Physiological Evolution of Animals

Total Page:16

File Type:pdf, Size:1020Kb

Physiological Evolution of Animals CHAPTER 2 Physiological Evolution of Animals Learning Objectives After reading this chapter, you should be able to: 1 Explain the evolutionary relationship FIGURE 2.1 Yeti Crab (Kiwa hirsuta) between protozoans and metazoans. Photo source: Ifremer, A. Fifis/AP Images. 2 Demonstrate familiarity with the evolutionary relationships among animals. 3 Identify the major events in animal evolution. 4 Discuss the evolutionary origins of specific he diversity of life on Earth inspires many to learn more physiological abilities. about biology. Whether your awareness of animals comes from your own experience or watching nature shows on television, you have some appreciation for the breadth of T animal diversity. Remarkably, there are a great many living animals yet to be discovered, and paleontologists regularly uncover new types of animals in the fossil record. One challenge for scientists is to figure out how all of these animals are related, and thus what they tell us about the evolutionary origins of animals. More than 10 years ago the Census of Marine Life began a project of exploring the world to catalog the many animals living in oceans, as well as to find new species. The strange animals the Census found, such as the “fur”- covered Yeti crab (Figure 2.1), spark the imagination about the as-yet undis- covered life forms that likely exist on the planet. Though living animals are indeed remarkably diverse, those alive today represent only a snapshot in time. 20 DESIGN SERVICES OF # 153477 Cust: Pearson Au: Moyes Pg. No. 20 C/M/Y/K S4CARLISLE M02_MOYE8179_03_SE_CH02.inddTitle: Principles of Animal20 Physiology Short / Normal / Long Publishing Services 12/3/14 8:18 PM A far richer world is evident from explorations of the his 1990 book, Wonderful Life: The Burgess Shale and the fossil record. In the early 1900s, a paleontologist named Nature of History, in which he proposed that many of the Charles Walcott uncovered an extraordinary fossil bed in the Burgess Shale fossils were members of phyla that are now Canadian Rockies. The deposit was remarkable because extinct. A more conservative interpretation is that these fos- of the richness of the collection of soft-bodied animals, of sils all belong to extant phyla. Though many lineages within types that had largely escaped preservation in other fossil the phyla may have disappeared entirely, this approach as- beds. Analysis of this Burgess Shale collection reveals a sumes that the number of phyla has not changed markedly. rich diversity in animals present in the area around 500 mya An awareness of the evolutionary origins and phyloge- (million years ago). When the fossils were discovered, netic diversity of animals is essential for an understanding of Walcott assigned each to the most similar groups of extant the conservation and divergence in animal traits, including animals. As it turned out, many of the original taxonomic physiological traits. In this chapter, we provide a survey of assignments are now thought to be wrong, and the confusion animal diversity, albeit a general one, focusing on the origins about evolutionary affinities led Stephen J. Gould to prepare of physiological traits. ■ INTRODUCTION Within the next billion years, the progenote’s descen- dants diverged to form three distinct groups of organisms: About 4.5 bya (billion years ago) the planet Earth coalesced Eubacteria, Archaea, and Eukaryota. Each lineage diversi- from clumps of debris floating through space after the Big fied independently over the next 3 billion years. The two Bang that occurred about 14 bya. For another billion years, prokaryote lineages, Eubacteria and Archaea, remained Earth’s surface was a harsh place: Asteroid bombardment and single-celled organisms with little intracellular organization. volcanic eruptions were constantly remodeling the surface of In contrast, the ancestral eukaryotes experienced evolution- the planet. Yet it was during this tumultuous period that life on ary changes that resulted in the production of membranous, Earth began. Some researchers believe that organic molecules subcellular compartments, thereby increasing intracellular arose from a “primordial soup” of methane, ammonia, and organization. This is thought to have begun when