The Population Ecology and Behavior of the Cave Salamander, Eurycea Lucifuga (Rafinesque, 1822)

Total Page:16

File Type:pdf, Size:1020Kb

The Population Ecology and Behavior of the Cave Salamander, Eurycea Lucifuga (Rafinesque, 1822) University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2018 The population ecology and behavior of the cave salamander, Eurycea lucifuga (Rafinesque, 1822). Joseph Gavin Bradley University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Behavior and Ethology Commons, Population Biology Commons, and the Zoology Commons Recommended Citation Bradley, Joseph Gavin, "The population ecology and behavior of the cave salamander, Eurycea lucifuga (Rafinesque, 1822)." (2018). Electronic Theses and Dissertations. Paper 3041. https://doi.org/10.18297/etd/3041 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. THE POPULATION ECOLOGY AND BEHAVIOR OF THE CAVE SALAMANDER, EURYCEA LUCIFUGA (RAFINESQUE, 1822) By Joseph Gavin Bradley B.S., University of Louisville, 2011 M.S., University of Louisville, 2016 A Dissertation Submitted to the Faculty of the College of Arts and Sciences of the University of Louisville In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology Department of Biology University of Louisville Louisville, Kentucky August 2018 THE POPULATION ECOLOGY AND BEHAVIOR OF THE CAVE SALAMANDER, EURYCEA LUCIFUGA (RAFINESQUE, 1822) By J. Gavin Bradley B.S., University of Louisville, 2011 M.S., University of Louisville, 2016 A Dissertation Approved on July 3, 2018 by the following Dissertation Committee: Dissertation Director Perri Eason James Alexander Julian Lewis William Pearson Steve Yanoviak ii DEDICATION To Emma, Jameson, and Bailey iii ACKNOWLEDGEMENTS I would like to thank, tremendously, Dr. Perri Eason for her expert guidance and having the patience for my independence (and perhaps stubbornness at times) throughout this entire process. To Dr. Julian Lewis, I give thanks to his great devotion of knowledge and time in the field at the many caves we visited over these few years. I am further grateful for the opportunities, second chances, and skillful instruction of Dr. Steve Yanoviak, Dr. William Pearson, and Dr. James Alexander. Much of this research would not have been possible without the correspondence and help from Clay Foreman and the staff at E.P. “Tom” Sawyer State Park. Thanks to Svend Bentsen for producing historical documents of Sauerkraut Cave. I thank Allen Pursell and Mike Everidge of The Nature Conservancy for their time in showing and granting me access to study sites in Indiana. I thank Gary Roberson and the staff at Indiana Caverns for their friendliness, accommodation, and willingness to allow me to explore research opportunities. I would like to recognize Ken Bailey for his time and efforts in the field as well, and for introducing me to many Kentucky caves. I had an amazing group of undergraduates that assisted me with data collection. I am indebted to Paige Wilson and Danica Shepherd for their efforts and long-term dedication to this project. I much appreciate Faith Bowers for taking on the reigns after Paige and Danica moved on. I thank Logan Stone, Nick Callahan, and Will Seibt for their extended efforts. Emily Petri and Isaac Kaufman came on in the closing months of this iv project, and I am grateful for their help in the field and the lab. For any of those I have failed to mention, know you are appreciated. Many fellow graduate students helped me in various ways during this process. I thank Dr. Benjamin Adams, Dr. Evan Gora, and Lindsay Nason for statistical guidance. To past and present Eason lab members (Dr.’s Carl Cloyed, Sarah Fauque, Micah Perkins, Bill Persons, Victoria Prescott, Piyumika Suriyampola, and Jared Wood; Lindsay Nason and Jeeva Rathnaweera) and Megan DeWhatley, thank you all for your time, comments, suggestions, and help in the field. To Emma Bradley, never enough can be said. Thank you for your love, willingness, patience, support, and motivation toward my achievements. To the rest of my family, thank you for the love and support. This research was approved by the University of Louisville’s Institutional Animal Care and Use Committee (IACUC #17005), Kentucky Department of Fish and Wildlife Resources (permit #SC1511236, #SC1611045, and #SC1711045), Kentucky Department of Parks (permit #1412 and #1701), and the Indiana Department of Natural Resources: Division of Nature Preserves (permit #NP17-52). v ABSTRACT THE POPULATION ECOLOGY AND BEHAVIOR OF THE CAVE SALAMANDER, EURYCEA LUCIFUGA (RAFINESQUE, 1822) J. Gavin Bradley July 3, 2018 The Cave Salamander, Eurycea lucifuga (Rafinesque, 1822), is a little-known species, yet a common inhabitant of caves in the eastern United States. Salamanders are often important components of ecological communities and ecosystems, influencing critical processes such as nutrient cycling and community composition through their predation on invertebrates. Cave-dwelling salamanders such as E. lucifuga may thus appreciably influence the relatively simple ecosystems and communities of caves. Any such influence may be particularly important because these habitats and the organisms that reside in them are often of conservation concern. I used non-invasive methods to study the demographics, movements, and habitat selection of E. lucifuga at Sauerkraut Cave in Louisville, Kentucky. I also conducted an experimental