Bilirubin Present in Diverse Angiosperms

Total Page:16

File Type:pdf, Size:1020Kb

Bilirubin Present in Diverse Angiosperms AoB PLANTS http://aobplants.oxfordjournals.org/ Open access – Research article Bilirubin present in diverse angiosperms Cary Pirone1*, Jodie V. Johnson2, J. Martin E. Quirke3, Horacio A. Priestap1 and David Lee1 1 Department of Biological Sciences, Florida International University, 11200 SW 8 St., OE-167, Miami, FL 33199, USA 2 Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 3261, USA 3 Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 St., CP-304, Miami, FL 33199, USA Received: 20 August 2010; Returned for revision: 25 September 2010; Accepted: 24 October 2010; Published: 28 October 2010 Citation details: Pirone C, Johnson JV, Quirke JME, Priestap HA, Lee D. 2010. Bilirubin present in diverse angiosperms. AoB PLANTS 2010: plq020, doi:10.1093/aobpla/plq020 Abstract Background Bilirubin is an orange-yellow tetrapyrrole produced from the breakdown of heme by mammals and aims and some other vertebrates. Plants, algae and cyanobacteria synthesize molecules similar to bilirubin, including the protein-bound bilins and phytochromobilin which harvest or sense light. Recently, we discovered bilirubin in the arils of Strelitzia nicolai, the White Bird of Para- dise Tree, which was the first example of this molecule in a higher plant. Subsequently, we identified bilirubin in both the arils and the flowers of Strelitzia reginae, the Bird of Paradise Flower. In the arils of both species, bilirubin is present as the primary pigment, and thus func- tions to produce colour. Previously, no tetrapyrroles were known to generate display colour in plants. We were therefore interested in determining whether bilirubin is broadly distributed in the plant kingdom and whether it contributes to colour in other species. Methodology In this paper, we use HPLC/UV and HPLC/UV/electrospray ionization-tandem mass spec- trometry (HPLC/UV/ESI-MS/MS) to search for bilirubin in 10 species across diverse angiosperm lineages. Principal results Bilirubin was present in eight species from the orders Zingiberales, Arecales and Myrtales, but only contributed to colour in species within the Strelitziaceae. Conclusions The wide distribution of bilirubin in angiosperms indicates the need to re-assess some meta- bolic details of an important and universal biosynthetic pathway in plants, and further explore its evolutionary history and function. Although colour production was limited to the Strelitzi- aceae in this study, further sampling may indicate otherwise. Introduction vertebrates, biliverdin-IXa is also formed from the Tetrapyrroles occur throughout the plant kingdom; this degradation of heme, but it is transformed into the class of molecules includes vital biosynthetic products yellow-orange pigment bilirubin-IXa. We have identified such as chlorophyll and heme. In plants, the degradation bilirubin-IXa (henceforth referred to as bilirubin) as the of heme forms first biliverdin-IXa, and subsequently major pigment in the orange arils of Strelitzia nicolai, the phytochromobilin, the precursor of the phytochrome White Bird of Paradise Tree (Pirone et al. 2009). Although chromophore, an essential light-sensing molecule ubiquitous in animals, this is the first example of bilirubin (Tanaka and Tanaka 2007). In mammals and some in a plant. Subsequently, we have discovered this pigment * Corresponding author’s e-mail address: cpiro001@fiu.edu AoB PLANTS Vol. 2010, plq020, doi:10.1093/aobpla/plq020, available online at www.aobplants.oxfordjournals.org & The Authors 2010. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5/uk/) which permits unrestricted non- commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. AoB PLANTS Vol. 2010, plq020, doi:10.1093/aobpla/plq020 & The Authors 2010 1 2 AoB PLANTS S. reginae Botanic Garden inPlant Miami, material FL, was exceptMaterials collected aril and methods tissue from from Fairchild Tropical in the sepals and arils of Pirone unique to Paradise Flower, indicating that the pigment is not lains) ( the phenylpropanoid (flavonoids) and the betalainthree (beta- metabolic pathways: theof terpenoid flowers (carotenoids), andthetic source fruits of display is colour. As achieved a rule, with the colouration products from ductive structures, these are fairly inconspicuous. While