<<

Tracing the fate and infectivity of human pathogenic through the environment Enteric viruses

Pathogens Indicators Gastroenteritis, 2-5 days Asymptomatic Transmission: faecal – oral Transmission: faecal/urinal – oral Icosahedral , RNA/DNA Icosahedral capsid, DNA genome

Polyomaviridae 50 nm Picornaviridae ssDNA 40 nm 30 nm 30 nm 80 nm Polyomavirus ssRNA ssRNA ssRNA dsDNA Hepatitis A Hepatitis E virus Adenovirus Aichivirus Norovirus: The season not to be jolly Enteric viruses

Viral epidemics are on the rise • 2 million cases of norovirus each year in the UK HPA Norovirus cases in E&W ➢ Costs the NHS £100 million/yr ➢ Costs the UK economy £2 billion/yr • New and emerging viruses (frequent travel) ➢ Hepatitis A/E virus • Acquiring greater virulence ➢ Norovirus GII.4 Sydney Environmental transmission

• Contaminated humans are supershedders ➢ 105-1011 norovirus particles/g stool • Released daily in wastewater ➢ 102-108 norovirus particles/litre ➢ Resistant to treatment • Contamination ➢ Rivers, lakes, sea ➢ Groundwater, aquifers ➢ Drinking water ➢ Fruit and vegetable (irrigation) ➢ Shellfish Viral outbreaks Objectives

New molecular methods for the quantification of enteric viruses in the environment

Viral Surveillance Viral ecology infectivity

Modelling

Risk assessment Water concentration

Tangential flow ultrafiltration • 5000x concentration Water, 10 L • 24 hours • £20/sample Tangential flow ultrafiltration, 50 mL • 10-100% recovery of enteric viruses Beef extract elution • Concentrate viruses, bacteria, protozoa 120 NoV GII PEG precipitation, 2-4 mL NoVGII PGM 100 HAV SaV MgV Nucleic acid extraction 80 AdV40

60 q(RT-)PCR

Recovery 40

20

0 Sea Estuarine River pH 8.05 6.91 7.5 T (NTU) 6.37 11.74 3.2 K (mS/m) 40.7 18.88 0.06 Virus concentration in sediment

Elution – concentration

Sediment, 10-100 g • 10-100x concentration • 24 hours Beef extract elution • £1/sample • 80-100% recovery of enteric viruses PEG precipitation, 1-2 mL

Nucleic acid extraction

q(RT-)PCR Virus concentration in shellfish

Shellfish digestive tissue • ISO/TS 15216-1:2013 standard ➢Elution with proteinase K Proteinase K treatment • Elution with alternative buffer ➢PBS Nucleic acid extraction ➢SM • Adsorption-twice-elution-extraction (Kittigul et al., 2015) q(RT-)PCR ➢tryptose phosphate broth, pH 9 – arginine, pH 7.5 – chloroform Virus concentration in shellfish

160 Mengovirus 140 Adenovirus Hepatitis A virus Norovirus GII 120

100

80

60

Recovery % Recovery 40

20

0 ISO PBS SM Twice elution Surveillance of enteric viruses in the water environment: how much?

CSO Combined Sewer Outflow Shellfish harvesting rainwater + untreated wastewater area

Ganol WWTP 82,000 inhabitants

Tal-y-Bont WWTP 1,000 inhabitants

Llanrwst WWTP 4,000 inhabitants

Betws-y-Coed WWTP 1,200 inhabitants Surveillance of enteric viruses in the water environment

Sed1-SF1 – shellfish and sediment Sed2-SF2 – shellfish and sediment SW4 – estuary Sed4 – sediment

SW3 – tidal limit

SW1 – river SW2 – river Surveillance of enteric viruses in the water environment

Enteric • Norovirus GI/GII and Sapovirus: ➢ No diurnal changes in wastewater ➢ Strong seasonality in wastewater, surface water, sediment and shellfish • Hepatitis A/E virus & HIV ➢ Not routinely detected