the ear- water, energized by atmospheric electrical discharges. Others liest eukaryotes found a way to package their DNA into a believe that the first organic molecules arose from chemical membrane-bound compartment: the nucleus. Later, around reactions of products of deep-sea volcanoes. Regardless of 3 bya, a eukaryote engulfed a bacterium that likely re- the origins of the first small organic molecules, the pathway sembled a modern purple bacterium. Although the purple to living organisms required the formation of larger macro- bacterium was probably ingested as food, it developed a molecules with the capacity for catalysis and self-replication. symbiotic relationship with its host, replicating within the At some point around 4 bya, these purely chemical processes host cell. Over time, the bacterial endosymbiont lost its produced the earliest life form, the progenote. The proge- capacity to exist outside the cell, and the host cell became note was likely a chemoautolithotroph, capable of surviving reliant on the metabolic contributions of the endosymbiont, without oxygen and living on inorganic sources of energy and the ancestor of mitochondria. By 2 bya, all of the diverse carbon. The closest living relatives to the progenote are likely groups of unicellular organisms were established, including the Archaea. The modern Archaea are extremophiles, able to the many lineages of single-celled eukaryotes, collectively survive in the harshest environments that exist on Earth, such known as protists. as sulfuric hot springs and deep-sea vents. The origins of animals can be traced back about 600 mya, The progenote was the ancestor to all organisms on the with the appearance of sponges. In the time since, animal planet and, as a result, it is likely that many of the biologi- evolution occurred in concert with changing environmental cal features that are shared by all currently living organisms conditions (Figure 2.2). We cannot understand the basis of arose in the progenote. These shared features include de- animal diversity without an awareness of the evolutionary pendence on water, the role of nucleic acids, the use of only origins of animals in a changing environment. On the one 20 amino acids in proteins, and the basic pathways of inter- hand, many cellular processes are similar across major taxa, mediary metabolism. so what we learn from studies on model species of fungi and 21 DESIGN SERVICES OF # 153477 Cust: Pearson Au: Moyes Pg. No. 21 C/M/Y/K S4CARLISLE M02_MOYE8179_03_SE_CH02.inddTitle: Principles 21 of Animal Physiology Short / Normal / Long Publishing Services 15/12/14 5:19 PM 22 PART ONE Introduction to Physiology FIGURE 2.2 Biotic and abiotic events over geologic time membrane-bound nucleus and organelles. Protists are a Many evolutionary events coincide with periods of environmental collection of only distantly related organisms containing change over the geological record. The colors reflect periods more than 50 different phyla. The most familiar protists of global warmth (red) and cold (blue). are Euglena (with features of both animals and plants), Plasmodium (the single-celled flagellate parasites of blood Oxygen that cause malaria), Paramecium (ciliated hunters), and 40% 30% 20% amoebas (cells that are the namesake of amoeboid move- 0 mya Mammalian ment). Early researchers recognized that some protists Tertiary radiation were able to move from place to place, and because loco- motion was deemed to be a unique trait of animals, the Dinosaur 100 Cretaceous mobile protists were at one point considered to be the extinctions ancestors of animals, giving rise to the term protozoan. The term continues to be used in some contexts, but it Jurassic Dinosaur radiation; Appearance of birds has no meaningful evolutionary basis. The protist phyla 200 Reptile radiation; emerged prior to the origins of the three main eukary- Triassic First mammals ote kingdoms: plants, fungi, and animals. The term Permean Mass extinction; metazoan, which arose originally to distinguish multicel- Synapsids common lular animals from the single-celled protozoans, is now 300 First amniotes (reptiles); Carboniferous Amphibian radiation; used synonymously with “animal.” Flying insects The earliest steps in animal evolution involved the for- Amphibian appearance; mation of a multicellular entity, though the mechanisms Devonian