Book of Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

Book of Abstracts TERPNET 2013 2 TERPNET 2013 TERPNET 2013 11th International meeting Biosynthesis, Function and Biotechnology of Isoprenoids in Terrestrial and Marine Organisms A joint Meeting of TERPNET2013 Cost Action “Plant Engine” Cost Action “QualityFruit” “EU-SmartCell” June 1-5, 2013, Kolymvari, Crete, Greece Department of Pharmaceutical Science Aristotle University of Thessaloniki 3 TERPNET 2013 Contents TERPNET 2013 - Invitation and Introduction .......................................................................... 5 Terpnet Organization ................................................................................................................... 5 Local Organizing Committee .............................................................................................................. 7 Executive Committee of TERPNET ................................................................................................... 7 Financial support-Sponsors ......................................................................................................... 8 Program for TERPNET 2013 .............................................................................................................. 9 Abstracts and Oral presentations .............................................................................................. 29 List of Participants .................................................................................................................... 257 Index of Names .......................................................................................................................... 263 4 TERPNET 2013 TERPNET 2013 - Invitation and Introduction On behalf of TERPNET 2013, COST Action FA1006 “Plant Engine: Plant Metabolic Engineering”, COST Action FA1106 “QualityFruit” and SmartCell we are pleased to welcome you in 11th TERPNET meeting taking place June 1-5, 2013 in Kolymvari, Crete, Greece. Terpnet is an international affiliation of researchers working on all aspects of terpenes and isoprenoids, including investigations spanning from biosynthetic mechanisms to assessing the biological activities of these chemicals. This affiliation hosts bi-annual meetings that have been held in Europe, USA and Japan for the past two decades. The 10th meeting (TERPNET2011) was held in Kalmar, Sweden May 2011 and was organized by Professor Peter Brodelius, Linnaeus University. The 2013 meeting is organized by the Local Committee headed by Prof. Angelos Kanellis in close collaboration with the Executive Committee. Exceptionally, this event will be co-organized with COST Action FA1006 “Plant Engine”, COST Action FA1106 “QualityFruit” and EU project SmartCell. Cost Action FA1006 “Plant Engine” supports and enhances a Pan-European network, which combines resources, identifies target pathways and defines compounds, publicizes novel technologies and applications, sets standards for computational support, and develops synthetic approaches in plant metabolic engineering. The aim of COST action FA1106 “QualityFruit” is to foster European collaborations on fleshy fruits, such as tomato and grapevine. The main objective is to uncover new leads for improving fruit nutritional and sensory qualities by implementing integrated multidisciplinary approaches and advanced genomics and post-genomics technologies. Lastly, SmartCell is an EU Seventh Framework Program large collaborative project investigating the rational design of plant systems for the sustainable generation of value-added industrial products. In addition, prior to the main conference, the Final Meetings of two EU projects dealing with the biotechnology of plant secondary metabolites will take place, namely SmartCell and TERPMED. The scientific program of TERPNET 2013 covers all aspects of terpene/isoprenoid