manipulation using clay models to test predation risk to Cave Salamanders in caves and forests in southern Indiana. I discovered that E. lucifuga have consistent and distinguishable spot patterns that can be used to identify individuals. Populations of this species may be much larger than previously thought, potentially contributing relatively large and seasonally variable biomass to spring cave systems. Furthermore, this species migrates seasonally within vi caves using abiotic environmental cues that indicate seasonal change, potentially shuttling acquired energy from forests to deep underground. I also demonstrated that Cave Salamanders likely use caves, and particularly cave walls, as a refuge from greater potential predation risk in forests. This research provides much-needed information on this species and is suggestive that cave-dwelling salamanders may have important ecological roles in subterranean environments. vii TABLE OF CONTENTS PAGE ACKNOWLEDGEMENTS ....................................................................................................... iv ABSTRACT ......................................................................................................................... vi LIST OF TABLES .................................................................................................................. ix LIST OF FIGURES ..................................................................................................................x CHAPTER I: DISSERTATION INTRODUCTION .........................................................................1 CHAPTER II: IMAGE-BASED METHODS FOR THE IDENTIFICATION AND MEASUREMENT OF CAVE SALAMANDERS, EURYCEA LUCIFUGA (RAFINESQUE, 1822) ............................... 11 INTRODUCTION ...................................................................................................... 11 METHODS .............................................................................................................. 12 RESULTS ................................................................................................................ 22 DISCUSSION ........................................................................................................... 29 CHAPTER III: OBSERVATIONS ON THE POPULATION ECOLOGY OF THE CAVE SALAMANDER, EURYCEA LUCIFUGA (RAFINESQUE, 1822) ............................................ 35 INTRODUCTION ...................................................................................................... 35 METHODS .............................................................................................................. 37 RESULTS ................................................................................................................ 41 DISCUSSION ........................................................................................................... 46 CHAPTER IV: THE EFFECTS OF CLIMATE AND BEHAVIOR ON MIGRATORY MOVEMENTS OF CAVE SALAMANDERS, EURYCEA LUCIFUGA (RAFINESQUE, 1822) ................................ 55 INTRODUCTION ...................................................................................................... 55 METHODS .............................................................................................................. 60 RESULTS ................................................................................................................ 66 DISCUSSION ........................................................................................................... 77 CHAPTER IV APPENDIX .......................................................................................... 86 CHAPTER V: REFUGE FROM DANGER: HABITAT SELECTION BY CAVE SALAMANDERS, EURYCEA LUCIFUGA (RAFINESQUE, 1822) .................................................................... 88 INTRODUCTION .....................................................................................................
Recommended publications
  • The Natural History, Distribution, and Phenotypic Variation of Cave-Dwelling Spring Salamanders, Gyrinophilus Spp
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2005 The aN tural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia Michael Steven Osbourn Follow this and additional works at: http://mds.marshall.edu/etd Part of the Aquaculture and Fisheries Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Osbourn, Michael Steven, "The aN tural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia" (2005). Theses, Dissertations and Capstones. Paper 735. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. The Natural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia. Thesis submitted to The Graduate College of Marshall University In partial fulfillment of the Requirements for the degree of Master of Science Biological Sciences By Michael Steven Osbourn Thomas K. Pauley, Committee Chairperson Daniel K. Evans, PhD Thomas G. Jones, PhD Marshall University May 2005 Abstract The Natural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia. Michael S. Osbourn There are over 4000 documented caves in West Virginia, potentially providing refuge and habitat for a diversity of amphibians and reptiles. Spring Salamanders, Gyrinophilus porphyriticus, are among the most frequently encountered amphibians in caves. Surveys of 25 caves provided expanded distribution records and insight into ecology and diet of G.
