Introducing Die Datenkrake: Programmable Logic for Hardware Security Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IOTA: Detecting Erroneous I/O Behavior Via I/O Transaction Auditing
Appears in the First Workshop on Compiler and Architectural Techniques for Application Reliability and Security (CATARS) In Conjunction with the 2008 International Conference on Dependable Systems and Networks (DSN 2008) Anchorage, Alaska, June 2008 IOTA: Detecting Erroneous I/O Behavior via I/O Transaction Auditing Albert Meixner and Daniel J. Sorin Duke University [email protected], [email protected] Abstract nosed, the system could suggest that the user or system The correctness of the I/O system—and thus the administrator replace this device. If a driver bug is diag- nosed, the bug can be reported and the driver can be correctness of the computer—can be compromised by restarted (which is often sufficient). If a security breach hardware faults, driver bugs, and security breaches in is diagnosed, the system can shutdown the driver under downloaded device drivers. To detect erroneous I/O suspicion and alert the user. In this work, we focus on behavior, we have developed I/O Transaction Auditing error detection, rather than diagnosis and recovery. (IOTA), which checks the high-level behavior of I/O Our error detection mechanism, I/O Transaction transactions. In an IOTA-protected system, the operat- Auditing (IOTA), uses end-to-end checking [13] of I/O ing system creates a signature of the I/O transactions it transactions. We define a transaction as a high-level, expects to occur and every I/O device computes a signa- semantically atomic I/O operation, such as sending an ture of the transactions it actually performs. By compar- Ethernet frame. A transaction represents the basic I/O ing these signatures, IOTA can discover erroneous operation for higher level OS services such as the file behavior in both the hardware and the software respon- system or network stack. -
Three-Dimensional Integrated Circuit Design: EDA, Design And
Integrated Circuits and Systems Series Editor Anantha Chandrakasan, Massachusetts Institute of Technology Cambridge, Massachusetts For other titles published in this series, go to http://www.springer.com/series/7236 Yuan Xie · Jason Cong · Sachin Sapatnekar Editors Three-Dimensional Integrated Circuit Design EDA, Design and Microarchitectures 123 Editors Yuan Xie Jason Cong Department of Computer Science and Department of Computer Science Engineering University of California, Los Angeles Pennsylvania State University [email protected] [email protected] Sachin Sapatnekar Department of Electrical and Computer Engineering University of Minnesota [email protected] ISBN 978-1-4419-0783-7 e-ISBN 978-1-4419-0784-4 DOI 10.1007/978-1-4419-0784-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009939282 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword We live in a time of great change. -
DESIGN of WISHBONE INTERFACED I2CMASTER CORE CONTROLLER USING VERILOG Ramesh Babu Dasara1, Y
DESIGN OF WISHBONE INTERFACED I2CMASTER CORE CONTROLLER USING VERILOG Ramesh Babu Dasara1, Y. Chandra Sekhar Reddy2 1Pursuing M.tech, 2Assistant Professor, from Nalanda Institute of Engineering and Technology (NIET), Siddharth Nagar, Kantepudi village, Sattenepalli Mandal, Guntur Dist.,A.P. (India) ABSTRACT In this paper we are implementing one of the serial communication protocol called Inter integrated circuit (I2C) master controller. The protocol is made of set of standards with the master and slave configuration to allow data transfer. The I2C master with wishbone controller is implemented in Verilog HDL. The modules are synthesized in Xilinx 13.2i. Then simulated to observe the operation of the Master controller and wishbone controller which performs high speed data transfer in presence of master or slave. This yields higher speed data transfer over the network. Keywords: Master,Wishbone, SDA,SCK,SLAVE I. INTRODUCTION In electronic world to make communication between any two digital hardware devices needs serial communication standards. There are several communication standards are RS232, RS435, and SPI to make high speed and low speed data transfer. To implement protocols actually we require more number of pin connections, whereas the size of IC gradually decreasing so we need a protocol that can have minimum number of pin connections. The protocols existed earlier are SPI, MOCROWIRE and USB needs point to point connection such that needs multiplexing of data and address. The proposed protocol requires only two lines two communicate with nay number of devices while other needs more number of pin connections. The I2c is best suited for medium range communication between the circuit boards within the equipment. -
Open Borders for System-On-A-Chip Buses: a Wire Format for Connecting Large Physics Controls
