And Coinfections with Feline Viral Pathogens in Domestic Cats in Brazil

Total Page:16

File Type:pdf, Size:1020Kb

And Coinfections with Feline Viral Pathogens in Domestic Cats in Brazil Ciência Rural,Felis catusSanta gammaherpesvirus Maria, v.48: 03, 1 (FcaGHV1) e20170480, and 2018coinfections with feline viral pathogens http://dx.doi.org/10.1590/0103-8478cr20170480 in domestic cats in Brazil. 1 ISSNe 1678-4596 MICROBIOLOGY Felis catus gammaherpesvirus 1 (FcaGHV1) and coinfections with feline viral pathogens in domestic cats in Brazil Jacqueline Kazue Kurissio1, 2* Marianna Vaz Rodrigues1, 2 Sueli Akemi Taniwaki3 Marcelo de Souza Zanutto4 Claudia Filoni1, 2 Maicon Vinícius Galdino5 João Pessoa Araújo Júnior 1, 2* 1Departamento de Microbiologia e Imunologia, Instituto de Biociências, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), 18618-691, Botucatu, SP, Brasil. 2Instituto de Biotecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Botucatu, SP, Brasil. E-mail: [email protected] 3Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), SP, Brasil. 4Departamento de Clínicas Veterinárias, Centro de Ciências Agrárias, Universidade Estadual de Londrina (UEL), Londrina, PR, Brasil. 5Departamento de Bioestatística, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), 18618-693, Botucatu, SP, Brasil. ABSTRACT: Felis catus gammaherpesvirus 1 (FcaGHV1) may causes an asymptomatic infection that result in an efficient transmission and subsequently dissemination of the virus in feline population. This study used molecular detection by qPCR (quantitative PCR) based on DNA polymerase gene fragment amplification to evaluate the occurrence of FcaGHV1 and its correlation with other feline viral pathogens, such as Carnivore protoparvovirus 1 (CPPV-1), Felid alphaherpesvirus 1 (FeHV-1), and feline retroviruses such as feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV). Of the 182 blood samples evaluated 23.6% (43/182) were positives for FcaGHV1. Approximately 37.9% (33/87) of the samples that tested positive for retrovirus were also were positive for FcaGHV1 infection (P<0.0001). Among FIV- infected samples, 49% (24/49) were positive for FcaGHV1 (P<0.0001). FcaGHV1 infection was not associated with FeLV (P>0.66) or CPPV- 1 (P>0.46) coinfection. All samples were negative for FeHV-1. Male felines were significantly associated to FcaGHV1 (P<0.0001) and their risk of infection with FcaGHV1 was about of 7.74 times greater compared to females. Kittens (≤ 1year) were the least affected by FcaGHV1 infection, being verified a rate of 7.7% (4/52). Therefore, male cats over one year old and infected with FIV were considerably more likely to be infected with FcaGHV1. To our knowledge, this is the first study to report the occurrence and molecular detection of FcaGHV1 infection in domestic cats in Brazil and in South America. Key words: gammaherpesvirus, herpesvirus, feline pathogen, infectious diseases, diagnosis. Ocorrência de Felis catus gammaherpesvirus 1 (FcaGHV1) e coinfecções com patógenos virais felinos em gatos domésticos no Brasil RESUMO: Felis catus gammaherpesvirus 1 (FcaGHV1) pode causar uma infecção assintomática, que resulta em uma transmissão eficiente e consequente disseminação do virus na população felina. Este estudo utilizou a detecção molecular por qPCR (PCR quantitativa) baseado na amplificação de um fragmento do gene da DNA polimerase para avaliar a ocorrência de FcaGHV1, sendo correlacionado a outros patógenos virais felinos como Carnivore protoparvovirus 1 (CPPV-1), Felid alphaherpesvirus 1 (FeHV-1) e aos retrovírus felinos como vírus da imunodeficiência felina (FIV) e vírus da leucemia felina (FeLV). Das 182 amostras de sangue avaliadas, 23,6% (43/182) foram positivas para FcaGHV1. Aproximadamente 37,9% (33/87) das amostras positivas