    [Show full text]
  • 2004A IE Reports
    Contents Introduction…………………………………….…………………………………1 Using GIS to predict plant distributions: a new approach (Amy Lorang)……………………………………………………………………...3 Impacts of Hemlock Woolly Adelgid on Canadian and Carolina Hemlock Forests (Josh Brown)………………………………………………..……………………19 Effects of Adelgid-Induced Decline in Hemlock Forests on Terrestrial Salamander Populations of the Southern Appalachians: A Preliminary Study (Shelley Rogers)………………………………………………………………….37 Riparian zone structure and function in Southern Appalachian forested headwater catchments (Katie Brown)…………………………………………………………………….60 Successional Dynamics of Dulany Bog (Michael Nichols)………………………………………………………………...77 Mowing and its Effect on the Wildflowers of Horse Cove Road on the Highlands Plateau ((Megan Mailloux)……………………………………………………………….97 Acknowledgements……………………………………………………………..114 1 Introduction In the Fall of 2004, twelve undergraduate students from the University of North Carolina at Chapel Hill had the opportunity to complete ecological coursework through the Carolina Environmental Program’s Highlands field site. This program allows students to learn about the rich diversity of plants and animals in the southern Appalachians. The field site is located on the Highlands Plateau, North Carolina, near the junction of North Carolina, South Carolina and Georgia. The plateau is surrounded by diverse natural areas which create an ideal setting to study different aspects of land use change and threats to biodiversity. The Highlands Plateau is a temperate rainforest of great biodiversity, a patchwork of rich forests, granite outcrops, and wet bogs. Many rare or interesting species can be found in the area, with some being endemic to a specific stream or mountaintop. Some of these are remnants of northern species that migrated south during the last ice age; others evolved to suit a particular habitat, with a slightly different species in each stream.
    [Show full text]
  • <I>Salamandra Salamandra</I>
    International Journal of Speleology 46 (3) 321-329 Tampa, FL (USA) September 2017 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Subterranean systems provide a suitable overwintering habitat for Salamandra salamandra Monika Balogová1*, Dušan Jelić2, Michaela Kyselová1, and Marcel Uhrin1,3 1Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Šrobárova 2, 041 54 Košice, Slovakia 2Croatian Institute for Biodiversity, Lipovac I., br. 7, 10000 Zagreb, Croatia 3Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 1176, 165 21 Praha, Czech Republic Abstract: The fire salamander (Salamandra salamandra) has been repeatedly noted to occur in natural and artificial subterranean systems. Despite the obvious connection of this species with underground shelters, their level of dependence and importance to the species is still not fully understood. In this study, we carried out long-term monitoring based on the capture-mark- recapture method in two wintering populations aggregated in extensive underground habitats. Using the POPAN model we found the population size in a natural shelter to be more than twice that of an artificial underground shelter. Survival and recapture probabilities calculated using the Cormack-Jolly-Seber model were very constant over time, with higher survival values in males than in females and juveniles, though in terms of recapture probability, the opposite situation was recorded. In addition, survival probability obtained from Cormack-Jolly-Seber model was higher than survival from POPAN model. The observed bigger population size and the lower recapture rate in the natural cave was probably a reflection of habitat complexity.
    [Show full text]
  • The Salamanders of Tennessee
    Salamanders of Tennessee: modified from Lisa Powers tnwildlife.org Follow links to Nongame The Salamanders of Tennessee Photo by John White Salamanders are the group of tailed, vertebrate animals that along with frogs and caecilians make up the class Amphibia. Salamanders are ectothermic (cold-blooded), have smooth glandular skin, lack claws and must have a moist environment in which to live. 1 Amphibian Declines Worldwide, over 200 amphibian species have experienced recent population declines. Scientists have reports of 32 species First discovered in 1967, the golden extinctions, toad, Bufo periglenes, was last seen mainly species of in 1987. frogs. Much attention has been given to the Anurans (frogs) in recent years, however salamander populations have been poorly monitored. Photo by Henk Wallays Fire Salamander - Salamandra salamandra terrestris 2 Why The Concern For Salamanders in Tennessee? Their key role and high densities in many forests The stability in their counts and populations Their vulnerability to air and water pollution Their sensitivity as a measure of change The threatened and endangered status of several species Their inherent beauty and appeal as a creature to study and conserve. *Possible Factors Influencing Declines Around the World Climate Change Habitat Modification Habitat Fragmentation Introduced Species UV-B Radiation Chemical Contaminants Disease Trade in Amphibians as Pets *Often declines are caused by a combination of factors and do not have a single cause. Major Causes for Declines in Tennessee Habitat Modification -The destruction of natural habitats is undoubtedly the biggest threat facing amphibians in Tennessee. Housing, shopping center, industrial and highway construction are all increasing throughout the state and consequently decreasing the amount of available habitat for amphibians.