research including biosynthesis and structural biology, transport and regulation, genetics, metabolic engineering and biotechnology, synthetic biology applications as well as applications in agriculture and medicine. Plants, microorganisms, parasites and marine organisms are represented. The meeting takes place in small traditional village, Kolymvari, near Chania, Crete. The venue, the Orthodox Academy of Crete (OAC) is a modern Conference Center, situated in an 5 TERPNET 2013 exceptionally beautiful location only a few meters from the sea, and next to the Gonia Monastery (17th Century). We would like to thank Cost Actions FA1006 and FA1106 for sponsoring and co-organizing TERPPET2013. We are particularly indebted to the members of the TERPNET2013 Executive Committee and the local organizing committees as well as to the staff of the OAC Conference site for their efforts for the success of this Symposium. Appreciation is also extended to a number of private firms, which contributed to the success of this important event. Lastly, we acknowledge the help of the Group of Biotechnology of Pharmaceutical Plants of the Dept. of Pharmaceutical Science, Aristotle University. We wish you a pleasant stay in Kolymvari and an enjoyable TERPNET2013 Meeting. Angelos K. Kanellis, Heribert Warzecha, Mondher Bouzayen and Kirsi-Marja Oksman- Caldentey. 6 TERPNET 2013 Terpnet Organization Angelos K. Kanellis (Aristotle University of Thessaloniki, Greece - Chairman) Heribert Warzecha (Technische Universitaet Darmstadt, Germany) Mondher Bouzayen (UMR990 INRA/INP-ENSAT, France) Kirsi-Marja Oksman-Caldentey (VTT Technical Research Centre, Finland) Local Organizing Committee Vassilios Roussis (Kapodistrinian and National University of Athens) Kaliope Papadopoulou (University of Thessaly) Frangiskos Kolisis (National Technical University of Athens) Sotirios Kampranis (University of Crete) Antonios Makris (Institute of Agrobiotechnology/CERTH) Executive Committee of TERPNET Thomas J. Bach (University of Strasbourg, France) Jörg Bohlmann (University of British Columbia, Canada) Albert Boronat (University of Barcelona, Spain) Harro Bouwmeester (Wageningen University and Research Center, The Netherlands) Peter Brodelius (Linnaeus University, Sweden) Joe Chappell (University of Kentucky, USA) Jonathan Gershenzon (Max Planck Institute for Chemical Ecology, Germany) Werner Knöss (University of Bonn, Germany) Toshiya Muranaka (Yokohama City University, Japan) Joe Noel (Salk Institute for Biological Studies, USA) Anne Osbourn (John Innes Centre, UK) Reuben J. Peters (Iowa State University, USA) Eran Pichersky (University of Michigan, USA) 7 TERPNET 2013 Sponsors Lab Supplies Scientific BIOLine ® S c i e n t i f i c 8 TERPNET 2013 Program Outline of TERPNET 2013 Time Fri 31 May Sat 1 June Sun 2 June Mon 3 June Tue 4 June Wed 5 June Thu 6 June Session Session V VIII Terpenoids Session IX Terpenoids Roles in Fleshy Natural and Fruit Biology Roles for Pre- beyond Post- (sponsored by Terpenoids Symposium sponsored Symposium COST Action Introduction 8-9 Tour Official Opening by COST Tour FA1106 Jonathan Samara ACTION Samaria QUALITYFRUIT) Gershenzon Gorge Plant Gorge Mondher Dorothea Engine Bouzayen Tholl Heribert Jossi Hirschberg John Pickett Warzecha Jules Beekwilder Paul Fraser Session II Terpenoids and Pharmacognocy Matthias st Nees Rob Kalliopi in 21 Century Asaph Aharoni 9-10 Verpoorte Papdopoulou Werner Knöss Harry Klee Ludger Selected Talk Hermann Wessjohann Stuppner Reuben Peters Session III Exploring genomes, transcriptomes, Coffee Selected Talk proteomes and Gianfranco Diretto Break Selected Talk 10-11 Smart Cell metabolome to Stella Grando Efraim Selected Talk understand the Lewinsohn Coffee Break Meeting terpenome Philipp Zerbe Eric Schmelz Coffee Break Session X Elio Fantini TERPMED Session VI Plant and Johann FINAL Marine microbial