum short courses and workshops, we’ve enhanced the technical panels and added focused technical tutorials, high level discussion groups, exciting keynotes and more. LEARN MORE AND REGISTER TODAY! For complete program details please visit: propulsionenergy.aiaa.org FEATURES | April 2018 MORE AT aerospaceamerica.aiaa.org 20 34 40 24 Returning to Launching the Laying down the What next the moon Europa Clipper rules for space Senior research scientist NASA, Congress and We asked experts in for WFIRST? and former astronaut the White House are space policy to comment Tom Jones writes about debating which rocket on proposed United NASA’s three upcoming space what it would take to should send the probe Nations guidelines deliver the funds and into orbit close to this for countries and telescopes are meant to piece together political support for the Jovian moon. companies sending some heady puzzles, but the White Lunar Orbital Outpost- satellites and other craft House’s 2019 budget proposal would Gateway. -
Orbital Fueling Architectures Leveraging Commercial Launch Vehicles for More Affordable Human Exploration
ORBITAL FUELING ARCHITECTURES LEVERAGING COMMERCIAL LAUNCH VEHICLES FOR MORE AFFORDABLE HUMAN EXPLORATION by DANIEL J TIFFIN Submitted in partial fulfillment of the requirements for the degree of: Master of Science Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January, 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of DANIEL JOSEPH TIFFIN Candidate for the degree of Master of Science*. Committee Chair Paul Barnhart, PhD Committee Member Sunniva Collins, PhD Committee Member Yasuhiro Kamotani, PhD Date of Defense 21 November, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Tables................................................................................................................... 5 List of Figures ................................................................................................................. 6 List of Abbreviations ....................................................................................................... 8 1. Introduction and Background.................................................................................. 14 1.1 Human Exploration Campaigns ....................................................................... 21 1.1.1. Previous Mars Architectures ..................................................................... 21 1.1.2. Latest Mars Architecture ......................................................................... -
Interstellar Probe on Space Launch System (Sls)
INTERSTELLAR PROBE ON SPACE LAUNCH SYSTEM (SLS) David Alan Smith SLS Spacecraft/Payload Integration & Evolution (SPIE) NASA-MSFC December 13, 2019 0497 SLS EVOLVABILITY FOUNDATION FOR A GENERATION OF DEEP SPACE EXPLORATION 322 ft. Up to 313ft. 365 ft. 325 ft. 365 ft. 355 ft. Universal Universal Launch Abort System Stage Adapter 5m Class Stage Adapter Orion 8.4m Fairing 8.4m Fairing Fairing Long (Up to 90’) (up to 63’) Short (Up to 63’) Interim Cryogenic Exploration Exploration Exploration Propulsion Stage Upper Stage Upper Stage Upper Stage Launch Vehicle Interstage Interstage Interstage Stage Adapter Core Stage Core Stage Core Stage Solid Solid Evolved Rocket Rocket Boosters Boosters Boosters RS-25 RS-25 Engines Engines SLS Block 1 SLS Block 1 Cargo SLS Block 1B Crew SLS Block 1B Cargo SLS Block 2 Crew SLS Block 2 Cargo > 26 t (57k lbs) > 26 t (57k lbs) 38–41 t (84k-90k lbs) 41-44 t (90k–97k lbs) > 45 t (99k lbs) > 45 t (99k lbs) Payload to TLI/Moon Launch in the late 2020s and early 2030s 0497 IS THIS ROCKET REAL? 0497 SLS BLOCK 1 CONFIGURATION Launch Abort System (LAS) Utah, Alabama, Florida Orion Stage Adapter, California, Alabama Orion Multi-Purpose Crew Vehicle RL10 Engine Lockheed Martin, 5 Segment Solid Rocket Aerojet Rocketdyne, Louisiana, KSC Florida Booster (2) Interim Cryogenic Northrop Grumman, Propulsion Stage (ICPS) Utah, KSC Boeing/United Launch Alliance, California, Alabama Launch Vehicle Stage Adapter Teledyne Brown Engineering, California, Alabama Core Stage & Avionics Boeing Louisiana, Alabama RS-25 Engine (4) -
Jacques Tiziou Space Collection