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 15, 082801 (2012) Open borders for system-on-a-chip buses: A wire format for connecting large physics controls M. Kreider,1,2 R. Ba¨r,1 D. Beck,1 W. Terpstra,1 J. Davies,2 V. Grout,2 J. Lewis,3 J. Serrano,3 and T. Wlostowski3 1GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany 2Glyndwˆ r University, Wrexham, United Kingdom 3CERN, Geneva, Switzerland (Received 27 January 2012; published 23 August 2012) System-on-a-chip (SoC) bus systems are typically confined on-chip and rely on higher level compo- nents to communicate with the outside world. The idea behind the EtherBone (EB) protocol is to extend the reach of the SoC bus to remote field-programmable gate arrays or processors. The EtherBone core implementation connects a Wishbone (WB) Ver. 4 Bus via a Gigabit Ethernet based network link to remote peripheral devices. EB acts as a transparent interconnect module towards attached WB Bus devices. EB was developed in the scope of the WhiteRabbit Timing Project at CERN and GSI/FAIR. WhiteRabbit will make use of EB as a means to issue commands to its timing nodes and control connected accelerator hardware. DOI: 10.1103/PhysRevSTAB.15.082801 PACS numbers: 84.40.Ua, 29.20.Àc, 07.05.Àt systems hosted inside a field-programmable gate array I. PURPOSE AND ENVIRONMENT (FPGA). EtherBone was named after these underlying This article builds on the paper by the title ‘‘EtherBone—A technologies, Ethernet and Wishbone. However, EB re- network Layer for the Wishbone SoC Bus’’ in the sides in the Open Systems Interconnection session layer ICALEPCS 2011 conference proceedings and aims to pro- (OSI layer 5) and does not depend on a specific choice of vide details on design choices and performance analysis for lower layer protocols in implementation. -
Recommendation to Handle Bare Dies
Recommendation to handle bare dies Rev. 1.3 General description This application note gives recommendations on how to handle bare dies* in Chip On Board (COB), Chip On Glass (COG) and flip chip technologies. Bare dies should not be handled as chips in a package. This document highlights some specific effects which could harm the quality and yield of the production. *separated piece(s) of semiconductor wafer that constitute(s) a discrete semiconductor or whole integrated circuit. International Electrotechnical Commission, IEC 62258-1, ed. 1.0 (2005-08). A dedicated vacuum pick up tool is used to manually move the die. Figure 1: Vacuum pick up tool and wrist-strap for ESD protection Delivery Forms Bare dies are delivered in the following forms: Figure 2: Unsawn wafer Application Note – Ref : APN001HBD1.3 FBC-0002-01 1 Recommendation to handle bare dies Rev. 1.3 Figure 3: Unsawn wafer in open wafer box for multi-wafer or single wafer The wafer is sawn. So please refer to the E-mapping file from wafer test (format: SINF, eg4k …) for good dies information, especially when it is picked from metal Film Frame Carrier (FFC). Figure 4: Wafer on Film Frame Carrier (FFC) Figure 5: Die on tape reel Figure 6: Waffle pack for bare die Application Note – Ref : APN001HBD1.3 FBC-0002-01 2 Recommendation to handle bare dies Rev. 1.3 Die Handling Bare die must be handled always in a class 1000 (ISO 6) clean room environment: unpacking and inspection, die bonding, wire bonding, molding, sealing. Handling must be reduced to the absolute minimum, un-necessary inspections or repacking tasks have to be avoided (assembled devices do not need to be handled in a clean room environment since the product is already well packed) Use of complete packing units (waffle pack, FFC, tape and reel) is recommended and remaining quantities have to be repacked immediately after any process (e.g. -
From Sand to Circuits
From sand to circuits By continually advancing silicon technology and moving the industry forward, we help empower people to do more. To enhance their knowledge. To strengthen their connections. To change the world. How Intel makes integrated circuit chips www.intel.com www.intel.com/museum Copyright © 2005Intel Corporation. All rights reserved. Intel, the Intel logo, Celeron, i386, i486, Intel Xeon, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. 0605/TSM/LAI/HP/XK 308301-001US From sand to circuits Revolutionary They are small, about the size of a fingernail. Yet tiny silicon chips like the Intel® Pentium® 4 processor that you see here are changing the way people live, work, and play. This Intel® Pentium® 4 processor contains more than 50 million transistors. Today, silicon chips are everywhere — powering the Internet, enabling a revolution in mobile computing, automating factories, enhancing cell phones, and enriching home entertainment. Silicon is at the heart of an ever expanding, increasingly connected digital world. The task of making chips like these is no small feat. Intel’s manufacturing technology — the most advanced in the world — builds individual circuit lines 1,000 times thinner than a human hair on these slivers of silicon. The most sophisticated chip, a microprocessor, can contain hundreds of millions or even billions of transistors interconnected by fine wires made of copper. Each transistor acts as an on/off switch, controlling the flow of electricity through the chip to send, receive, and process information in a fraction of a second. -