para retrovirus também foram positivas para FcaGHV1 (P<0,0001). Entre as amostras FIV-infectadas, 49% (24/49) foram positivas para FcaGHV1 (P<0,0001). A infecção por FcaGHV1 não foi associada à coinfecção por FeLV (P>0,66) e CPPV-1 (P>0,46). Todas as amostras foram negativas para FeHV-1. Felinos machos foram significativativamente associados à infecção por FcaHV1 (P <0,0001) e o risco de infecção com FcaGHV1 foi aproximadamente 7,74 vezes maior comparados às femeas. Os filhotes (≤1 ano) foram os menos acometidos pela infecção por FcaGHV1 sendo verificado uma proporção de 7.7% (4/52). Assim, gatos machos com mais de um ano de idade e infectados por FIV foram, consideravelmente, mais susceptíveis a serem infectados com FcaGHV1. Para nosso conhecimento, este é o primeiro estudo que relata a ocorrência de infecção e detecção molecular de FcaGHV1 em gatos domésticos no Brasil e na América do Sul. Palavras-chave: gamaherpesvirus, herpesvirus, patógenos felinos, doenças infecciosas, diagnóstico. INTRODUCTION subfamilies: alpha-, beta- and gamma herpesvirus (DAVISON, 2010). The majority of members of Herpesviruses are large and enveloped the Gammaherpesvirinae subfamily are potentially viruses that have a linear double-stranded DNA oncogenic (DAVISON et al., 2009). Thus, gamma genome. They are divided into three distinct herpesviruses are associated with the development Received 06.12.17 Approved 01.12.18 Returned by the author 02.28.18 CR-2017-0480.R3 Ciência Rural, v.48, n.3, 2018. 2 Kurissio et al. of lymphoproliferative disorders that persist were from cats that had infectious disease suspect after the viruses became latent in B lymphocytes and were from several localities of the country. (BARTON et al., 2011; SPECK & GANEM, 2010). DNA was extracted from the blood samples using a These viruses can be effectively contained by the commercial kit (GE HealthCare, Buckinghamshire, immune system of infected healthy individuals who UK) following the manufacturer’s recommendations. remain asymptomatic (USHERWOOD et al., 2001). Through molecular techniques using qPCR However, in immunosuppressed individuals, infection (quantitative PCR), were detected proviral DNA in with gammaherpesvirus, either as a sole agent or 87 feline retrovirus-positive DNA samples, while 95 by coinfection with other viruses, may lead to the samples were considered negative for the retrovirus. development of neoplasms and lymphoproliferative Of those 87 samples retrovirus-positive, 49 were diseases (MEANS et al., 2007; KAYE et al., 2016). FIV-positive, 32 were FeLV-positive and 6 samples Felis catus gammaherpesvirus 1 were positive for both FIV and FeLV. All samples (FcaGHV1) was first identified in the United were then tested for FcaGHV1, CPPV-1 and FeHV-1. States by TOYER et al (2014) and has since been Detection of FIV proviral DNA was performed based associated with coinfections, mainly with feline on the method of TANIWAKI & ARAÚJO JR (2011), retroviruses (BEATTY et al., 2014; TROYER et and the FeLV proviral DNA detection method used al., 2014). Coinfections involving retroviruses and primers described by TANDON et al. (2005) using an herpesviruses are common and can occur in humans ABI 7500 Fast thermal cycler (Applied Biosystems, and animals (ISFORT et al., 1992). Synergistic CA, USA). The CPPV-1 VP2 gene and the FeHV- interactions between herpes and retroviruses can 1 glycoprotein B gene were detected based on the favor disease progression producing a long latency methods described by DECARO et al. (2008) and period and efficient immune system evasion VÖGTLIN et al. (2002), respectively, using an ABI (EVERMANN et al., 1991). However, the clinical 7300 thermal cycler (Applied Biosystems). signs and pathogenesis related to FcaGHV1 infection The qPCR assay was used as qualitative