Jacques Tiziou Space Collection Isaac Middleton and Melissa A. N. Keiser 2019 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 1 Scope and Contents........................................................................................................ 2 Arrangement..................................................................................................................... 2 Names and Subjects ...................................................................................................... 2 Container Listing ............................................................................................................. 4 Series : Files, (bulk 1960-2011)............................................................................... 4 Series : Photography, (bulk 1960-2011)................................................................. 25 Jacques Tiziou Space Collection NASM.2018.0078 Collection Overview Repository: National Air and Space Museum Archives Title: Jacques Tiziou Space Collection Identifier: NASM.2018.0078 Date: (bulk 1960s through -
America's Greatest Projects and Their Engineers - VII
America's Greatest Projects and Their Engineers - VII Course No: B05-005 Credit: 5 PDH Dominic Perrotta, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 076 77 P: (877) 322-5800 [email protected] America’s Greatest Projects & Their Engineers-Vol. VII The Apollo Project-Part 1 Preparing for Space Travel to the Moon Table of Contents I. Tragedy and Death Before the First Apollo Flight A. The Three Lives that Were Lost B. Investigation, Findings & Recommendations II. Beginning of the Man on the Moon Concept A. Plans to Land on the Moon B. Design Considerations and Decisions 1. Rockets – Launch Vehicles 2. Command/Service Module 3. Lunar Module III. NASA’s Objectives A. Unmanned Missions B. Manned Missions IV. Early Missions V. Apollo 7 Ready – First Manned Apollo Mission VI. Apollo 8 - Orbiting the Moon 1 I. Tragedy and Death Before the First Apollo Flight Everything seemed to be going well for the Apollo Project, the third in a series of space projects by the United States intended to place an American astronaut on the Moon before the end of the 1960’s decade. Apollo 1, known at that time as AS (Apollo Saturn)-204 would be the first manned spaceflight of the Apollo program, and would launch a few months after the flight of Gemini 12, which had occurred on 11 November 1966. Although Gemini 12 was a short duration flight, Pilot Buzz Aldrin had performed three extensive EVA’s (Extra Vehicular Activities), proving that Astronauts could work for long periods of time outside the spacecraft. -
Ground Processing and Launch Facilities
Ground Processing and Launch Facilities • Historical examples – Early Launch Facilities – Saturn I – Saturn V – Russian • Modern examples – Shuttle – Delta IV Heavy – DC-XA U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND ENAE 791 - Launch and Entry Vehicle Design1 Cape Canaveral circa 1950 U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND ENAE 791 - Launch and Entry Vehicle Design2 Map of Cape Canaveral U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND ENAE 791 - Launch and Entry Vehicle Design3 “ICBM Row” U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND ENAE 791 - Launch and Entry Vehicle Design4 LC-5 – Mercury-Redstone U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND 5 ENAE 791 - Launch and Entry Vehicle Design LC-5 Emergency Crew Escape System U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND 6 ENAE 791 - Launch and Entry Vehicle Design Atlas Support Gantry U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND 7 ENAE 791 - Launch and Entry Vehicle Design LC-14 – Mercury-Atlas U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND 8 ENAE 791 - Launch and Entry Vehicle Design Titan II Access Tower Operation U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND 9 ENAE 791 - Launch and Entry Vehicle Design LC-34 Schematic U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND ENAE 791 - Launch and Entry Vehicle Design10 Saturn -
Can the Saturn V Be Flown on a Cluster of Five F10 Motors?