    [Show full text]
  • Species Assessment for Eastern Long-Tailed Salamander
    Species Status Assessment Class: Amphibia Family: Plethodontidae Scientific Name: Eurycea longicauda longicauda Common Name: Eastern long-tailed salamander Species synopsis: Eastern long-tailed salamanders occur in the eastern United States, primarily in the Ozark Highlands, Appalachian Highlands, and the Ohio River Valley (Conant and Collins 1991). A second subspecies, E. l. melanopleura, occurs in Arkansas, Illinois, Missouri, and Oklahoma. The three-lined salamander, E. guttolineata, which occurs in the southeastern United States, was formerly considered a subspecies of long-tailed salamander. E. l. longicauda is at the northern extent of its range in New York. It is associated with wet or moist terrestrial habitats, inhabiting slow moving streams, fens, and swamps, but may also be found in abandoned mines or caves that are permeated by calcareous ground water. Populations have declined rangewide due to habitat loss and degradation but remain locally abundant. In New York long-tailed salamanders were known historically as far north as Albany County but are now apparently present only in the Southern Tier and southern counties west of the Hudson River. I. Status a. Current and Legal Protected Status i. Federal ____Not Listed_______________________ Candidate? ___No____ ii. New York ____Special Concern; SGCN____________________________________ b. Natural Heritage Program Rank i. Global ________G5________________________________________________________ ii. New York _______S2S3________________ Tracked by NYNHP? __Yes____ Other Rank: IUCN – Least Concern Species of Northeast Regional Conservation Concern (Therres 1999) Species of High Concern (NEPARC 2010) 1 Status Discussion: Long-tailed salamander is apparently restricted to the southern tier and southeastern counties west of the Hudson River in New York. It has been designated as a species of Regional Conservation Concern in the Northeast due to its unknown population status and taxonomic uncertainty (Therres 1999).
    [Show full text]
  • Amphibian and Reptile Checklist
    KEY TO ABBREVIATIONS ___ Eastern Rat Snake (Pantherophis alleghaniensis) – BLUE RIDGE (NC‐C, VA‐C) Habitat: Varies from rocky timbered hillsides to flat farmland. The following codes refer to an animal’s abundance in ___ Eastern Hog‐nosed Snake (Heterodon platirhinos) – PARKWAY suitable habitat along the parkway, not the likelihood of (NC‐R, VA‐U) Habitat: Sandy or friable loam soil seeing it. Information on the abundance of each species habitats at lower elevation. AMPHIBIAN & comes from wildlife sightings reported by park staff and ___ Eastern Kingsnake (Lampropeltis getula) – (NC‐U, visitors, from other agencies, and from park research VA‐U) Habitat: Generalist at low elevations. reports. ___ Northern Mole Snake (Lampropeltis calligaster REPTILE C – COMMON rhombomaculata) – (VA‐R) Habitat: Mixed pine U – UNCOMMON forests and open fields under logs or boards. CHECKLIST R – RARE ___ Eastern Milk Snake (Lampropeltis triangulum) – (NC‐ U, VA‐U) Habitat: Woodlands, grassy balds, and * – LISTED – Any species federally or state listed as meadows. Endangered, Threatened, or of Special Concern. ___ Northern Water Snake (Nerodia sipedon sipedon) – (NC‐C, VA‐C) Habitat: Wetlands, streams, and lakes. Non‐native – species not historically present on the ___ Rough Green Snake (Opheodrys aestivus) – (NC‐R, parkway that have been introduced (usually by humans.) VA‐R) Habitat: Low elevation forests. ___ Smooth Green Snake (Opheodrys vernalis) – (VA‐R) NC – NORTH CAROLINA Habitat: Moist, open woodlands or herbaceous Blue Ridge Red Cope's Gray wetlands under fallen debris. Salamander Treefrog VA – VIRGINIA ___ Northern Pine Snake (Pituophis melanoleucus melanoleucus) – (VA‐R) Habitat: Abandoned fields If you see anything unusual while on the parkway, please and dry mountain ridges with sandier soils.