are still not clear (KAYE et al., 2016; STUTZMAN- method for detecting the presence of FcaGHV1 RODRIGUEZ et al. 2016). DNA. To detect FcaGHV1 DNA, specific primers FcaGHV1 DNA has been detected in cats were designed to target the DNA polymerase from countries on most continents including Europe, gene based on the GenBank sequence KF840715, Oceania, North America and Asia (TROYER et al., resulting in a product of 174bp in length. The 2014; BEATTY et al., 2014; ERTL et al., 2015; primer sequences used for FcaGHV1 gene TATENO et al., 2017). Until date, no cases of amplification were FcaGHV1-P1 (forward) FcaGHV1 infection have been reported in felids in - 5’CCACATTGAAAGGCCCAAGG-3’ and Brazil or elsewhere in South America. Thus, this FcaGHV1-P2 (reverse) - 5’TGTTGTCTCCAGAT study investigated the occurrence of FcaGHV1 GCTGACG-3’. The qPCR reaction was then infection among domestic cats and correlated it prepared with 10μL of GoTaq® qPCR Master Mix with feline retroviruses (feline immunodeficiency (Promega, WI, USA), 0.2 µM of each FcaGHV1 virus (FIV) and feline leukemia virus (FeLV)) primer, 2.5% of DMSO (≥99.5%), 4μL of extracted and with other viral pathogens such as Carnivore DNA and nuclease free water to a total volume protoparvovirus 1 (CPPV-1), previously known of 20μL. The thermal cycling conditions were as as feline panleukopenia virus (FPV), and Feline follows: 95°C for 2min followed by 40 cycles at alphaherpesvirus 1 (FeHV-1). This research also 95°C for 10s and 60°C for 30s using an ABI 7500 evaluated potential risk factors of domestic cats for Fast thermal cycler (Applied Biosystems). Samples FcaGHV1 infection, regarding sex and age. evaluated were considered positive when they showed a single melting curve peak at a melting MATERIALS AND METHODS temperature (Tm) of approximately 77.20ºC (±0.55). During qPCR testing, amplicons of We analyzed EDTA-treated whole blood samples considered
Recommended publications
  • Molecular Analysis of Carnivore Protoparvovirus Detected in White Blood Cells of Naturally Infected Cats
    Balboni et al. BMC Veterinary Research (2018) 14:41 DOI 10.1186/s12917-018-1356-9 RESEARCHARTICLE Open Access Molecular analysis of carnivore Protoparvovirus detected in white blood cells of naturally infected cats Andrea Balboni1, Francesca Bassi1, Stefano De Arcangeli1, Rosanna Zobba2, Carla Dedola2, Alberto Alberti2 and Mara Battilani1* Abstract Background: Cats are susceptible to feline panleukopenia virus (FPV) and canine parvovirus (CPV) variants 2a, 2b and 2c. Detection of FPV and CPV variants in apparently healthy cats and their persistence in white blood cells (WBC) and other tissues when neutralising antibodies are simultaneously present, suggest that parvovirus may persist long-term in the tissues of cats post-infection without causing clinical signs. The aim of this study was to screen a population of 54 cats from Sardinia (Italy) for the presence of both FPV and CPV DNA within buffy coat samples using polymerase chain reaction (PCR). The DNA viral load, genetic diversity, phylogeny and antibody titres against parvoviruses were investigated in the positive cats. Results: Carnivore protoparvovirus 1 DNA was detected in nine cats (16.7%). Viral DNA was reassembled to FPV in four cats and to CPV (CPV-2b and 2c) in four cats; one subject showed an unusually high genetic complexity with mixed infection involving FPV and CPV-2c. Antibodies against parvovirus were detected in all subjects which tested positive to DNA parvoviruses. Conclusions: The identification of FPV and CPV DNA in the WBC of asymptomatic cats, despite the presence of specific antibodies against parvoviruses, and the high genetic heterogeneity detected in one sample, confirmed the relevant epidemiological role of cats in parvovirus infection.