Fish radiation by which this occurred remain uncertain. The colonial 400 First terrestrial invertebrates; Silurian Radiation of corals hypothesis suggests that genetically identical individual cells Ordovician Fish appearance; remained associated as colonies, a phenomenon that is com- Radiation of trilobites mon in flagellated protists. Amongst the protists, genetic 500 choanoflagellates Earliest vertebrates; studies show that the are the protists most Cambrian Appearance of trilobites closely related to metazoans. They are single-celled organ- Appearance of protists, isms that possess a flagellum emerging from a cup-shaped Precambrian sponges, and cnidarians collar extending from a more spherical cell body. Remark- 600 ably, they are very similar in appearance to choanocytes, a Figure source: Oxygen patterns are based on Berner, R. A. (1999). Atmospheric flagellated cell in sponges (Figure 2.3). oxygen over Phanerozoic time. Proceedings of
Recommended publications
  • Flatworms Phylum Platyhelminthes
    Flatworms Phylum Platyhelminthes The flatworms include more than 13,000 species of free-living and parasitic species.There are 3 classes of flat- worms, the planarians, flukes and tapeworms. General Physical Traits (Anatomy): Flatworms are bilaterally symmetrical. This means that they can only be cut them length-wise to produce two mirror-image halves. They have a distinct right and left half. This is differ- ent from radially symmetrical animals, like the anemones, which can be cut anywhere top to bottom to get two similar halves. Flatworms have 3 tissue layers, compared to the 2 layers in sponges and cnidarians (jellyfishes, anemones and corals). They also have only one opening for food to enter and waste to leave, like the sponges and cnidarians. This is called a “sac” body plan. Planarian (class Tubellaria) Habitat: They live mostly in saltwater (marine) habitats, but are also found in freshwater. Habits: They are free-living flatworms (not parasites). Physical Traits (Anatomy): Planarians are small - less than a centimeter long. They have a head, brain and sense organs. This is called “cephalization.” The sense organs – called eyespots – look like eyes and are sensitive to light changes, but are not like human eyes. They are made up of simple nerve cells that respond to stimuli, like light. When many nerve cells are gathered in one place, they are called a “ganglion,” so the two eyespots are actually ganglia. They also have points on either side of the head that look a bit like ears, called “sensory lobes” or auricles. They do not hear, but can sense food.
    [Show full text]
  • Phylum Chordata
    Phylum Chordata 48,000 species very diverse phylum but still more unity in major characteristics than in most other phyla most advanced phylum of animal kingdom one to which we belong along with fish, amphibians reptiles, birds and other mammals some of the largest or most massive animals true coelom 4 major identifying characteristics: 1. Notochord flexible rodlike structure enclosed by a fibrous sheath extends the length of the body in larva and/or adult provides basic support and serves as main axis for muscle attachments to permit “fishlike” undulatory movements first part of skeleton to form in embryo in primitive chordates the notochord persists through life Animals: Chordates & Introduction to Vertebrates; Ziser Lecture Notes, 2006 1 in most chordates the notochord is replaced by a vertebral column of bone remnants of the notochord remain as “intervertebral discs” 2. Dorsal tubular nerve cord in most invert groups; nerve cord is ventral & paired in chordates the nerve cord is a single dorsal hollow nerve cord front end usually enlarged to form brain 3. Pharyngeal (gill) slits slit-like opening sleading from throat to outside first evolved as a filter feeding apparatus still used by some to filter water for food in others as gills in some groups they are only found in embryo and lost as adults 4. endostyle or thyroid gland specific kind of tissue found only in chordates was originally part of the feeding apparatus endostyle secretes mucus and traps food inside the pharyngeal cavity eg. lamprey larva in most chordates the same tissue has become an endocrine Animals: Chordates & Introduction to Vertebrates; Ziser Lecture Notes, 2006 2 gland in the neck region that helps control metabolism 5.