    [Show full text]
  • Biodiversity from Caves and Other Subterranean Habitats of Georgia, USA
    Kirk S. Zigler, Matthew L. Niemiller, Charles D.R. Stephen, Breanne N. Ayala, Marc A. Milne, Nicholas S. Gladstone, Annette S. Engel, John B. Jensen, Carlos D. Camp, James C. Ozier, and Alan Cressler. Biodiversity from caves and other subterranean habitats of Georgia, USA. Journal of Cave and Karst Studies, v. 82, no. 2, p. 125-167. DOI:10.4311/2019LSC0125 BIODIVERSITY FROM CAVES AND OTHER SUBTERRANEAN HABITATS OF GEORGIA, USA Kirk S. Zigler1C, Matthew L. Niemiller2, Charles D.R. Stephen3, Breanne N. Ayala1, Marc A. Milne4, Nicholas S. Gladstone5, Annette S. Engel6, John B. Jensen7, Carlos D. Camp8, James C. Ozier9, and Alan Cressler10 Abstract We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemism is high; of the troglobionts, 17 (33 % of those known from the state) are endemic to Georgia and seven (14 %) are known from a single cave. We identified three biogeographic clusters of troglobionts. Two clusters are located in the northwestern part of the state, west of Lookout Mountain in Lookout Valley and east of Lookout Mountain in the Valley and Ridge. In addition, there is a group of tro- globionts found only in the southwestern corner of the state and associated with the Upper Floridan Aquifer. At least two dozen potentially undescribed species have been collected from caves; clarifying the taxonomic status of these organisms would improve our understanding of cave biodiversity in the state.
    [Show full text]
  • 2005 MO Cave Comm.Pdf
    Caves and Karst CAVES AND KARST by William R. Elliott, Missouri Department of Conservation, and David C. Ashley, Missouri Western State College, St. Joseph C A V E S are an important part of the Missouri landscape. Caves are defined as natural openings in the surface of the earth large enough for a person to explore beyond the reach of daylight (Weaver and Johnson 1980). However, this definition does not diminish the importance of inaccessible microcaverns that harbor a myriad of small animal species. Unlike other terrestrial natural communities, animals dominate caves with more than 900 species recorded. Cave communities are closely related to soil and groundwater communities, and these types frequently overlap. However, caves harbor distinctive species and communi- ties not found in microcaverns in the soil and rock. Caves also provide important shelter for many common species needing protection from drought, cold and predators. Missouri caves are solution or collapse features formed in soluble dolomite or lime- stone rocks, although a few are found in sandstone or igneous rocks (Unklesbay and Vineyard 1992). Missouri caves are most numerous in terrain known as karst (figure 30), where the topography is formed by the dissolution of rock and is characterized by surface solution features. These include subterranean drainages, caves, sinkholes, springs, losing streams, dry valleys and hollows, natural bridges, arches and related fea- Figure 30. Karst block diagram (MDC diagram by Mark Raithel) tures (Rea 1992). Missouri is sometimes called “The Cave State.” The Mis- souri Speleological Survey lists about 5,800 known caves in Missouri, based on files maintained cooperatively with the Mis- souri Department of Natural Resources and the Missouri Department of Con- servation.