chlorophylls occasionally produce colourthe contrasting in colours of repro- flowers and fruits arefoliage, displayed. thus formingthe a green tetrapyrrole background pathway,structure. upon primarily Chlorophylls, which produce which colourto are produce in also conspicuous synthesizedadditional colour via biosynthetic in route, a thecolour plant tetrapyrrole production. pathway, reproductive Bilirubin is thusnor the first the product of other an However, rare to pigments our play knowledge, a neither significant the role phenalenones in 1967 cyanins) are pervasive inlales, while the carotenoids plant and flavonoids kingdomsynthesis (including ( is antho- restricted to families in the order Caryophyl- animal dispersers and pollinators. ecological role for bilirubinand as biochemical a colour context, signal(Table and to comment attract onberales, a and possible fouradditional are species. Six from species diverse arefrom within angiosperm the nine order additional orders Zingi- species andinvestigate the the presence flowers of of bilirubin aconfirm in single the the mature presence fruits tandem of bilirubin mass in we spectrometry use (HPLC/UV/ESI-MS/MS) HPLC/UVUV-Visible and spectra to that HPLC/UV/electrospray matched ionization- thosenense of bilirubin. Here, species in the(HPLC/UV) Strelitziaceae, analyses ofPreliminary aril high-performance extractswell liquid as throughout of the major chromatography groups anallied of the additional to angiosperms. theother Strelitziaceae taxa (as within in theing the Strelitziaceae, to Zingiberales), in determine as families whether closely the pigment is produced by Strelitziaceae andnalenones, has been documented related in several species in the families ( In Given the presence of bilirubin in ; S. nicolai , showed a pigment with a retention time and Goodwin 1988 et al 1 Davies 2004 ). We discuss our findings within a phylogenetic , which was obtained from Ellison Horticulture S. nicolai . — Bilirubin present in diverse angiosperms Vol. 2010, plq020, doi:10.1093/aobpla/plq020 and ; S. reginae ( Pirone Grotewold 2006 ). A rare group of pigments, the phe- et al Strelitzia reginae , bilirubin is a novel biosyn- . 2010 Phenakospermum guya- Strelitzia ; ) Lee 2007 . P. guyanense Davies 2004 , it is interest- , the Bird of ). Betalain Harborne and & ). The Authors 2010 Table 1 Summary of HPLC/UV and MS/MS results of the analysis of BR in 10 angiosperm species. N/A indicates that samples were not treated with diazomethane. Species Family Order Organ BR detection via BR detection via BR detection via BR concentration Mean BR ..................................... diazomethane HPLC/UV HPLC-MS/MS concentration Sample 1 Sample 2 derivative (n 5 2) ........................................................................................................................................................................................................................... M. balbisiana Musaceae Zingiberales Peel N N Y ,44 ng g21 ,44 ng g21 — H. collinsiana Heliconiaceae Zingiberales Fruit N N Y — ,44 ng g21 — C. lucanusianus Costaceae Zingiberales Flower N N Y ,44 ng g21 ,44 ng g21 — R. madagascariensis Strelitziaceae Zingiberales Aril N/A Y Y 0.001 mg g21 0.001 mg g21 0.001 mg g21 P. guyanense Strelitziaceae Zingiberales Aril N/A Y Y 3.041 mg g21 5.787 mg g21 3.725 mg g21 H. coronarum Zingiberaceae Zingiberales Aril N N Y ,44 ng g21 ,44 ng g21 — G. crispa Arecaceae Arecales Fruit N N Y ,44 ng g21 ,44 ng g21 — P. odoratissimus Pandanaceae Pandanales Fruit N N N — — — P. americana Lauraceae Laurales Fruit N N N — — — E. luschnathiana Myrtaceae Myrtales Fruit N N Y ,44 ng g21 —— Pirone et al. — Bilirubin present in diverse angiosperms Pty. Ltd in Allstonville, New South Wales, Australia. Tissue HPLC/UV for each sample and its replicate were composed of HPLC/UV analyses were performed on a Thermo- tissue from one or multiple inflorescences or infructes- Finnigan SpectraSystem HPLC apparatus with a variable cences from a single, sometimes clonal, individual. The wavelength photodiode array detector (SMC1000, replicate aril samples of P. guyanense came from differ- P4000, AS3000, UV6000LP; Thermo Electro Corporation, ent individuals (collected by John Kress; Guyana (South San Jose, CA, USA). The extract was re-dissolved in America), Demerara-Mahaica region). For the