    [Show full text]
  • Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J
    Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J. R. Finnerty Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata *Nematoda *Platyhelminthes Acoelomorpha Calcispongia Silicispongiae PROTOSTOMIA Phylum Phylum Phylum CHORDATA ECHINODERMATA HEMICHORDATA Blastopore -> anus Radial / equal cleavage Coelom forms by enterocoely ! Protostome = blastopore contributes to the mouth blastopore mouth anus ! Deuterostome = blastopore becomes anus blastopore anus mouth Halocynthia, a tunicate (Urochordata) Coelom Formation Protostomes: Schizocoely Deuterostomes: Enterocoely Enterocoely in a sea star Axocoel (protocoel) Gives rise to small portion of water vascular system. Hydrocoel (mesocoel) Gives rise to water vascular system. Somatocoel (metacoel) Gives rise to lining of adult body cavity. Echinoderm Metamorphosis ECHINODERM FEATURES Water vascular system and tube feet Pentaradial symmetry Coelom formation by enterocoely Water Vascular System Tube Foot Tube Foot Locomotion ECHINODERM DIVERSITY Crinoidea Asteroidea Ophiuroidea Holothuroidea Echinoidea “sea lilies” “sea stars” “brittle stars” “sea cucumbers” “urchins, sand dollars” Group Form & Habit Habitat Ossicles Feeding Special Characteristics Crinoids 5-200 arms, stalked epifaunal Internal skeleton suspension mouth upward; mucous & Of each arm feeders secreting glands on sessile podia Ophiuroids usually 5 thin arms, epifaunal ossicles in arms deposit feeders act and appear like vertebrae
    [Show full text]
  • Tropical Marine Invertebrates CAS BI 569 Major Animal Characters Part 2 — Adult Bodyplan Features by J
    Tropical Marine Invertebrates CAS BI 569 Major Animal Characters Part 2 — Adult Bodyplan Features by J. R. Finnerty Metazoan Characters Part II. Adult Body Plan Features CHARACTER states EPITHELIUM: present; absent; BODY LAYERS: diploblastic; triploblastic BODY CAVITIES: precoelomate; acoelomate; pseudocoelomate; eucoelomate; GUT: absent; blind sac; through-gut; SYMMETRY: asymmetrical; radial; bi-radial; bilateral; pentaradial SKELETON: “spicules;” “bones;” hydrostat; exoskeleton EPITHELIUM Sheet of cells that lines body cavities or covers outer body surfaces. E.g., skin, gut lining Creates extracellular compartments four key characteristics: 1.continuous — uninterrupted layer 2. intercellular junctions cell 3. polarity (apical vs. basal) 4. basal lamina (extracellular matrix on which basal cell surface rests; collagen secreted by cells) Ruppert et al., Figure 6.1 3 Body Layers (Germ Layers) Germ layers form during gastrulation ectoderm blastocoel blastocoel endoderm gut blastoderm BLASTULA blastopore 4 Diploblastic Condition Two germ layers, endoderm & ectoderm blastocoel blastocoel endoderm gut gut ectoderm ectoderm 5 Triploblastic Condition Three germ layers, endoderm, ectoderm, & mesoderm. blastocoel gut ectoderm Body Cavities I. Blastocoel the central cavity in the hollow blastula the 1st body cavity II. Archenteron “primitive gut” opens to the outside via the blastopore lined by endoderm III. Coelom cavity entirely lined by mesoderm A pseudocoelom is only partially lined by mesoderm. It may represent a persistent blastocoel. Character
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]
  • Echinoderms for Dummies Colwyn Sleep Echinoderm Classification and Examples
    ECHINODERMS FOR DUMMIES COLWYN SLEEP ECHINODERM CLASSIFICATION AND EXAMPLES What exactly is an Echinoderm? Echinoderms (or “Echinodermata”) are a group of animals which exist only in a marine (ocean) environment. Their name comes from the Greek word for "spiny skin". They inhabit a diverse range of marine habitats and are found on the sea floor from the intertidal zone to great ocean depths. In the following slides we will explore echinoderms and look into their body systems and structures more closely. A FEW EXAMPLES OF ECHINODERMS Sea star Kingdom: Animalia Phylum: Echinodermata Class: Asteroidea Feather Star Kingdom: Animalia Phylum: Echinodermata Subphylum: Crinozoa Class: Crinoidea Probably one of the best known echinoderms This lesser-known star, the feather star gains is the easily recognized sea star. The its name from its featherlike arms, which it echinoderm phylum contains many more uses to swim through the water. Like all species, in fact there are around 7000 known echinoderms, they are “Deuterostomes.” echinoderms. Later, we will investigate the This means that during their embryonic sea star and it’s classification as an development the first embryonic opening echinoderm in greater detail. becomes the anus and the second becomes the mouth. Because of this, biologists believe that echinoderms are more evolutionarily advanced than some of the other animals. A FEW MORE… Sea cucumber Kingdom: Animalia Phylum: Echinodermata Class: Holothuroidea Sea Urchin Kingdom: Animalia Phylum: Echinodermata Class: Echinoidea Related to Jabba the Hutt in appearance Like other echinoderms, the sea urchin has only, the sea cucumber is actually another radial symmetry. Its pointed spines offer example of an echinoderm.