UVM Based Reusable Verification IP for Wishbone Compliant SPI Master
UVM Based Reusable Verification IP for Wishbone Compliant SPI Master Core Lakhan Shiva Kamireddy∗, Lakhan Saiteja Ky ∗VLSI CAD Research Group, Department of Electrical and Computer Engineering, University of Colorado Boulder, CO 80303, USA, Email: [email protected] yDepartment of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur West Bengal 721302, India, Email: [email protected] Abstract—The System on Chip design industry relies heavily ming, coverage analysis, constrained randomization and as- on functional verification to ensure that the designs are bug- sertion based VIP. A methodological approach for verification free. As design engineers are coming up with increasingly dense increases the efficiency and reduces the verification effort. In chips with much functionality, the functional verification field has advanced to provide modern verification techniques. In this paper, we use UVM, a System Verilog based methodology this paper, we present verification of a wishbone compliant for testing an SPI master core that is wishbone compliant. Serial Peripheral Interface (SPI) Master core using a System The paper is organized into the following sections: Section Verilog based standard verification methodology, the Universal II introduces the key features of SV and UVM environment. Verification Methodology (UVM). By making use of UVM factory In Section-III, we introduce the SPI Master IP core for pattern with parameterized classes, we have developed a robust and reusable verification IP. SPI is a full duplex communication which the UVM framework is developed. Section-IV presents protocol used to interface components most likely in embedded our approach towards the development of UVM based VIP. systems. We have verified an SPI Master IP core design that Simulation results with snapshots and a critical discussion of is wishbone compliant and compatible with SPI protocol and the limitations of the design are presented in Section-V. -
Wishbone Bus Architecture – a Survey and Comparison
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012 WISHBONE BUS ARCHITECTURE – A SURVEY AND COMPARISON Mohandeep Sharma 1 and Dilip Kumar 2 1Department of VLSI Design, Center for Development of Advanced Computing, Mohali, India [email protected] 2ACS - Division, Center for Development of Advanced Computing, Mohali, India [email protected] ABSTRACT The performance of an on-chip interconnection architecture used for communication between IP cores depends on the efficiency of its bus architecture. Any bus architecture having advantages of faster bus clock speed, extra data transfer cycle, improved bus width and throughput is highly desirable for a low cost, reduced time-to-market and efficient System-on-Chip (SoC). This paper presents a survey of WISHBONE bus architecture and its comparison with three other on-chip bus architectures viz. Advanced Microcontroller Bus Architecture (AMBA) by ARM, CoreConnect by IBM and Avalon by Altera. The WISHBONE Bus Architecture by Silicore Corporation appears to be gaining an upper edge over the other three bus architecture types because of its special performance parameters like the use of flexible arbitration scheme and additional data transfer cycle (Read-Modify-Write cycle). Moreover, its IP Cores are available free for use requiring neither any registration nor any agreement or license. KEYWORDS SoC buses, WISHBONE Bus, WISHBONE Interface 1. INTRODUCTION The introduction and advancement of multimillion-gate chips technology with new levels of integration in the form of the system-on-chip (SoC) design has brought a revolution in the modern electronics industry. With the evolution of shrinking process technologies and increasing design sizes [1], manufacturers are integrating increasing numbers of components on a chip. -
Summarizing CPU and GPU Design Trends with Product Data