Indicator viruses • Adenovirus and JC polyomavirus ➢ No diurnal changes in wastewater ➢ No seasonal changes ➢ Detected at high concentrations in all sample types Viral Infectivity – how much is there?

qPCR detection qPCR target region Norovirus integrity

Porcine Gastric Mucin assay – qPCR detection Norovirus integrity

Porcine Gastric Mucin assay vs. qPCR detection

Untreated wastewater: contains high concentrations of infective virus

1e+7 1e+7 NoVGI direct NoV GII direct NoVGI PGM NoVGII PGM 1e+6 1e+6

1e+5 1e+5

1e+4 1e+4

gc/L

gc/L

1e+3 1e+3

1e+2 1e+2

1e+1 1e+1

LI 02/17 LI 08/17 LI

TI09/10 TI02/17 TI03/17 TI07/17

BI 10/16 BI 03/17 BI 05/17 BI 08/17 BI

LI 09/16 LI 11/16 LI 01/17 LI 04/17 LI 05/17 LI 06/17 LI

GI 09/16 GI 12/16 GI 02/17 GI 03/17 GI 04/17 GI 05/17 GI 06/17 GI 08/17 GI

TI09/16 TI10/16 TI11/16 TI01/17 TI04/17 TI05/17 TI06/17

BI 09/16 BI 10/16 BI 11/16 BI 01/17 BI 05/17 BI 06/17 BI

GI 09/16 GI 10/16 GI 11/16 GI 12/16 GI 01/17 GI 03/17 GI 04/17 GI 05/17 GI 06/17 GI 08/17 GI Norovirus integrity

Porcine Gastric Mucin assay – qPCR detection

Untreated wastewater: high concentrations Treated wastewater: 0-4 log reduction Works better for norovirus GII than for GI

1e+7 1e+7 NoVGI direct NoV GII direct NoVGI PGM NoVGII PGM 1e+6 1e+6

1e+5 1e+5

1e+4 1e+4

gc/L

gc/L

1e+3 1e+3

1e+2 1e+2

1e+1 1e+1

LE 09/16 LE 11/16 LE 01/17 LE 03/17 LE 05/17 LE 06/17 LE

LE 11/16 LE 05/17 LE 08/17 LE

TE09/16 TE10/16 TE11/16 TE01/17 TE05/17

TE09/16 TE10/16 TE11/16 TE02/17 TE03/17 TE05/17 TE07/17

BE 09/16 BE 10/16 BE 01/17 BE 04/17 BE 05/17 BE

BE 02/17 BE 03/17 BE 05/17 BE 07/17 BE Viral Infectivity

Adenoviruses, polyomaviruses • Infectivity – culturing • 48h assay • Requires skilled staff and equipment

Norovirus? Norovirus integrity

Porcine Gastric Mucin assay – qPCR detection

Untreated wastewater: high concentrations Treated wastewater: 0-1 log reduction Works better for norovirus GII than for GI Surface water: 1-3 log reduction

Sediment: all negative 1e+7 1e+7 NoVGI direct NoV GII direct NoVGI PGM NoVGII PGM 1e+6 1e+6

1e+5 1e+5

1e+4 1e+4

gc/L

gc/L

1e+3 1e+3

1e+2 1e+2

1e+1 1e+1

SW109/16 SW111/16 SW105/17 SW305/17 SW409/16

SW111/16 SW102/17 SW302/17 SW305/17

Sed1 09/16 Sed1 11/16 Sed1 11/16 Sed4 04/17 Sed4

Sed1 10/16 Sed1 02/17 Sed1 03/17 Sed1 07/17 Sed1 02/17 Sed2 02/17 Sed4 04/17 Sed4 Norovirus integrity