    [Show full text]
  • Introduction to Phylum Chordata
    Unifying Themes 1. Chordate evolution is a history of innovations that is built upon major invertebrate traits •bilateral symmetry •cephalization •segmentation •coelom or "gut" tube 2. Chordate evolution is marked by physical and behavioral specializations • For example the forelimb of mammals has a wide range of structural variation, specialized by natural selection 3. Evolutionary innovations and specializations led to adaptive radiations - the development of a variety of forms from a single ancestral group Characteristics of the Chordates 1. Notochord 2. dorsal hollow nerve cord 3. pharyngeal gill slits 4. postanal tail 5. endostyle Characteristics of the Chordates Notochord •stiff, flexible rod, provides internal support • Remains throughout the life of most invertebrate chordates • only in the embryos of vertebrate chordates Characteristics of the Chordates cont. Dorsal Hollow Nerve Cord (Spinal Cord) •fluid-filled tube of nerve tissue, runs the length of the animal, just dorsal to the notochord • Present in chordates throughout embryonic and adult life Characteristics of the Chordates cont. Pharyngeal gill slits • Pairs of opening through the pharynx • Invertebrate chordates use them to filter food •In fishes the gill sits develop into true gills • In reptiles, birds, and mammals the gill slits are vestiges (occurring only in the embryo) Characteristics of the Chordates cont. Endostyle • mucous secreting structure found in the pharynx floor (traps small food particles) Characteristics of the Chordates cont. Postanal Tail • works with muscles (myomeres) & notochord to provide motility & stability • Aids in propulsion in nonvertebrates & fish but vestigial in later lineages SubPhylum Urochordata Ex: tunicates or sea squirts • Sessile as adults, but motile during the larval stages • Possess all 5 chordate characteristics as larvae • Settle head first on hard substrates and undergo a dramatic metamorphosis • tail, notochord, muscle segments, and nerve cord disappear SubPhylum Urochordata cont.
    [Show full text]
  • Brain-Size Evolution and Sociality in Carnivora
    Brain-size evolution and sociality in Carnivora John A. Finarellia,b,1 and John J. Flynnc aDepartment of Geological Sciences, University of Michigan, 2534 C.C. Little Building, 1100 North University Avenue, Ann Arbor, MI 48109; bMuseum of Paleontology, University of Michigan, 1529 Ruthven Museum, 1109 Geddes Road, Ann Arbor, MI 48109; and cDivision of Paleontology and Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 Edited by Alan Walker, Pennsylvania State University, University Park, PA, and approved April 22, 2009 (received for review February 16, 2009) Increased encephalization, or larger brain volume relative to body develop a comprehensive view of the evolutionary history of mass, is a repeated theme in vertebrate evolution. Here we present encephalization across 289 terrestrial species (including 125 an extensive sampling of relative brain sizes in fossil and extant extinct species) of Carnivora, providing an extensive sampling of taxa in the mammalian order Carnivora (cats, dogs, bears, weasels, fossil and living taxa for both major subclades: Caniformia and and their relatives). By using Akaike Information Criterion model Feliformia. selection and endocranial volume and body mass data for 289 species (including 125 fossil taxa), we document clade-specific Results evolutionary transformations in encephalization allometries. Akaike Information Criterion (AIC) model selection recovered These evolutionary transformations include multiple independent 4 optimal models (OM) within 2 log-likelihood units of the encephalization increases and decreases in addition to a remark- highest score (Table 1). There is broad agreement among the ably static basal Carnivora allometry that characterizes much of the OM with differences primarily in estimates of allometric slopes.