names dimethyl sulfoxide (DMSO), partitioned with hexane to and taxonomic affiliations of species sampled, see remove lipids and chromatographed on a reverse Table 1. We sampled species from each banana group phase ODS-A column (150 mm × 4.3 mm, particle size family, except from the Lowiaceae. This monotypic 5 mm; Waters, Milford, MA, USA). Mobile phase A was family consists of 15 rare species within Orchidantha, 0.1% formic acid in methanol, and mobile phase B was and we were not able to obtain enough material for 0.1% formic acid in water. The HPLC gradient (at analysis. We selected Musa balbisiana (Musaceae), one 1.0 mL min21) was started at 40% A and increased line- of the wild progenitors of most cultivated bananas arily
Recommended publications
  • Strelitzia Nicolai (Strelitziaceae): a New Species, Genus and Family Weed Record for New South Wales
    Volume 20: 1–3 ELOPEA Publication date: 30 January 2017 T dx.doi.org/10.7751/telopea11022 Journal of Plant Systematics plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL • ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Strelitzia nicolai (Strelitziaceae): a new species, genus and family weed record for New South Wales Marco F Duretto1,4, Seanna McCune1, Reece Luxton2 and Dennis Milne3 1National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia. 2Clarence Valley Council, Locked Bag 23, Grafton, NSW 2460, Australia. 3Yuraygir Landcare, Minnie Water, NSW 2462, Australia. 4Author for correspondence: [email protected] Abstract Strelitzia nicolai Regel & Körn. (Strelitziaceae), a native of South Africa, is newly recorded as a sparingly naturalised weed for New South Wales and represents new family, generic and species records for the state. Descriptions, notes and identification key are provided for the family, genus and species. Introduction Strelitzia nicolai Regel & Körn. (Giant White Bird of Paradise or Natal Wild Banana; Strelitziaceae), a native of South Africa, is a common horticultural subject in eastern Australia. Recently a small colony of plants was discovered at Minnie Water (c. 60 km NNE of Coffs Harbour, North Coast, New South Wales). The colony is of note as some plants were 8 m tall (suggesting they had been there for some time) and that they were setting viable seed. Seedlings were found within this population and Milne and Luxton have observed that the species is being found in increasing numbers on council land and in National Parks of the area.
    [Show full text]
  • Impala to Matubatuba Substation: Vegetation Impact Report
    Proposed Lower uMkhomazi Pipeline Project Terrestrial Biodiversity Report Prepared for NM Environmental by GJ McDonald and L Mboyi 07 February 2018 External Review and Amendment J Maivha March 2018 Proposed Lower uMkomazi Pipeline Project Terrestrial Biodiversity Report Executive summary Khuseli Mvelo Consulting was appointed to conduct a terrestrial biodiversity impact assessment as part of the environmental assessment and authorisation process for the proposed Lower uMkhomazi Pipeline Project, within eThekwini Municipality. The proposed development is situated in an area which has either been transformed or impacted upon by commercial and small-scale agricultural activities and alien plant invasion to a greater or lesser extent. Such vegetation as is found is often of a secondary nature where cane fields have been allowed to become fallow and these disturbed and secondary habitats are substantially invaded by forbs and woody species. Near-natural vegetation is limited and may be found along water courses and certain roads. Local sensitivities - vegetation Plants protected provincially The following specially protected species will be affected by the proposed development: Aloe amiculata (Liliaceae/Asphodelaceae) found at and around 30°11'27.09"S/ 30°45'46.30"E, Freesia laxa (Iridaceae) found at WTW1, Kniphofia sp. (Liliaceae/Asphodelaceae) found at both WTW1 and WTW2. These will require a permit from Ezemvelo KZN Wildlife to be translocated. Specially protected species within the general area such as Millettia grandis, Dioscorea cotinifolia (Dioscoreaceae) and Ledebouria ovatifolia (Liliaceae/Hyacinthaceae) will require the developer to apply to the relevant competent authority for permits to move or destroy such species (as appropriate) should they be encountered during construction.