In This Issue Flying the Apogee Saturn V Kit on High- Power Motors Also In This Issue Can the Saturn V Be Flown on a Cluster of Five F10 Motors? Cover Photo: The Apogee Saturn V kit fl own on a G80 Rocket Engine. Get your own kit at: http://www.apogeerockets.com/Saturn5.asp Apogee Components, Inc. — Your Source For Rocket Supplies That Will Take You To The “Peak-of-Flight” 3355 Fillmore Ridge Heights Colorado Springs, Colorado 80907-9024 USA www.ApogeeRockets.com e-mail: [email protected] ISSUE 284 APRIL 12, 2011 Flying The Apogee Saturn V Kit On High Power Motors. By Tim Doll At NARAM 52, Tim Van Milligan mentioned that he is the start as a ‘mid power’ rocket – intended to fly with a often questioned regarding flying the Apogee Saturn V with motor using less than 62.5 grams of propellant with a liftoff high power motors (basically, any motor H or larger). Hav- weight of less than 1500 grams (~3.3 lbs). While a con- ing flown my Apogee Saturn V numerous times ‘high power’ scious decision to keep from limiting the potential market to – literally to failure - I thought I’d relate my experiences, those with a high power certification, making a large Saturn along with the relative strengths and weaknesses of the V ‘mid power’ necessitated certain design compromises Apogee Saturn V when subjected to the extremes of high to keep the rocket weight within the mid power thrust and power flight. weight constraints. In essence, it constrained the motor mount to 29mm and limited the weight and hence strength The Apogee Saturn V was designed pretty much from of the rocket. -
N AS a Facts
National Aeronautics and Space Administration NASA’s Launch Services Program he Launch Services Program (LSP) manufacturing, launch operations and rockets for launching Earth-orbit and Twas established at Kennedy Space countdown management, and providing interplanetary missions. Center for NASA’s acquisition and added quality and mission assurance in In September 2010, NASA’s Launch program management of expendable lieu of the requirement for the launch Services (NLS) contract was extended launch vehicle (ELV) missions. A skillful service provider to obtain a commercial by the agency for 10 years, through NASA/contractor team is in place to launch license. 2020, with the award of four indefinite meet the mission of the Launch Ser- Primary launch sites are Cape Canav- delivery/indefinite quantity contracts. The vices Program, which exists to provide eral Air Force Station (CCAFS) in Florida, expendable launch vehicles that NASA leadership, expertise and cost-effective and Vandenberg Air Force Base (VAFB) has available for its science, Earth-orbit services in the commercial arena to in California. and interplanetary missions are United satisfy agencywide space transporta- Other launch locations are NASA’s Launch Alliance’s (ULA) Atlas V and tion requirements and maximize the Wallops Flight Facility in Virginia, the Delta II, Space X’s Falcon 1 and 9, opportunity for mission success. Kwajalein Atoll in the South Pacific’s Orbital Sciences Corp.’s Pegasus and facts The principal objectives of the LSP Republic of the Marshall Islands, and Taurus XL, and Lockheed Martin Space are to provide safe, reliable, cost-effec- Kodiak Island in Alaska. Systems Co.’s Athena I and II. -
Results of the Tenth Saturn I Launch Vehicle Test Flight SA-10, MPR-SAT-FE-66-11, July 14, 1966
HUNTSVILLE ALABAMA U N MPR-SAT-FE-66-i t J (Supersedes MPR-SAT-65-14) July 14, 1966 X69-75421 (ACCE$$}0_IN_) ./BER) " (THRU) _; <k/ ,ooo_, o (NASA'CR OR T__) (CATEGORYI _. AVAILABLE TO U.S. GOVERNMENT AGENCIES AND CONTRACTORS ONLY RESULTSOFTHETENTHSATURN, LAUNCHVEHICLE [u] .C,_BsTfIc_o _ c_a_ _£Sk "+ , / +. _ ,+1 -: • 1_ ,t:_ 'v- Sc_e_t;*; SATURN FLIGHT EVALUATION WORKING GROUP GROUP-4 _/ Down_r_W_L3y_rvats; Declasf_ars. %, L " \ ',., ". MSFC - Fo_m 774 (Rev Ma_ 1_66) C • _, SECURITY NOTE This document contains irrformation affecting the national defense of the United States within the meaning of the Espionage Law, Title 18, U.S.C. , Sec- tions 793 and 794 as amended. The revelation ol its contents in any manner to an