Porcine Gastric Mucin assay – qPCR detection

Semi-degraded viruses? Norovirus persistency in water

Study site: Betws-y-Coed, North Wales Float-a-Lyzer, Spectrumlabs

Human norovirus GII Murine norovirus Human adenovirus 40 Norovirus persistence

1e+7 NoV GII Direct 1e+6 RNase PGM

1e+5

gc/uL 1e+4

1e+3

1e+2 0 2 4 6 8 10 12 14 Days 1e+7 MNV

1e+6

1e+5

gc/uL

1e+4

1e+3 0 2 4 6 8 10 12 14 Days Metaviromics What viruses are there - surveillance?

viral genomic RNA

Non-targeted sequencing

viral

Illumina HiSeq 4000

norovirus genome viral diversity

sapovirus genomes Dr Evelien Adriaenssens sapo/norovirus

Family level groupings level Family

WW mussels river/est. water sediment Do the bubbles represent intact and infective viruses?

Intactness inferred from completeness of genome fragments found Cannot give information on infectivity

Example: Two complete sapovirus GII genomes in untreated wastewater only small fragments in mussels → degraded genomes

Usefulness: • Identification of novel strains circulating in the environment ➢ Pathogens: norovirus GI ➢ Indicators: • Trends in viral ecology • Epidemiology Viral Infectivity

Use the novel human norovirus infectivity assay with environmental samples • Validation of capsid integrity assays • Validation of metaviromics results

Dr Myra Hosmillo Risk modelling Modelling viral dispersal and concentrations through the year

Tide height (m)

River flow (m3/s)

Tidal volume (m3)

Adenovirus at tidal limit (ppl)

Adenovirus at Estuary mouth (ppl) Modelling results

Conservative tracer with viral die off Modelling conclusions

• Enteric viruses can disperse downstream to estuaries within hours whilst active • Coastal waters and shellfisheries are exposed to viruses during ebb tide drainage • Viruses are retained mostly in the estuary (river flow <50 m3 s-1) • Viruses enter the coastal zone during storms (river flow >50 m3 s-1) • Risk is worst after a storm and spring tide • CSO discharges represent a major threat • Human outbreaks are more important than river flow conditions Summary

• Method validation Protocols on CEFAS website ➢Two-step concentration of complex water samples for the detection of viruses ➢Elution and concentration of viruses in sediment* ➢Quantification of nucleic acids of enteric viruses in concentrated environmental samples** ➢Capsid integrity assays for the detection and quantification of enteric viruses in environmental samples ➢Assessment of norovirus infectivity risk in bivalve shellfish using a F-specific coliphage ➢Viral nucleic acid extraction for metagenomics sequencing

*Farkas K, Hassard F, McDonald JE, Malham SK, Jones DL. (2017) Evaluation of molecular methods for the detection and quantification of -derived nucleic acids in sediment. Frontiers in Microbiology 8:53. doi:10.3389/fmicb.2017.00053. **Farkas K, Peters DE, McDonald JE, De Rougemont A, Malham SK, Jones DL. (2017) Evaluation of two triplex one-step qRT-PCR assays for the quantification of human enteric viruses in environmental samples. Food and Environmental Virology. 9:342-349. doi:10.1007/s12560-017-9293-5. Summary

• Method validation • Identification of potential indicators • Identification of emerging pathogens • Seasonality • Ecology, novel strains • Integrity and infectivity • Modelling

www.viraqua.uk @Viraqua_Project Publications

Robins et al. (2018) Water Res. submitted Farkas et al. (2018) Environ. Sci. Pollut. Res 25, 33391-33401 Farkas et al. (2018) Sci. Tot. Environ. 634, 1174-1183 Adriaenssens et al. (2018) Msystems 3, e00025-18 Farkas et al. (2017) Food Environ. Microbiol. 9, 342-349 Hassard et al. (2016) Front. Microbiol. 7, 1692 Perkins et al. (2016) Sci. Tot. Environ. 572, 1645-1652 Winterbourn et al. (2016) Water Res. 105, 241-250 New NERC project (NE/S004548/1)

Microbial hitch-hikers of marine plastics: the survival, persistence and ecology of microbial communities in the Plastisphere WP1. Dispersal and fate WP2. Human health WP3. Biodegradation WP4. Risk Management