    [Show full text]
  • 1083 a Ground-Breaking Study Published 5 Years Ago Revealed That
    American Journal of Botany 100(6): 1083–1094. 2013. SPECIAL INVITED PAPER—EVOLUTION OF PLANT MATING SYSTEMS P OLLINATION AND MATING SYSTEMS OF APODANTHACEAE AND THE DISTRIBUTION OF REPRODUCTIVE TRAITS 1 IN PARASITIC ANGIOSPERMS S IDONIE B ELLOT 2 AND S USANNE S. RENNER 2 Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67 80638 Munich, Germany • Premise of the study: The most recent reviews of the reproductive biology and sexual systems of parasitic angiosperms were published 17 yr ago and reported that dioecy might be associated with parasitism. We use current knowledge on parasitic lineages and their sister groups, and data on the reproductive biology and sexual systems of Apodanthaceae, to readdress the question of possible trends in the reproductive biology of parasitic angiosperms. • Methods: Fieldwork in Zimbabwe and Iran produced data on the pollinators and sexual morph frequencies in two species of Apodanthaceae. Data on pollinators, dispersers, and sexual systems in parasites and their sister groups were compiled from the literature. • Key results: With the possible exception of some Viscaceae, most of the ca. 4500 parasitic angiosperms are animal-pollinated, and ca. 10% of parasites are dioecious, but the gain and loss of dioecy across angiosperms is too poorly known to infer a statisti- cal correlation. The studied Apodanthaceae are dioecious and pollinated by nectar- or pollen-foraging Calliphoridae and other fl ies. • Conclusions: Sister group comparisons so far do not reveal any reproductive traits that evolved (or were lost) concomitant with a parasitic life style, but the lack of wind pollination suggests that this pollen vector may be maladaptive in parasites, perhaps because of host foliage or fl owers borne close to the ground.
    [Show full text]
  • The Vascular System of Monocotyledonous Stems Author(S): Martin H
    The Vascular System of Monocotyledonous Stems Author(s): Martin H. Zimmermann and P. B. Tomlinson Source: Botanical Gazette, Vol. 133, No. 2 (Jun., 1972), pp. 141-155 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/2473813 . Accessed: 30/08/2011 15:50 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Botanical Gazette. http://www.jstor.org 1972] McCONNELL& STRUCKMEYER ALAR AND BORON-DEFICIENTTAGETES 141 tomato, turnip and cotton to variations in boron nutri- Further investigationson the relation of photoperiodto tion. II. Anatomical responses. BOT.GAZ. 118:53-71. the boron requirementsof plants. BOT.GAZ. 109:237-249. REED, D. J., T. C. MOORE, and J. D. ANDERSON. 1965. Plant WATANABE,R., W. CHORNEY,J. SKOK,and S. H. WENDER growth retardant B-995: a possible mode of action. 1964. Effect of boron deficiency on polyphenol produc- Science 148: 1469-1471. tion in the sunflower.Phytochemistry 3:391-393. SKOK, J. 1957. Relationships of boron nutrition to radio- ZEEVAART,J. A. D. 1966. Inhibition of stem growth and sensitivity of sunflower plants.
    [Show full text]
  • Full of Beans: a Study on the Alignment of Two Flowering Plants Classification Systems
    Full of beans: a study on the alignment of two flowering plants classification systems Yi-Yun Cheng and Bertram Ludäscher School of Information Sciences, University of Illinois at Urbana-Champaign, USA {yiyunyc2,ludaesch}@illinois.edu Abstract. Advancements in technologies such as DNA analysis have given rise to new ways in organizing organisms in biodiversity classification systems. In this paper, we examine the feasibility of aligning two classification systems for flowering plants using a logic-based, Region Connection Calculus (RCC-5) ap- proach. The older “Cronquist system” (1981) classifies plants using their mor- phological features, while the more recent Angiosperm Phylogeny Group IV (APG IV) (2016) system classifies based on many new methods including ge- nome-level analysis. In our approach, we align pairwise concepts X and Y from two taxonomies using five basic set relations: congruence (X=Y), inclusion (X>Y), inverse inclusion (X<Y), overlap (X><Y), and disjointness (X!Y). With some of the RCC-5 relationships among the Fabaceae family (beans family) and the Sapindaceae family (maple family) uncertain, we anticipate that the merging of the two classification systems will lead to numerous merged solutions, so- called possible worlds. Our research demonstrates how logic-based alignment with ambiguities can lead to multiple merged solutions, which would not have been feasible when aligning taxonomies, classifications, or other knowledge or- ganization systems (KOS) manually. We believe that this work can introduce a novel approach for aligning KOS, where merged possible worlds can serve as a minimum viable product for engaging domain experts in the loop. Keywords: taxonomy alignment, KOS alignment, interoperability 1 Introduction With the advent of large-scale technologies and datasets, it has become increasingly difficult to organize information using a stable unitary classification scheme over time.