    [Show full text]
  • Porcine Parvovirus VP1/VP2 on a Time Series Epitope Mapping: Exploring the Effects of High Hydrostatic Pressure on the Immune Recognition of Antigens
    bioRxiv preprint doi: https://doi.org/10.1101/330589; this version posted May 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Porcine Parvovirus VP1/VP2 on a Time Series Epitope Mapping: exploring the effects of high hydrostatic pressure on the immune recognition of antigens. Ancelmo Rabelo de Souzaa, Marriam Yamina, Danielle Gavac, Janice Reis Ciacci Zanellac, Maria Sílvia Viccari Gattia, Carlos Francisco Sampaio Bonafea, Daniel Ferreira de Lima Netoa,b* aDepartamento de Bioquímica e Biologia Tecidual e bDepartamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, 13083- 862, Campinas, SP, Brazil. cEmbrapa Suínos e Aves, Laboratório de Virologia de Suínos, 89715-899, Concórdia, SC, Brazil. *Corresponding author: Tel.: +55 19 3521-6229; E-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/330589; this version posted May 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Porcine parvovirus (PPV) is a DNA virus that causes reproductive failure in gilts and sows, resulting in embryonic and fetal losses worldwide. Epitope mapping of PPV is important for developing new vaccines. In this study, we used spot synthesis analysis for epitope mapping of the capsid proteins of PPV (NADL-2 strain) and correlated the findings with predictive data from immunoinformatics. The virus was exposed to three conditions prior to inoculation in pigs: native (untreated), high hydrostatic pressure (350 MPa for 1 h) at room temperature and high hydrostatic pressure (350 MPa for 1 h) at -18 °C, compared with a commercial vaccine produced using inactivated PPV.
    [Show full text]
  • Protoparvovirus Knocking at the Nuclear Door
    viruses Review Protoparvovirus Knocking at the Nuclear Door Elina Mäntylä 1 ID , Michael Kann 2,3,4 and Maija Vihinen-Ranta 1,* 1 Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, FI-40500 Jyvaskyla, Finland; elina.h.mantyla@jyu.fi 2 Laboratoire de Microbiologie Fondamentale et Pathogénicité, University of Bordeaux, UMR 5234, F-33076 Bordeaux, France; [email protected] 3 Centre national de la recherche scientifique (CNRS), Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33076 Bordeaux, France 4 Centre Hospitalier Universitaire de Bordeaux, Service de Virologie, F-33076 Bordeaux, France * Correspondence: maija.vihinen-ranta@jyu.fi; Tel.: +358-400-248-118 Received: 5 September 2017; Accepted: 29 September 2017; Published: 2 October 2017 Abstract: Protoparvoviruses target the nucleus due to their dependence on the cellular reproduction machinery during the replication and expression of their single-stranded DNA genome. In recent years, our understanding of the multistep process of the capsid nuclear import has improved, and led to the discovery of unique viral nuclear entry strategies. Preceded by endosomal transport, endosomal escape and microtubule-mediated movement to the vicinity of the nuclear envelope, the protoparvoviruses interact with the nuclear pore complexes. The capsids are transported actively across the nuclear pore complexes using nuclear import receptors. The nuclear import is sometimes accompanied by structural changes in the nuclear envelope, and is completed by intranuclear disassembly of capsids and chromatinization of the viral genome. This review discusses the nuclear import strategies of protoparvoviruses and describes its dynamics comprising active and passive movement, and directed and diffusive motion of capsids in the molecularly crowded environment of the cell.