Summarizing CPU and GPU Design Trends with Product Data Yifan Sun, Nicolas Bohm Agostini, Shi Dong, and David Kaeli Northeastern University Email: fyifansun, agostini, shidong, [email protected] Abstract—Moore’s Law and Dennard Scaling have guided the products. Equipped with this data, we answer the following semiconductor industry for the past few decades. Recently, both questions: laws have faced validity challenges as transistor sizes approach • Are Moore’s Law and Dennard Scaling still valid? If so, the practical limits of physics. We are interested in testing the validity of these laws and reflect on the reasons responsible. In what are the factors that keep the laws valid? this work, we collect data of more than 4000 publicly-available • Do GPUs still have computing power advantages over CPU and GPU products. We find that transistor scaling remains CPUs? Is the computing capability gap between CPUs critical in keeping the laws valid. However, architectural solutions and GPUs getting larger? have become increasingly important and will play a larger role • What factors drive performance improvements in GPUs? in the future. We observe that GPUs consistently deliver higher performance than CPUs. GPU performance continues to rise II. METHODOLOGY because of increases in GPU frequency, improvements in the thermal design power (TDP), and growth in die size. But we We have collected data for all CPU and GPU products (to also see the ratio of GPU to CPU performance moving closer to our best knowledge) that have been released by Intel, AMD parity, thanks to new SIMD extensions on CPUs and increased (including the former ATI GPUs)1, and NVIDIA since January CPU core counts. -
Copyright by Iat Pui Chan Master of Science in Engineering December 2009
Copyright by Iat Pui Chan Master of Science in Engineering December 2009 The Report Committee for Iat Pui Chan Certifies that this is the approved version of the following report: USB 2.0 ULPI Design APPROVED BY SUPERVISING COMMITTEE: Supervisor: Jacob Abraham Mark McDermott USB2.0 ULPI Design by Iat Pui Chan, BSEE Report Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering The University of Texas at Austin December 2009 Abstract USB2.0 ULPI Design Iat Pui Chan, MSE The University of Texas at Austin, Fall 2009 Supervisor: Jacob Abraham This report outlines an implementation of an USB 2.0 ULPI LINK design. Chapter 1 presents an overview of the design and hardware required in the project. Chapter 2 presents how the design functions in an USB system. Chapter 3 describes the hardware implementation. Simulation result and synthesis result are shown in Chapter 4 and 5. iv Table of Contents List of Tables ........................................................................................................ vii List of Figures...................................................................................................... viii List of Figures...................................................................................................... viii Chapter 1: Introduction...........................................................................................1 1.1 System Overview......................................................................................1 -
Machxo3d Device Family Data Sheet
MachXO3D Device Family Data Sheet FPGA-DS-02026-1.0 November 2019 MachXO3D Device Family Data Sheet Disclaimers Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice. © 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 2 FPGA-DS-02026-1.0 MachXO3D Device Family -
Design and Verification Point-To-Point Architecture of WISHBONE Bus for System-On-Chip
International Journal of Emerging Engineering Research and Technology Volume 2, Issue 2, May 2014, PP 155-159 Design and Verification Point-to-Point Architecture of WISHBONE Bus for System-on-Chip Chandrala Brijesh A.1, Mahesh T. Kolte2 1Department of electronics and telecommunication, MIT College of Engineering, Pune, India 2Department of electronics and telecommunication, MIT College of Engineering, Pune, India Abstract: SOC design is an integration of multi million transistors in a single chip for time to market and reducing the cost of the design. This paper presents point-to-point Architecture of WISHBONE bus. Main aim of the WISHBONE bus Architectures are to transfer the data from master to slave in different application without redesign of IP core. And that one will increase the productivity with reduction in design time. Standard interface bus protocol should do the plug and play. Keywords: SOC, WISHBONE, Point-to-Point, Shared Bus interconnection, Data Flow interface architecture, Crossbar switch interconnection. 1. INTRODUCTION cores together. With the use of standard interconnection scheme, the cores may be Recent advancement in technology allows integrated more easily and quickly by the end integration of logic functions of multimillion user. This specification may be used for firm transistors into a single chip. To keep pace with core or hard core and soft core IP. Since hard the levels of integration, design engineers have cores and firm are generally conceived as soft developed new methodologies and techniques to cores. manage the increased complexity in these large chips [1]. System-on-Chip (SOC) design is The evolution of shrinking process technologies proposed as an extended methodology to this and increasing design sizes [3][4] has problem where intellectual property (IP) cores of encouraged the manufacturers to undertake and embedded processors, interface blocks, analog do this kind of multiple component integration blocks and memory blocks are combined on a on a single chip.