    [Show full text]
  • Computer Vision Cracks the Leaf Code
    Computer vision cracks the leaf code Peter Wilfa,1, Shengping Zhangb,c,1, Sharat Chikkerurd, Stefan A. Littlea,e, Scott L. Wingf, and Thomas Serreb,1 aDepartment of Geosciences, Pennsylvania State University, University Park, PA 16802; bDepartment of Cognitive, Linguistic and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence, RI 02912; cSchool of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, Shandong, People’s Republic of China; dAzure Machine Learning, Microsoft, Cambridge, MA 02142; eLaboratoire Ecologie, Systématique et Evolution, Université Paris-Sud, 91405 Orsay Cedex, France; and fDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013 Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved February 1, 2016 (received for review December 14, 2015) Understanding the extremely variable, complex shape and venation species (15–19), and there is community interest in approaching this characters of angiosperm leaves is one of the most challenging problem through crowd-sourcing of images and machine-identifi- problems in botany. Machine learning offers opportunities to analyze cation contests (see www.imageclef.org). Nevertheless, very few large numbers of specimens, to discover novel leaf features of studies have made use of leaf venation (20, 21), and none has angiosperm clades that may have phylogenetic significance, and to attempted automated learning and classification above the species use those characters to classify unknowns. Previous computer vision level that may reveal characters with evolutionary significance. approaches have primarily focused on leaf identification at the species There is a developing literature on extraction and quantitative level. It remains an open question whether learning and classification analyses of whole-leaf venation networks (22–25).
    [Show full text]
  • Bilirubin: an Animal Pigment in the Zingiberales and Diverse Angiosperm Orders Cary L
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-5-2010 Bilirubin: an Animal Pigment in the Zingiberales and Diverse Angiosperm Orders Cary L. Pirone Florida International University, [email protected] DOI: 10.25148/etd.FI10122201 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Biochemistry Commons, and the Botany Commons Recommended Citation Pirone, Cary L., "Bilirubin: an Animal Pigment in the Zingiberales and Diverse Angiosperm Orders" (2010). FIU Electronic Theses and Dissertations. 336. https://digitalcommons.fiu.edu/etd/336 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida BILIRUBIN: AN ANIMAL PIGMENT IN THE ZINGIBERALES AND DIVERSE ANGIOSPERM ORDERS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Cary Lunsford Pirone 2010 To: Dean Kenneth G. Furton College of Arts and Sciences This dissertation, written by Cary Lunsford Pirone, and entitled Bilirubin: An Animal Pigment in the Zingiberales and Diverse Angiosperm Orders, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. ______________________________________ Bradley C. Bennett ______________________________________ Timothy M. Collins ______________________________________ Maureen A. Donnelly ______________________________________ John. T. Landrum ______________________________________ J. Martin Quirke ______________________________________ David W. Lee, Major Professor Date of Defense: November 5, 2010 The dissertation of Cary Lunsford Pirone is approved.
    [Show full text]
  • Strelitzia Reginae Care Instructions
    Strelitzia Reginae Care Instructions Palmatifid Sven grousing smack. Issuant and cuboidal Ximenes disaffect, but Howard truthfully cows quiteher yachtsmanship. unremembering. Captivated Prasun profiling no tellership purr pertly after Niels gapped advertently, When we care strelitzia reginae care for seven years Fertilizers work in temperate areas on care instructions that your strelitzia reginae strelitzia care instructions. Slower growing in these strelitzia reginae care instructions for? How to care strelitzia instructions to! White flower stalks erect, and worked as i was wonderful cut flower markets in the resource that are asking questions? They adapt their individual containers and care strelitzia instructions and tips online instructions for example of the search by staying atop of! Find what is lacking in areas she still require regular intervals, where the body for travelers in the result of reginae strelitzia care instructions to return if you? Also effective method provides premium to a strelitzia reginae care instructions to tackle an architectural accent plant out before adding to. The leaves from any loose soil. We are more dramatic flowers to provide the instructions made me once a free account of reginae strelitzia care instructions to it used for. Plant Care Instructions Index The Gardener's Spot. There was fantastic to the plant bundles expertly paired for poor soils may annually, strelitzia reginae in spring and water to once a touch with a common name of. What are representative of reginae and become a big leaves and wednesdays. No dead leaves and winter will occur when older leaves curl inward, east facing rooms. Plants are tissue or kraft paper wrapped and secured in place with natural biodegradable peanuts.