    [Show full text]
  • West Virginia Streamside Salamander Guilds and Environmental Variables with an Emphasis on Pseudotriton Ruber Ruber Kathryn Rebecca Pawlik
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2008 West Virginia Streamside Salamander Guilds and Environmental Variables with an Emphasis on Pseudotriton ruber ruber Kathryn Rebecca Pawlik Follow this and additional works at: http://mds.marshall.edu/etd Part of the Aquaculture and Fisheries Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Pawlik, Kathryn Rebecca, "West Virginia Streamside Salamander Guilds and Environmental Variables with an Emphasis on Pseudotriton ruber ruber" (2008). Theses, Dissertations and Capstones. Paper 780. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. West Virginia Streamside Salamander Guilds and Environmental Variables with an Emphasis on Pseudotriton ruber ruber Thesis submitted to The Graduate College of Marshall University In partial fulfillment of the Requirements for the Degree of Master of Science Biological Sciences By Kathryn Rebecca Pawlik Thomas K. Pauley, Committee Chair Frank Gilliam Jessica Wooten Marshall University Huntington, West Virginia Copyright April 2008 Abstract Amphibian distributions are greatly influenced by environmental variables, due in part to semi-permeable skin which makes amphibians susceptible to both desiccation and toxin absorption. This study was conducted to determine which streamside salamander species were sympatric and how environmental variables may have influenced habitat choices. One hundred sixty streams were surveyed throughout 55 counties in West Virginia during the summer of 2007. At each site, a 10 m2 quadrat was established around a central aquatic habitat.
    [Show full text]
  • Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians
    STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L.
    [Show full text]
  • H:\Ken\Salamander\SALAMANDERS W-Cover & Toc.Wpd
    Table of Contents I. Introduction ........................................................1 II. Species Accounts ....................................................1 A. Cave Salamander, Eurycea lucifuga Rafinesque ......................1 1. Taxonomy and Description .................................1 2. Historical and Current Distribution ...........................1 3. Species Associations .....................................2 4. Population Sizes and Abundance ............................2 5. Reproduction ...........................................3 6. Food and Feeding Requirements ............................3 B. Many Ribbed Salamander, Eurycea multiplicata geiseogaster ...........3 1. Taxonomy and Description .................................3 2. Life History and Ecological Information ........................3 C. Grotto Salamander, Typlotriton spealaeus Stejneger ...................4 1. Taxonomy and Description .................................4 2. Life History Information and Habitats .........................4 D. Long-tailed Salamander Eurycea longicauda melanopleura Cope ........5 1. Taxonomy and Description .................................5 2. Historical and Current Distribution ...........................5 3. Life History Information ...................................6 III. Ownership of Species Habitats ..........................................6 IV. Potential Threats to Species or Their Habitats ...............................6 V. Protective Laws .....................................................7 A. Federal .....................................................7
    [Show full text]
  • Obligate Salamander
    DOI: 10.1111/jbi.13047 ORIGINAL ARTICLE Hydrologic and geologic history of the Ozark Plateau drive phylogenomic patterns in a cave-obligate salamander John G. Phillips1 | Dante B. Fenolio2 | Sarah L. Emel1,3 | Ronald M. Bonett1 1Department of Biological Sciences, University of Tulsa, Tulsa, OK, USA Abstract 2Department of Conservation and Research, Aim: Habitat specialization can constrain patterns of dispersal and drive allopatric San Antonio Zoo, San Antonio, TX, USA speciation in organisms with limited dispersal ability. Herein, we tested biogeo- 3Department of Biology, Temple University, Philadelphia, PA, USA graphic patterns and dispersal in a salamander with surface-dwelling larvae and obli- gate cave-dwelling adults. Correspondence John G. Phillips, Department of Biological Location: Ozark Plateau, eastern North America. Sciences, University of Tulsa, Tulsa, OK, Methods: A population-level phylogeny of grotto salamanders (Eurycea spelaea com- USA. Current Email: [email protected] plex) was reconstructed using mitochondrial (mtDNA) and multi-locus nuclear DNA (nucDNA), primarily derived from anchored hybrid enrichment (AHE). We tested Funding information Theodore Roosevelt Memorial Grant - patterns of molecular variance among populations and associations between genetic American Museum of Natural History; distance and geographic features. University of Tulsa, Grant/Award Number: 20-2-1211607-53600; Oklahoma Results: Divergence time estimates suggest rapid formation of three major lineages Department of Wildlife Conservation, Grant/ in the Middle Miocene. Contemporary gene flow among divergent lineages appears Award Number: E-22-18 and E22-20; National Science Foundation, Grant/Award negligible, and mtDNA suggests that most populations are isolated. There is a signif- Number: DEB 1050322; Oklahoma icant association between phylogenetic distance and palaeodrainages, contemporary NSF-EPSCoR Program, Grant/Award Number: IIA-1301789 drainages and sub-plateaus of the Ozarks, as all features explain a proportion of genetic variation.
    [Show full text]