Anders PROJECT Coffee Break terpenoids: production Rettberg 11-12 Meeting Joerg Bohlmann chemical systems for Benoit Kazuki Saito diversity, terpenoids Boachon function and Alain Dong biotechnology Goossens Lemeng Ernesto Mollo Paul Christou Selected Talk Vassilios Roussis Antonios 12-13 Selected Talk Shigeru Okada Lunch Makris Selected Talk Selected Talk Anneli Ritala 13-14 Lunch Lunch Lunch Session VII Session IV Understanding Terpenoids of structure and Toshiya biosynthesis function of Excursion Muranaka 14-15 and regulation terpene Selected Talk Albert Ferrer synthases Selected Talk Sarh O’ Connor Francis Mann Tariq Akhtar 9 TERPNET 2013 Selected Talk Selected Talk Qing Liu Selected Talk 15-16 Selected Talk Drik Pruefer Selected Talk Coffee Break Coffee Break Session XI New and Old Natalia Dudareva Feng Chen Approaches Coffee Break Sotirios Christina 16-17 Harro Kampranis White Bouwmeester Brigit Piechulla Joe Noel Martin Burke Selected Talk Selected Talk Session XII Terpenoids Registration and Selected Talk Industrial Selected Talk Selected Talk Applications 17-18 Selected Talk Selected Talk Michel Schalk Selected Talk Selected Talk Richard Burlingame Selected Talk Selected Talk Selected Talk General Selected Talk Selected Talk Discussion 18-19 Special Lecture I Selected Talk and Peter Brodersen Selected Talk Conclusion Session I Introduction to the Symposium Selected Talk Poster 19-20 Poster Session II Eran Poster Session I Session Pichersky Thomas Calikowski 20-21 Wine Tasting Dinner Dinner Farewell 21-22 and Welcome Dinner Dinner Gala Dinner 22-23 23-24 10 TERPNET 2013 Connor Program for TERPNET 2013 A joint Meeting of TERPNET2013, Cost Action “Plant Engine”, Cost Action QualityFruit” and “EU-SmartCell” Biosynthesis, Function and Biotechnology of Isoprenoids in Terrestrial and Marine Organisms Saturday June 1, 2013 16:00-19:00 Registration Session I 19:00-20:10 Introduction
Recommended publications
  • Polar Semivolatile Organic Compounds in Biomass-Burning Emissions and Their Chemical Transformations During Aging in an Oxidation flow Reactor
    Atmos. Chem. Phys., 20, 8227–8250, 2020 https://doi.org/10.5194/acp-20-8227-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Polar semivolatile organic compounds in biomass-burning emissions and their chemical transformations during aging in an oxidation flow reactor Deep Sengupta, Vera Samburova, Chiranjivi Bhattarai, Adam C. Watts, Hans Moosmüller, and Andrey Y. Khlystov Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA Correspondence: Vera Samburova ([email protected]) Received: 20 December 2019 – Discussion started: 23 January 2020 Revised: 7 May 2020 – Accepted: 18 May 2020 – Published: 16 July 2020 Abstract. Semivolatile organic compounds (SVOCs) emit- 350 g mol−1 decreased after OFR aging, while abundances ted from open biomass burning (BB) can contribute to chem- of low-MW compounds (e.g., hexanoic acid) increased. This ical and physical properties of atmospheric aerosols and indicated a significant extent of fragmentation reactions in also may cause adverse health effects. The polar fraction of the OFR. Methoxyphenols decreased after OFR aging, while SVOCs is a prominent part of BB organic aerosols, and thus a significant increase (3.7 to 8.6 times) in the abundance of it is important to characterize the chemical composition and dicarboxylic acids emission factors (EFs), especially maleic reactivity of this fraction. In this study, globally and region- acid (10 to 60 times), was observed. EFs for fresh and ratios ally important representative fuels (Alaskan peat, Moscow from fresh-to-aged BB samples reported in this study can be peat, Pskov peat, eucalyptus, Malaysian peat, and Malaysian used to perform source apportionment and predict processes agricultural peat) were burned under controlled conditions occurring during atmospheric transport.