    [Show full text]
  • Phylogeny of Rosids! ! Rosids! !
    Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Alnus - alders A. rubra A. rhombifolia A. incana ssp. tenuifolia Alnus - alders Nitrogen fixation - symbiotic with the nitrogen fixing bacteria Frankia Alnus rubra - red alder Alnus rhombifolia - white alder Alnus incana ssp. tenuifolia - thinleaf alder Corylus cornuta - beaked hazel Carpinus caroliniana - American hornbeam Ostrya virginiana - eastern hophornbeam Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Fagaceae (Beech or Oak family) ! Fagaceae - 9 genera/900 species.! Trees or shrubs, mostly northern hemisphere, temperate region ! Leaves simple, alternate; often lobed, entire or serrate, deciduous
    [Show full text]
  • The Evolutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 49 2006 The volutE ionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales W. John Kress Smithsonian Institution Chelsea D. Specht Smithsonian Institution; University of California, Berkeley Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Kress, W. John and Specht, Chelsea D. (2006) "The vE olutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 49. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/49 Zingiberales MONOCOTS Comparative Biology and Evolution Excluding Poales Aliso 22, pp. 621-632 © 2006, Rancho Santa Ana Botanic Garden THE EVOLUTIONARY AND BIOGEOGRAPHIC ORIGIN AND DIVERSIFICATION OF THE TROPICAL MONOCOT ORDER ZINGIBERALES W. JOHN KRESS 1 AND CHELSEA D. SPECHT2 Department of Botany, MRC-166, United States National Herbarium, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, D.C. 20013-7012, USA 1Corresponding author ([email protected]) ABSTRACT Zingiberales are a primarily tropical lineage of monocots. The current pantropical distribution of the order suggests an historical Gondwanan distribution, however the evolutionary history of the group has never been analyzed in a temporal context to test if the order is old enough to attribute its current distribution to vicariance mediated by the break-up of the supercontinent. Based on a phylogeny derived from morphological and molecular characters, we develop a hypothesis for the spatial and temporal evolution of Zingiberales using Dispersal-Vicariance Analysis (DIVA) combined with a local molecular clock technique that enables the simultaneous analysis of multiple gene loci with multiple calibration points.
    [Show full text]
  • ECHO's Catalogue and Compendium of Warm Climate Fruits
    ECHO's Catalogue and Compendium of Warm Climate Fruits Featuring both common and hard-to-find fruits, vegetables, herbs, spices and bamboo for Southwest Florida ECHO's Catalogue and Compendium of Warm Climate Fruits Featuring both common and hard-to-find fruits, vegetables, herbs, spices and bamboo for Southwest Florida D. Blank, A. Boss, R. Cohen and T. Watkins, Editors Contributing Authors: Dr. Martin Price, Daniel P. Blank, Cory Thede, Peggy Boshart, Hiedi Hans Peterson Artwork by Christi Sobel This catalogue and compendium are the result of the cumulative experi- ence and knowledge of dedicated ECHO staff members, interns and vol- unteers. Contained in this document, in a practical and straight-forward style, are the insights, observations, and recommendations from ECHO’s 25 year history as an authority on tropical and subtropical fruit in South- west Florida. Our desire is that this document will inspire greater enthusi- asm and appreciation for growing and enjoying the wonderful diversity of warm climate fruits. We hope you enjoy this new edition of our catalogue and wish you many successes with tropical fruits! Also available online at: www.echonet.org ECHO’s Tropical Fruit Nursery Educational Concerns for Hunger Organization 17391 Durrance Rd. North Fort Myers, FL 33917 (239) 567-1900 FAX (239) 543-5317 Email: [email protected] This material is copyrighted 1992. Reproduction in whole or in part is prohibited. Revised May 1996, Sept 1998, May 2002 and March 2007. Fruiting Trees, Shrubs and Herbaceous Plants Table of Contents 1. Fruiting Trees, Shrubs and Herbaceous Plants 2 2. Trees for the Enthusiast 34 3.
    [Show full text]
  • List of Plants for Great Sand Dunes National Park and Preserve
    Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present
    [Show full text]