    [Show full text]
  • Carnivore Protoparvovirus 1 Nonstructural Protein 1 (NS1) Gene
    Techne ® qPCR test Carnivore protoparvovirus 1 Nonstructural protein 1 (NS1) gene 150 tests For general laboratory and research use only Quantification of Carnivore protoparvovirus 1 genomes. 1 Advanced kit handbook HB10.03.07 Introduction to Carnivore protoparvovirus 1 Carnivore Protoparvovirus 1 is a genus in the virus family Parvoviridae, one of eight genera that contain viruses which infect vertebrate hosts and together make up the subfamily Parvovirinae. The conserved Nonstructural protein 1 (NS1) gene is the target for this genesig® detection kit. Carnivore protoparvovirus 1 is a small, linear, single-stranded DNA virus, with an icosahedral capsid that is non enveloped. The genome ranges from 4-6kb and as 2 open reading frames. 5’ ORF encodes 2 nonstructural proteins (NS1 & NS2) and the 3’ ORF encodes the capsid proteins. Five species are currently recognised, and most of these contain several different named viruses, virus strains, genotypes or serotypes. Due to the wide variety of types available, there are 4 species which prevalence is relatively high and are defined by the encoding for a particular replication protein, NS1 which is at least 85% identical to the protein encoded by other members of the species. Recognised species in genus Protoparvovirus include: Carnivore protoparvovirus 1 (includes canine arvovirus & feline parvovirus) Primate protoparvovirus 1 Rodent protoparvovirus Rodent protoparvovirus 2 (rat parvovirus 1) Ungulate parvovirus 1 (porcine parvovirus) Another virus in this group - Tusavirus 1 - has been reported from humans from Tunisia, Finland, Bhutan and Burkina Faso. Generalised symptoms are lethargy, vomiting, loss of appetite and diarrhoea which can cause dehydration. Carnivore protoparvovirus 1 in cats is known as Feline parvovirus (FPV) and can cause enteritis, panleukopnia and cerebellar ataxia in cats.Carnivore protoparvovirus 1 in dogs is called Canine parvovirus (CPV), can cause intestinal and lifelong cardiac disease in dogs.
    [Show full text]
  • Identification of a Novel Parvovirus in Domestic Cats
    Veterinary Microbiology 228 (2019) 246–251 Contents lists available at ScienceDirect Veterinary Microbiology journal homepage: www.elsevier.com/locate/vetmic Identification of a novel parvovirus in domestic cats T Georgia Diakoudia, Gianvito Lanavea, Paolo Capozzaa, Federica Di Profiob, Irene Melegarib, Barbara Di Martinob, Maria Grazia Pennisic, Gabriella Eliaa, Alessandra Cavallia, ⁎ Maria Tempestaa, Michele Cameroa, Canio Buonavogliaa, Krisztián Bányaid, Vito Martellaa, a Department of Veterinary Medicine, University of Bari, Valenzano, Italy b Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy c Department of Veterinary Science, University of Messina, Italy d Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary ARTICLE INFO ABSTRACT Keywords: A novel protoparvovirus species was identified in domestic cats. The virus was distantly related to the well- Parvovirus known feline (feline panleukopenia virus) and canine (canine parvovirus type 2) parvoviruses, sharing low Protoparvovirus nucleotide identities in the capsid protein 2 (less than 43%). The virus was genetically similar (100% at the Bufavirus nucleotide level) to a newly identified canine protoparvovirus, genetically related to human bufaviruses. The Cat feline bufavirus appeared as a common element of the feline virome, especially in juvenile cats, with an overall Respiratory infections prevalence of 9.2%. The virus was more common in respiratory samples (9.5%–12.2%) than in enteric samples of cats (2.2%). The role of bufaviruses in the etiology of feline respiratory disease complex, either as a primary or a secondary agents, should be defined. 1. Introduction described in cats (Lau et al., 2012; Ng et al., 2014; Zhang et al., 2014) (Table 1).