    [Show full text]
  • Morphological, Chemical, and Genetic Characteristics of Korean Native Thyme Bak-Ri-Hyang (Thymus Quinquecostatus Celak.)
    antibiotics Article Morphological, Chemical, and Genetic Characteristics of Korean Native Thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.) Minju Kim 1, Jun-Cheol Moon 2, Songmun Kim 1,* and Kandhasamy Sowndhararajan 3,* 1 School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; [email protected] 2 Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; [email protected] 3 Department of Botany, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India * Correspondence: [email protected] (S.K.); [email protected] (K.S.); Tel.: +82-33-250-6447 (S.K.); +91-422-2642095 (K.S.) Received: 27 April 2020; Accepted: 25 May 2020; Published: 28 May 2020 Abstract: Bak-ri-hyang (Thymus quinquecostatus Celak.) is an important medicinal and aromatic plant in Korea. T. quinquecostatus population and is always mixed with other thyme cultivars during cultivation and marketing. Hence, this study aimed to determine the genetic variability and the essential oil composition of three Korean native thyme, T. quinquecostatus cultivars collected from the Wolchul, Jiri, and Odae mountains, in comparison with six commercial thyme cultivars (T. vulgaris), to distinguish Bak-ri-hyang from other thyme cultivars. The composition of essential oils obtained from nine individuals was analyzed by gas chromatography–mass spectrometry (GC–MS). The random amplified polymorphic DNA (RAPD) analysis was accomplished using 16 different primers. The GC–MS analysis revealed that Wolchul, creeping, golden, and orange cultivars belong to the geraniol chemotype. Whereas the Odae, lemon, and silver cultivars belong to the thymol chemotype. Further, linalool was the most abundant component in carpet and Jiri cultivars.
    [Show full text]
  • Resin Acids in Rosin (Colophony) Solder Flux Fume Laboratory Method Using Gas Chromatography
    Health and Safety Executive Resin acids in rosin (colophony) solder flux fume Laboratory method using gas chromatography Scope 1 This method describes the measurement of time-weighted average concentrations of rosin (also known as colophony) based solder flux fume collected onto membrane filters with analysis of the resin acid components, after derivatisation, by gas chromatography (GC). Summary 2 A measured volume of air is drawn through a membrane filter mounted in a sampling head close to the breathing zone. The filter is solvent desorbed, the resin acids derivatised and then quantified using GC with a flame ionisation detector (FID). If confirmation of the resin acid components’ identities is required, samples may also be analysed by GC with a mass spectrometer (MS) detector. However, MS is not recommended for quantitative analysis as, unlike an FID, the MS detector gives different response factors for the various resin acids. The use of alternative methods not included in the MDHS series is acceptable provided they can demonstrate the accuracy and reliability appropriate to the application. Recommended sampling 3 For long-term exposures: Maximum sampling time: 8 hours; Sampling rate: 1–2 l-1min; Sampled volume: up to 960 litres. For short-term exposures: Sampling time: 15 mins; Sampling rate: 2 lmin-1; Sampled volume: 30 litres. Prerequisites 4 Users of this method will need to be familiar with the content of MDHS14.1 Safety 5 Users of this method should be familiar with normal laboratory practice and MDHS83/3 carry out a suitable risk assessment. It is the user’s responsibility to establish appropriate health and safety practices and to ensure compliance with regulatory requirements.