    [Show full text]
  • Study Questions 2 (Through Arthropod 1)
    Study Questions 2 (through Arthropod 1) 1. Name the three embryonic germ layers found in all triploblastic animals. 2. What is a coelom? Which Phyla that we have discussed thus far have a true coelom? 3. Define cephalization. What is the name of the most primitive Phylum we have discussed that displays cephalization? 4. How is the digestive system of a Turbellarian similar to the digestive system of a Hydrozoan? Describe one way that they are different. 5. What is the function of flame cells? 6. How is the nervous system of a flatworm (Phylum Platyhelminthes) different from that of a Cnidarian? 7. Which two classes of flatworms are entirely parasitic? Describe some adaptations for parasitism that are found in these classes. 8. What are some of the major differences between Nemertine worms (Phylum Nemertea) and flatworms (Phylum Platyhelminthes)? In what major way are these two phyla similar? 9. What is a pseudocoelom? What are some of the functions of the pseudocoelom in Phylum Nematoda? 10. Nematodes have move in a characteristic whip like fashion. What aspect of their anatomy is responsible for this type of movement? 11. Describe the general structure of the Nematode nervous system. How is it different from the nervous system of Platyhelminthes? 12. What is unique about Nematode muscle cells? 13. What is unique about the way Nematode sperm move? 14. Many Nematodes are parasitic. Describe some adaptations that Nematodes have for parasitism. 15. What characteristics of the Nematode Caenorhabditis elegans make such an important model organism for the study of developmental genetics? 16. List two functions of the Rotifer corona.
    [Show full text]
  • FISH310: Biology of Shellfishes
    FISH310: Biology of Shellfishes Lecture Slides #3 Phylogeny and Taxonomy sorting organisms How do we classify animals? Taxonomy: naming Systematics: working out relationships among organisms Classification • All classification schemes are, in part, artificial to impose order (need to start some where using some information) – Cell number: • Acellular, One cell (_________), or More than one cell (metazoa) – Metazoa: multicellular, usu 2N, develop from blastula – Body Symmetry – Developmental Pattern (Embryology) – Evolutionary Relationship Animal Kingdom Eumetazoa: true animals Corals Anemones Parazoa: no tissues Body Symmetry • Radial symmetry • Phyla Cnidaria and Ctenophora • Known as Radiata • Any cut through center ! 2 ~ “mirror” pieces • Bilateral symmetry • Other phyla • Bilateria • Cut longitudinally to achieve mirror halves • Dorsal and ventral sides • Anterior and posterior ends • Cephalization and central nervous system • Left and right sides • Asymmetry uncommon (Porifera) Form and Life Style • The symmetry of an animal generally fits its lifestyle • Sessile or planktonic organisms often have radial symmetry • Highest survival when meet the environment equally well from all sides • Actively moving animals have bilateral symmetry • Head end is usually first to encounter food, danger, and other stimuli Developmental Pattern • Metazoa divided into two groups based on number of germ layers formed during embryogenesis – differs between radiata and bilateria • Diploblastic • Triploblastic Developmental Pattern.. • Radiata are diploblastic: two germ layers • Ectoderm, becomes the outer covering and, in some phyla, the central nervous system • Endoderm lines the developing digestive tube, or archenteron, becomes the lining of the digestive tract and organs derived from it, such as the liver and lungs of vertebrates Diploblastic http://faculty.mccfl.edu/rizkf/OCE1001/Images/cnidaria1.jpg Developmental Pattern….