    [Show full text]
  • 2017 National Veterinary Scholars Symposium 18Th Annual August 4
    2017 National Veterinary Scholars Symposium 18th Annual August – 4 5, 2017 Natcher Conference Center, Building 45 National Institutes of Health Bethesda, Maryland Center for Cancer Research National Cancer Institute with The Association of American Veterinary Medical Colleges https://www.cancer.gov/ Table of Contents 2017 National Veterinary Scholars Symposium Program Booklet Welcome .............................................................................................................................. 1 NIH Bethesda Campus Visitor Information and Maps .........................................................2 History of the National Institutes of Health ......................................................................... 4 Sponsors ............................................................................................................................... 5 Symposium Agenda .......................................................................................................6 Bios of Speakers ................................................................................................................. 12 Bios of Award Presenters and Recipients ........................................................................... 27 Training Opportunities at the NIH ...................................................................................... 34 Abstracts Listed Alphabetically .......................................................................................... 41 Symposium Participants by College of Veterinary Medicine
    [Show full text]
  • SYNCRIP Facilitates Porcine Parvovirus Viral DNA Replication
    Chen et al. Vet Res (2021) 52:73 https://doi.org/10.1186/s13567-021-00938-6 RESEARCH ARTICLE Open Access SYNCRIP facilitates porcine parvovirus viral DNA replication through the alternative splicing of NS1 mRNA to promote NS2 mRNA formation Songbiao Chen†, Bichen Miao†, Nannan Chen, Caiyi Chen, Ting Shao, Xuezhi Zhang, Lingling Chang, Xiujuan Zhang, Qian Du, Yong Huang* and Dewen Tong* Abstract Porcine Parvovirus (PPV), a pathogen causing porcine reproductive disorders, encodes two capsid proteins (VP1 and VP2) and three nonstructural proteins (NS1, NS2 and SAT) in infected cells. The PPV NS2 mRNA is from NS1 mRNA after alternative splicing, yet the corresponding mechanism is unclear. In this study, we identifed a PPV NS1 mRNA bind- ing protein SYNCRIP, which belongs to the hnRNP family and has been identifed to be involved in host pre-mRNA splicing by RNA-pulldown and mass spectrometry approaches. SYNCRIP was found to be signifcantly up-regulated by PPV infection in vivo and in vitro. We confrmed that it directly interacts with PPV NS1 mRNA and is co-localized at the cytoplasm in PPV-infected cells. Overexpression of SYNCRIP signifcantly reduced the NS1 mRNA and protein levels, whereas deletion of SYNCRIP signifcantly reduced NS2 mRNA and protein levels and the ratio of NS2 to NS1, and further impaired replication of the PPV. Furthermore, we found that SYNCRIP was able to bind the 3′-terminal site of NS1 mRNA to promote the cleavage of NS1 mRNA into NS2 mRNA. Taken together, the results presented here dem- onstrate that SYNCRIP is a critical molecule in the alternative splicing process of PPV mRNA, while revealing a novel function for this protein and providing a potential target of antiviral intervention for the control of porcine parvovirus disease.
    [Show full text]
  • Viruses Introduction
    Chapter 1 Introduction to Viruses Viruses as a concept are just a little younger than bacteria - they were first described only in the 1890s - yet have probably co-existed with cellular life t h r o u g h n e a r l y t h e w h o l e o f evolutionary history on this planet. This chapter will give a brief account of the history of the discovery of viruses, concentrating on the technological developments that were necessary for the discovery events to happen. Chapter 1 Discovery of Viruses SUMMARY While people were aware of diseases of both humans and animals Viruses were discovered as an excluded now known to be caused by viruses many hundreds of years ago, entity rather than by being seen or the concept of a virus as a distinct entity dates back only to the cultured, due to the invention of efficient filters: the fact that cell-free extracts very late 1800s. Although the term had been used for many years from diseased plants and animals could previously to describe disease agents, the word “virus” comes from still cause disease led people to theorise that an unknown infectious a Latin word simply meaning “slimy fluid”. agent - a “filterable virus” - was responsible. Porcelain filters and the discovery of viruses The invention that allowed viruses to be discovered at all was the Chamberland- “Germ Proof Filter” Pasteur filter. This was developed in 1884 in Paris by Charles Chamberland, who from the Pasteur- worked with Louis Pasteur. It consisted of unglazed porcelain “candles”, with pore Chamberland Filter sizes of 0.1 – 1 micron (100 - 1000 nm), which could be used to completely remove all Co., Dayton, Ohio.