    [Show full text]
  • Mountain Pine Beetle-Attacked Lodgepole Pine for Pulp and Papermaking
    Operational extractives management from- mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Working Paper 2007-15 Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5 (250) 363-0600 • cfs.nrcan.gc.ca/regions/pfc Natural Resources Ressources naturelles Canada Canada Canadian Forest Service canadien Service des forêts Operational extractives management from mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Initiative W orking Paper 2007œ15 Paprican 3800 W esbrook Mall Vancouver, B.C. V6S 2L9 Mountain Pine Beetle Initiative PO # 8.43 Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 W est Burnside Road Victoria, British Columbia V8Z 1M5 Canada 2007 ≤ Her Majesty the Queen in Right of Canada 2007 Printed in Canada Library and Archives Canada Cataloguing in Publication Allen, Larry Operational extractives m anagem ent from m ountain pine beetle-attached lodgepole pine from pulp and paperm aking / Larry Allen and Vic Uloth. (Mountain Pine Beetle Initiative working paper 2007-15) "Mountain Pine Beetle Initiative, Canadian Forest Service". "MPBI Project # 8.43". "Paprican". Includes bibliographical references: p. Includes abstract in French. ISBN 978-0-662-46480-8 Cat. no.: Fo143-3/2007-15E 1. Pulping--British Colum bia--Quality control. 2. Pulping--Alberta--Quality control. 3. Paper m ills-- Econom ic aspects--British Colum bia. 4. Pulp m ills--Econom ic aspects--Alberta. 5. Lodgepole pine--Diseases and pests–Econom ic aspects. 6. Mountain pine beetle--Econom ic aspects.
    [Show full text]
  • Genetic Diversity Among Thymus Spp. Using Rapd and Issr Markers
    6 Egyptian J. Desert Res., 69, Special Issue, 91-106 (2019) GENETIC DIVERSITY AMONG THYMUS SPP. USING RAPD AND ISSR MARKERS Esraa A. El Sherbeny*, El-Shaimaa S. El-Demerdash, Yasser A.M. Salama and Mohamed Z.S. Ahmed 1Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo, Egypt *E-mail: [email protected] his investigation was carried out to assess the relationships among three Thymus species; two wild species (Thymus T capitatus and Thymus decussatus) and a cultivar (Thymus vulgaris). Two molecular markers were used to determine the genetic relationships among them; random amplified polymorphic DNA (RAPD) and the inter-simple sequence repeats (ISSR) markers techniques. The results suggest that RAPD marker is the best choice for the evaluation of diversity and the genetic relationships between two wild Thymus species with high accuracy, which revealed 224 DNA bands detected across 15 primers with high polymorphism than ISSR, which revealed 336 DNA bands. The genetic relationship among Thymus species based on molecular data was developed using a dendrogram constructed by UPGMA cluster analysis. Conservationist may use the information of the present study to make effective decisions regarding the global protection and management of Thymus species in Egypt. Keywords: Thymus, genetic relationships, RAPD-PCR, ISSR The genus Thymus belongs to the family Lamiaceae and includes several hundreds of species distributed over the world (Akcin, 2006). The systematics of species remains difficult because of the interspecific hybridization, polyploidy and morphological similarities among species (Morales, 1996 and Tzakow and Constantinidis, 2005). The genus Thymus is known in several countries as a spice and food preservative, as well as a st The 1 Scientific Conference of Plant Genetic Resources Department, Ecology and Dry Lands Agriculture Division, Desert Research Center “Plant Genetic Resources and Sustainable Development Under Egyptian Desert Conditions” 13-16 November, 2019, Sharm El-Sheikh, South Sinai, Egypt 92 Esraa A.
    [Show full text]
  • Antiviral Activities of Oleanolic Acid and Its Analogues
    molecules Review Antiviral Activities of Oleanolic Acid and Its Analogues Vuyolwethu Khwaza, Opeoluwa O. Oyedeji and Blessing A. Aderibigbe * Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa; [email protected] (V.K.); [email protected] (O.O.O) * Correspondence: [email protected]; Tel.: +27-406022266; Fax: +08-67301846 Academic Editors: Patrizia Ciminiello, Alfonso Mangoni, Marialuisa Menna and Orazio Taglialatela-Scafati Received: 27 July 2018; Accepted: 5 September 2018; Published: 9 September 2018 Abstract: Viral diseases, such as human immune deficiency virus (HIV), influenza, hepatitis, and herpes, are the leading causes of human death in the world. The shortage of effective vaccines or therapeutics for the prevention and treatment of the numerous viral infections, and the great increase in the number of new drug-resistant viruses, indicate that there is a great need for the development of novel and potent antiviral drugs. Natural products are one of the most valuable sources for drug discovery. Most natural triterpenoids, such as oleanolic acid (OA), possess notable antiviral activity. Therefore, it is important to validate how plant isolates, such as OA and its analogues, can improve and produce potent drugs for the treatment of viral disease. This article reports a review of the analogues of oleanolic acid and their selected pathogenic antiviral activities, which include HIV, the influenza virus, hepatitis B and C viruses, and herpes viruses. Keywords: HIV; influenza virus; HBV/HCV; natural product; triterpenoids; medicinal plant 1. Introduction Viral diseases remain a major problem for humankind. It has been reported in some reviews that there is an increase in the number of viral diseases responsible for death and morbidity around the world [1,2].