unauthorized person is prohibited by law. MPR-SAT-FE-66-11 RESULTS OF TIIE TENTH SATURN I LAUNCII VEIIICLE TEST FLIGHT SA-IO By Saturn Flight Evaluation Working Group George C. Marshall Space Flight Center AI3STIIA CT This report presents the results of the early engi- neering evaluation of the SA-10 test flight. Sixth of the Block II series, SA-i0 was the fifth Saturn vehicle to car W an Apollo boilerplate (BP-9) payload and the third in a series to carry a Pegasus payload (Pegasus C). The performance of each major vehicle system is discussed with special emphasis on malfunctions and deviations. This test flightof SA-10 was the tenth consecutive success for the Saturn I vehicles and marks the end el the Saturn I program This was the third flight test of the Pegasus meteoroid technology satellite, the third flight test to utilize the iterative guidance mode, the fourth flight test utilizing the ST-f24 guidance system forboth stages, andthe fifth flight test to dem- onstrate the closed loop performance of the path guidance during S-IV burn. -
Lunar Extraction for Extra-Terrestrial Prospecting CALTECH SPACE
LEEP Lunar Extraction for Extra-terrestrial Prospecting CALTECH SPACE CHALLENGE - 2017 LEEP CALTECH | GALCIT | JPL | AIRBUS LEEP The Caltech Space Challenge The Caltech Space Challenge is a 5-day international student space mission design competition. The Caltech Space Challenge was started in 2011 by Caltech graduate students Prakhar Mehrotra and Jonathan Mihaly, hosted by the Keck Institute for Space Studies (KISS) and the Graduate Aerospace Laboratories of Caltech (GALCIT). Participants of the 2011 challenge designed a crewed mission to a Near- Earth Object (NEO). The second edition of the Caltech Space Challenge, held in 2013, dealt with developing a crewed mission to a Martian moon. In 2015, the third Caltech Space Challenge was held, during which participants were challenged to design a mission that would land humans on an asteroid brought into Lunar orbit, extract the asteroid’s resources and demonstrate their use. For the Caltech Space Challenge, 32 participants are selected from a large pool of applicants and invited to Caltech during Caltech’s Spring break. They are divided into two teams of 16 and given the mission statement during the first day of the competition. They have 5 days to design the best mission plan, which they present on the final day to a jury of industry experts. Jurors then select the winning team. Lectures from engineers and scientists from prestigious space companies and agencies (Airbus, SpaceX, JPL, NASA, etc.) are given to the students to help them solve the different issues of the proposed mission. This confluence of people and resources is a unique opportunity for young and enthusiastic students to work with experienced professionals in academia, industry, and national laboratories. -
NASA's Space Launch System: Deep-Space Delivery for Smallsats
SSC17-IV-02 NASA’s Space Launch System: Deep-Space Delivery for Smallsats Dr. Kimberly F. Robinson, George Norris NASA Space Launch System Program NASA Marshall Space Flight Center XP50, Huntsville, AL; 1.256.544.5182 [email protected] ABSTRACT Designed for human exploration missions into deep space, NASA’s Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). Planning is underway for smallsat accommodations on future configurations of the vehicle, which will present additional opportunities. This paper will include an overview of the SLS vehicle and its capabilities, including the current status of the rocket’s progress toward its first launch. It will also explain the current and future opportunities the vehicle offers for small satellites, including an overview of the CubeSat manifest for Exploration Mission-1 and a discussion of future capabilities. INTRODUCTION Designed to deliver the capabilities needed to enable human exploration of deep space, NASA’s new Space Launch System rocket is making progress toward its first launch. NASA is making investments to expand the science and exploration capability of the SLS by leveraging excess performance to deploy small satellites.