    [Show full text]
  • Medizinische Hochschule Hannover Detection of Murine Herpesvirus 68
    Medizinische Hochschule Hannover Institut für Virologie/ Helmholtz Zentrum für Infektionsforschung Detection of murine herpesvirus 68 by the innate immune system and studies on Mus musculus rhadinovirus 1 in its natural host INAUGURALDISSERTATION zur Erlangung des Grades einer Doktorin der Naturwissenschaften - Doctor rerum naturalium - (Dr. rer. nat.) vorgelegt von Sripriya Murthy aus Bangalore Hannover 2016 Angenommen vom Senat der Medizinischen Hochschule Hannover am 16.09.2016 Gedruckt mit Genehmigung der Medizinischen Hochschule Hannover Präsident: Prof. Dr. med. Christopher Baum Betreuer: Prof. Dr. rer. nat. Melanie M. Brinkmann Kobetreuer: Prof. André Bleich, PhD 1. Gutachter: Prof. Dr. rer. nat. Melanie M. Brinkmann 2. Gutachter: Prof. André Bleich, PhD 3. Gutachter: Prof. Dr. rer. nat. Beate Sodeik Tag der mündlichen Prüfung vor der Prüfungskomission: 16.09.2016 Prof. Dr. rer. nat. Christine Falk Prof. Dr. rer. nat. Melanie M. Brinkmann Prof. André Bleich, PhD Prof. Dr. rer. nat. Beate Sodeik Table of contents 1 Introduction ............................................................................................................ 1 1.1 Herpesviridae .................................................................................................... 1 1.1.1 Betaherpesvirinae ......................................................................................... 2 1.1.2 Gammaherpesvirinae .................................................................................... 4 1.2 Host defense ....................................................................................................
    [Show full text]
  • Diagnostics and Epidemiology of Aleutian Mink Disease Virus 30/2015
    YEB Recent Publications in this Series ANNA KNUUTTILA Diagnostics and Epidemiology of Aleutian Mink Disease Virus 12/2015 Milton Untiveros Lazaro Molecular Variability, Genetic Relatedness and a Novel Open Reading Frame (pispo) of Sweet Potato-Infecting Potyviruses 13/2015 Nader Yaghi Retention of Orthophosphate, Arsenate and Arsenite onto the Surface of Aluminum or Iron Oxide-Coated Light Expanded Clay Aggregates (LECAS): A Study of Sorption Mechanisms and DISSERTATIONES SCHOLA DOCTORALIS SCIENTIAE CIRCUMIECTALIS, Anion Competition ALIMENTARIAE, BIOLOGICAE. UNIVERSITATIS HELSINKIENSIS 30/2015 14/2015 Enjun Xu Interaction between Hormone and Apoplastic ROS Signaling in Regulation of Defense Responses and Cell Death 15/2015 Antti Tuulos Winter Turnip Rape in Mixed Cropping: Advantages and Disadvantages 16/2015 Tiina Salomäki ANNA KNUUTTILA Host-Microbe Interactions in Bovine Mastitis Staphylococcus epidermidis, Staphylococcus simulans and Streptococcus uberis 17/2015 Tuomas Aivelo Diagnostics and Epidemiology of Aleutian Mink Longitudinal Monitoring of Parasites in Individual Wild Primates Disease Virus 18/2015 Shaimaa Selim Effects of Dietary Energy on Transcriptional Adaptations and Insulin Resistance in Dairy Cows and Mares 19/2015 Eeva-Liisa Terhonen Environmental Impact of Using Phlebiopsis gigantea in Stump Treatment Against Heterobasidion annosum sensu lato and Screening Root Endophytes to Identify Other Novel Control Agents 20/2015 Antti Karkman Antibiotic Resistance in Human Impacted Environments 21/2015 Taru Lienemann Foodborne