    [Show full text]
  • Roles of Amino Acids in the <Italic>Escherichia Coli</Italic
    Article pubs.acs.org/biochemistry Roles of Amino Acids in the Escherichia coli Octaprenyl Diphosphate Synthase Active Site Probed by Structure-Guided Site-Directed Mutagenesis † ∥ † ‡ § † ‡ Keng-Ming Chang, Shih-Hsun Chen, Chih-Jung Kuo, , Chi-Kang Chang, Rey-Ting Guo, , ∥ † ‡ § Jinn-Moon Yang, and Po-Huang Liang*, , , † Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan ‡ Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan § Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan ∥ Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan *S Supporting Information ABSTRACT: Octaprenyl diphosphate synthase (OPPS) catalyzes consecutive condensation reactions of farnesyl diphosphate (FPP) with five molecules of isopentenyl diphosphates (IPP) to generate C40 octaprenyl diphosphate, which constitutes the side chain of ubiquinone or menaquinone. To understand the roles of active site amino acids in substrate binding and catalysis, we conducted site- directed mutagenesis studies with Escherichia coli OPPS. In conclusion, D85 is the most important residue in the first DDXXD motif for both FPP and IPP binding through an H-bond network involving R93 and R94, respectively, whereas R94, K45, R48, and H77 are responsible for IPP binding by providing H-bonds and ionic interactions. K170 and T171 may stabilize the farnesyl carbocation intermediate to facilitate the reaction, whereas R93 and K225 may stabilize the catalytic base (MgPPi) for HR proton abstraction after IPP condensation. K225 and K235 in a flexible loop may interact with FPP when the enzyme becomes a closed conformation, which is therefore crucial for catalysis. Q208 is near the hydrophobic part of IPP and is important for IPP binding and catalysis.
    [Show full text]
  • United States Patent \ .J Patented Oct
    2,907,738 United States Patent \ .j Patented Oct. 3, 1959 1 2 dibasic acids would also give polymerization in which the natural resin acid ester becomes an intimate part ‘ 2,907,738 of the ?nal polymer chemical composition. Such esteri ‘MIXED RESIN ACID ESTERS OF 4,4-BIS(47 ?cation reactions involving the phenolic hydroxyl groups HYDROXYARYL) PENTANOIC ACID 01 would conveniently be carried out by heating with a mix ture of the dibasic acid and acetic anhydride. Sylvan 0. Greenlee, Racine, Wis., assignor to The hydroxyaryl—substituted aliphatic acids contem~ S. C. Johnson & Son, Inc., Racine, Wis. plated for use in preparing the desired resinous poly No Drawing. Application June 30,1955 hydric phenols have two hydroxyphenyl groups attached ‘ Serial No.‘ 519,279’ 10 to a single carbon atom. The preparation of these sub~ stituted acids may be most conveniently carried out by 9 Claims. (Cl. 260-24)‘ condensing a keto-acid with the desired phenol. Expe rience in the preparation of bisphenols and related com pounds indicates that the carbonyl group of the keto This invention relates to new compositions which are 15 acid must be located next to a terminal carbon atom in ‘mixed esters of‘polyhydric alcohols, natural resin,acids, order to obtain satisfactory yields. A terminal carbon and hydroxyaryl-substituted aliphatic acids. atom as used herein refers to primary carbon atoms An object of this invention is to produce new com other ‘than the carboxyl carbon atom of the keto-acid. positions from natural resin acids, polyhydric alcohols Prior applications, Serial Nos. 464,607 and 489,300, and hydroxyaryl-substituted aliphatic acids which are 20 ?led October 25, 1954, and February 18, 1955, respec~ valuable as intermediates in the production of other more tively, disclose a number of illustrative compounds suit complex compositions.