    [Show full text]
  • November 18, 2013 Characteristics of Chordates
    November 18, 2013 Characteristics of Chordates: - Cephalization: development of a definite “head end” - Segmented: serial metamerism - Eucoelic: true coelom Cephalochordata example: Amphioxus = Branchiocephala Subphylum Urochordata tunicate “Sea squirts” “Salps” - Cellulose = beta1-4 linkage can’t break down with spit - Glucose = alpha1-4 linkage - Tunicates can make cellulose Tunicata - marine - sessile = non-motile - lifestyle o external fertilization zygote blastula gastrula larvae (free swimming) goes to bottom becomes sessile Subphylum Vertebrata - vertebral column (back boned animals) Superclass Pisces - all fishes - all diecious (almost all) - most have external fertilization - oviparous - anadromous fish o salmon o spawning fresh water, developing salt water - catadromous fish o eels o spawning salt water, develop in fresh water - homing instinct salmon are great example o use fish ladder to get past dam o nitrogen gas expansion is problem Class Chondrichthyes – sharks, skates, rays - 800 to 1000 species known - mostly marine November 20, 2013 South America and Evolution of stingrays in fresh water - marine rays and sharks got stuck in freshwater o two freshwater lineages for sharks / rays . China and South America Daniel R. Brooks - worked on tapeworm host / parasite relationships - worked with stingrays - Amazon River used to drain to the pacific - Cestode in Pomatotrygon stingray in Amazon (fresh water) o Tape worm in ray name: Pomatotrygonocestus Richard Pyle at Bishop Museum - coelacanth hasn’t changed in millions
    [Show full text]
  • Zoology Lab Manual
    General Zoology Lab Supplement Stephen W. Ziser Department of Biology Pinnacle Campus To Accompany the Zoology Lab Manual: Smith, D. G. & M. P. Schenk Exploring Zoology: A Laboratory Guide. Morton Publishing Co. for BIOL 1413 General Zoology 2017.5 Biology 1413 Introductory Zoology – Supplement to Lab Manual; Ziser 2015.12 1 General Zoology Laboratory Exercises 1. Orientation, Lab Safety, Animal Collection . 3 2. Lab Skills & Microscopy . 14 3. Animal Cells & Tissues . 15 4. Animal Organs & Organ Systems . 17 5. Animal Reproduction . 25 6. Animal Development . 27 7. Some Animal-Like Protists . 31 8. The Animal Kingdom . 33 9. Phylum Porifera (Sponges) . 47 10. Phyla Cnidaria (Jellyfish & Corals) & Ctenophora . 49 11. Phylum Platyhelminthes (Flatworms) . 52 12. Phylum Nematoda (Roundworms) . 56 13. Phyla Rotifera . 59 14. Acanthocephala, Gastrotricha & Nematomorpha . 60 15. Phylum Mollusca (Molluscs) . 67 16. Phyla Brachiopoda & Ectoprocta . 73 17. Phylum Annelida (Segmented Worms) . 74 18. Phyla Sipuncula . 78 19. Phylum Arthropoda (I): Trilobita, Myriopoda . 79 20. Phylum Arthropoda (II): Chelicerata . 81 21. Phylum Arthropods (III): Crustacea . 86 22. Phylum Arthropods (IV): Hexapoda . 90 23. Phyla Onycophora & Tardigrada . 97 24. Phylum Echinodermata (Echinoderms) . .104 25. Phyla Chaetognatha & Hemichordata . 108 26. Phylum Chordata (I): Lower Chordates & Agnatha . 109 27. Phylum Chordata (II): Chondrichthyes & Osteichthyes . 112 28. Phylum Chordata (III): Amphibia . 115 29. Phylum Chordata (IV): Reptilia . 118 30. Phylum Chordata (V): Aves . 121 31. Phylum Chordata (VI): Mammalia . 124 Lab Reports & Assignments Identifying Animal Phyla . 39 Identifying Common Freshwater Invertebrates . 42 Lab Report for Practical #1 . 43 Lab Report for Practical #2 . 62 Identification of Insect Orders . 96 Lab Report for Practical #3 .
    [Show full text]