    [Show full text]
  • VAF/Elite ® Health Profile
    Research Models Our Animal Models VAF* Health Profiles Charles River is committed to providing you with high-quality genetically The table below lists the infectious agents specifically excluded from our standardized models such as VAF/Plus® and VAF/Elite® animals, which are VAF/Plus®, VAF/Elite®, and immunodeficient VAF/Elite® animal colonies. free of select infectious agents and parasites. We understand that selecting the For further information regarding viral profiles, microbiological flora, or the appropriate animal model for your studies is critical to your research success. comprehensive list of agents included in the Charles River health surveillance To assist you, we offer an evaluation program that allows you to assess the program, visit the Health Reports section of our website (www.criver.com/info/rm), quality and compatibility of our animal models before making a purchase. call us at 1.877.274.8371, or email us at [email protected]. For more information, please go to www.criver.com/rmeval. Health Profile Species Agents Excluded† SEND, PVM, MHV, MVM, MPV, TMEV (GDVII), REO, EDIM, MAV, POLY, K, MCMV, MTLV, LCMV, HANT, ECTRO, ECUN, CARB, LDV, MNV Mouse M. pulmonis, Salmonella spp., S. moniliformis, C. kutscheri, H. hepaticus, C. rodentium SEND, PVM, SDAV, KRV, H-1, RPV, RMV, REO, RTV, LCMV, HANT, MAV, ECUN, CARB Rat M. pulmonis, Salmonella spp., S. moniliformis, C. kutscheri, H. hepaticus VAF/Plus® SEND, PVM, LCMV, REO, GAV Guinea pig M. pulmonis, Salmonella spp., S. moniliformis, S. zooepidemicus, B. bronchiseptica, H. hepaticus SEND, PVM, LCMV, REO, ECUN Hamster Salmonella spp., H. hepaticus ECUN, RHDV Rabbit P.
    [Show full text]
  • Diagnostics and Epidemiology of Aleutian Mink Disease Virus 30
    YEB View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Recent Publications in this Series ANNA KNUUTTILA Diagnostics and Epidemiology of Aleutian Mink Disease Virus 12/2015 Milton Untiveros Lazaro Molecular Variability, Genetic Relatedness and a Novel Open Reading Frame (pispo) of Sweet Potato-Infecting Potyviruses 13/2015 Nader Yaghi Retention of Orthophosphate, Arsenate and Arsenite onto the Surface of Aluminum or Iron Oxide-Coated Light Expanded Clay Aggregates (LECAS): A Study of Sorption Mechanisms and DISSERTATIONES SCHOLA DOCTORALIS SCIENTIAE CIRCUMIECTALIS, Anion Competition ALIMENTARIAE, BIOLOGICAE. UNIVERSITATIS HELSINKIENSIS 30/2015 14/2015 Enjun Xu Interaction between Hormone and Apoplastic ROS Signaling in Regulation of Defense Responses and Cell Death 15/2015 Antti Tuulos Winter Turnip Rape in Mixed Cropping: Advantages and Disadvantages 16/2015 Tiina Salomäki ANNA KNUUTTILA Host-Microbe Interactions in Bovine Mastitis Staphylococcus epidermidis, Staphylococcus simulans and Streptococcus uberis 17/2015 Tuomas Aivelo Diagnostics and Epidemiology of Aleutian Mink Longitudinal Monitoring of Parasites in Individual Wild Primates Disease Virus 18/2015 Shaimaa Selim Effects of Dietary Energy on Transcriptional Adaptations and Insulin Resistance in Dairy Cows and Mares 19/2015 Eeva-Liisa Terhonen Environmental Impact of Using Phlebiopsis gigantea in Stump Treatment Against Heterobasidion annosum sensu lato and Screening Root Endophytes to Identify
    [Show full text]