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Anamika Kothari Quang Ong Ron Caspi An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Peter D Karp Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Csac1394711Cyc: Candidatus Saccharibacteria bacterium RAAC3_TM7_1 Cellular Overview Connections between pathways are omitted for legibility. Tim Holland TM7C00001G0420 TM7C00001G0109 TM7C00001G0953 TM7C00001G0666 TM7C00001G0203 TM7C00001G0886 TM7C00001G0113 TM7C00001G0247 TM7C00001G0735 TM7C00001G0001 TM7C00001G0509 TM7C00001G0264 TM7C00001G0176 TM7C00001G0342 TM7C00001G0055 TM7C00001G0120 TM7C00001G0642 TM7C00001G0837 TM7C00001G0101 TM7C00001G0559 TM7C00001G0810 TM7C00001G0656 TM7C00001G0180 TM7C00001G0742 TM7C00001G0128 TM7C00001G0831 TM7C00001G0517 TM7C00001G0238 TM7C00001G0079 TM7C00001G0111 TM7C00001G0961 TM7C00001G0743 TM7C00001G0893 TM7C00001G0630 TM7C00001G0360 TM7C00001G0616 TM7C00001G0162 TM7C00001G0006 TM7C00001G0365 TM7C00001G0596 TM7C00001G0141 TM7C00001G0689 TM7C00001G0273 TM7C00001G0126 TM7C00001G0717 TM7C00001G0110 TM7C00001G0278 TM7C00001G0734 TM7C00001G0444 TM7C00001G0019 TM7C00001G0381 TM7C00001G0874 TM7C00001G0318 TM7C00001G0451 TM7C00001G0306 TM7C00001G0928 TM7C00001G0622 TM7C00001G0150 TM7C00001G0439 TM7C00001G0233 TM7C00001G0462 TM7C00001G0421 TM7C00001G0220 TM7C00001G0276 TM7C00001G0054 TM7C00001G0419 TM7C00001G0252 TM7C00001G0592 TM7C00001G0628 TM7C00001G0200 TM7C00001G0709 TM7C00001G0025 TM7C00001G0846 TM7C00001G0163 TM7C00001G0142 TM7C00001G0895 TM7C00001G0930 Detoxification Carbohydrate Biosynthesis DNA combined with a 2'- di-trans,octa-cis a 2'- Amino Acid Degradation an L-methionyl- TM7C00001G0190 superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E.
    [Show full text]
  • Supplemental Methods
    Supplemental Methods: Sample Collection Duplicate surface samples were collected from the Amazon River plume aboard the R/V Knorr in June 2010 (4 52.71’N, 51 21.59’W) during a period of high river discharge. The collection site (Station 10, 4° 52.71’N, 51° 21.59’W; S = 21.0; T = 29.6°C), located ~ 500 Km to the north of the Amazon River mouth, was characterized by the presence of coastal diatoms in the top 8 m of the water column. Sampling was conducted between 0700 and 0900 local time by gently impeller pumping (modified Rule 1800 submersible sump pump) surface water through 10 m of tygon tubing (3 cm) to the ship's deck where it then flowed through a 156 µm mesh into 20 L carboys. In the lab, cells were partitioned into two size fractions by sequential filtration (using a Masterflex peristaltic pump) of the pre-filtered seawater through a 2.0 µm pore-size, 142 mm diameter polycarbonate (PCTE) membrane filter (Sterlitech Corporation, Kent, CWA) and a 0.22 µm pore-size, 142 mm diameter Supor membrane filter (Pall, Port Washington, NY). Metagenomic and non-selective metatranscriptomic analyses were conducted on both pore-size filters; poly(A)-selected (eukaryote-dominated) metatranscriptomic analyses were conducted only on the larger pore-size filter (2.0 µm pore-size). All filters were immediately submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 mL conical tubes, incubated at room temperature overnight and then stored at -80oC until extraction. Filtration and stabilization of each sample was completed within 30 min of water collection.
    [Show full text]
  • A Specific Non-Bisphosphonate Inhibitor of the Bifunctional Farnesyl/Geranylgeranyl 2 Diphosphate Synthase in Malaria Parasites 3 4 Jolyn E
    bioRxiv preprint doi: https://doi.org/10.1101/134338; this version posted July 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A specific non-bisphosphonate inhibitor of the bifunctional farnesyl/geranylgeranyl 2 diphosphate synthase in malaria parasites 3 4 Jolyn E. Gisselberg1, Zachary Herrera1, Lindsey Orchard4, Manuel Llinás4,5,6, and Ellen Yeh1,2,3* 5 6 1Department of Biochemistry, 2Pathology, and 3Microbiology and Immunology, Stanford 7 Medical School, Stanford University, Stanford, CA 94305, USA 8 9 4Department of Biochemistry & Molecular Biology, 5Department of Chemistry and 6Huck 10 Center for Malaria Research, Pennsylvania State University, University Park, PA 16802 11 12 13 14 15 *Corresponding author and lead contact: [email protected] 16 17 1 bioRxiv preprint doi: https://doi.org/10.1101/134338; this version posted July 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 18 Summary 19 Isoprenoid biosynthesis is essential for Plasmodium falciparum (malaria) parasites and contains 20 multiple validated antimalarial drug targets, including a bifunctional farnesyl and geranylgeranyl 21 diphosphate synthase (FPPS/GGPPS). We identified MMV019313 as an inhibitor of 22 PfFPPS/GGPPS. Though PfFPPS/GGPPS is also inhibited by a class of bisphosphonate drugs, 23 MMV019313 has significant advantages for antimalarial drug development.
    [Show full text]
  • Morphological, Molecular and Phytochemical Variation in Some Thyme Genotypes
    Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 5 [11] October 2016: 25-35 ©2015 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal’s URL:http://www.bepls.com CODEN: BEPLAD Global Impact Factor 0.533 Universal Impact Factor 0.9804 ORIGINAL ARTICLE OPEN ACCESS Morphological, Molecular and phytochemical Variation in Some Thyme Genotypes Marzieh Dalir1 and Abbas Safarnejad* 1MSc, Biotechnology,Mashhad Branch, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran. Email:[email protected] 2*Corresponding author, Associate Professor, Faculty member of Khorasan Razavi Agricultural and Natural Resources Research Center or Mashhad Branch, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran Email: [email protected], ABSTRACT Thyme is an important medicinal plant in cosmetic, pharmaceutical and food industries. The first step for breeding of thyme is evaluating of genetic variation and relationship between thyme’s accessions. Thirteen accessions of Thyme medicinal plant were studied in the aspect of morphology, chemical and molecular variation. ANOVA showed significant differences between accessions for total characterization tested. The dendrogram constructed on the basis of morphology similarities showed two major clusters. In order to evaluate the genetic variation, the genomic DNA extracted using modified medicinal CTAB protocol. The evaluation of the quality of DNA was examined with electrophoresis. Twenty primers were used for PCR analysis and only 9 primers showed clear bands. Out of 149 bands, 83/22% were the polymorphism. The data were analyzed with SPSS and POPGENE programs and the dendrogram was drawn based on UPGMA and showed three major clusters.
    [Show full text]