United States Patent \ .J Patented Oct

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent \ .J Patented Oct 2,907,738 United States Patent \ .j Patented Oct. 3, 1959 1 2 dibasic acids would also give polymerization in which the natural resin acid ester becomes an intimate part ‘ 2,907,738 of the ?nal polymer chemical composition. Such esteri ‘MIXED RESIN ACID ESTERS OF 4,4-BIS(47 ?cation reactions involving the phenolic hydroxyl groups HYDROXYARYL) PENTANOIC ACID 01 would conveniently be carried out by heating with a mix ture of the dibasic acid and acetic anhydride. Sylvan 0. Greenlee, Racine, Wis., assignor to The hydroxyaryl—substituted aliphatic acids contem~ S. C. Johnson & Son, Inc., Racine, Wis. plated for use in preparing the desired resinous poly No Drawing. Application June 30,1955 hydric phenols have two hydroxyphenyl groups attached ‘ Serial No.‘ 519,279’ 10 to a single carbon atom. The preparation of these sub~ stituted acids may be most conveniently carried out by 9 Claims. (Cl. 260-24)‘ condensing a keto-acid with the desired phenol. Expe rience in the preparation of bisphenols and related com pounds indicates that the carbonyl group of the keto This invention relates to new compositions which are 15 acid must be located next to a terminal carbon atom in ‘mixed esters of‘polyhydric alcohols, natural resin,acids, order to obtain satisfactory yields. A terminal carbon and hydroxyaryl-substituted aliphatic acids. atom as used herein refers to primary carbon atoms An object of this invention is to produce new com other ‘than the carboxyl carbon atom of the keto-acid. positions from natural resin acids, polyhydric alcohols Prior applications, Serial Nos. 464,607 and 489,300, and hydroxyaryl-substituted aliphatic acids which are 20 ?led October 25, 1954, and February 18, 1955, respec~ valuable as intermediates in the production of other more tively, disclose a number of illustrative compounds suit complex compositions. able for use as the hydroxyaryl-substituted acid, and Another object of this invention is to produce new methods of preparing'the same. These materials, which compositions of the hereinbefore described ‘character are referred to for convenience as Diphenolic Acid, or which are valuable in the manufacture of more complex 25 DPA a trademark of S. C. Johnson & Son, Inc., com~ reaction products having unusually good chemical resist- , prise the condensation products of levulinic acid and ance, hardness, gloss, etc. phenol, substituted phenols or mixtures thereof. It is These and other objects and advantages ‘are attained to be understood that the phenolic nuclei of the ,Diphe ' by the present invention,‘ various novel features of which nolic Acid may be substituted with any groups which will become more fully apparent from the following 30 will not interfere with the esteri?cation reactions. For description, with particular‘reference to speci?c exam example, the nuclei may be alkylated as disclosed in ples which are to be considered as illustrative only. Serial No. 489,300 or they may be halogenated. The The compositions of this invention, being esters of Diphenolic Acid derived from 1 mol of levulinic acid polyhydric alcohols and mixtures of natural resin acids and 2 mols of phenol is particularly advantageous in and hydroxyaryl-substituted aliphatic acids, are relatively that it may be readily prepared to a high degree of high molecular weight resinous polyhydric phenols. The purity, whereas the use of substituted phenols, such as number of phenolic groups per molecule. are dependent the alkylated products, usually results in. mixed compo on the number of alcoholic hydroxyl groups present in sitions which are less readily puri?ed. On the other the polyhydric alcohol esteri?ed, as well as on the hand, there are cases Where the Diphenolic Acid derived amounts and proportions of natural resin acid and from alkylated phenols are more desirable than those hydroxyaryl-substituted aliphatic acid used in the prep derived from the nonalkylated product on the basis that aration of the esteri?ed product. the alkyl groups tend to give better organic solvent solu The mixed esters of this invention combine ‘within bility, ‘?exibility, and better water resistance. the same chemical molecule natural resin acid esters and The natural resin acids which may be used with these a phenolic residue, the natural resin acid ester portion 45 hydroxyaryl-substituted acids in the co-esteri?cation of being similar to the natural resin acid portion present the polyhydric alcohols are illustrated by the commercial in the so-called ester gums which are natural resin acid grades of rosin and other natural-occurring acid resins, esters of polyhydric alcohols. This property renders the such as the kauri, copal, damar, and Congo gums. compositions of this invention particularly valuable in Typical commercial grades of rosin, for example, have the manufacture‘ of complex products such as coating 50 and molding compositions, where the natural resin acid acid values of, around 150-175. Acid values as used esters are desirable for the purpose of contributing hard herein are de?ned as the number of milligrams of KOH ness and gloss to the ?nished product. The phenolic required to neutralized the acid present in a one-gram residues present in the compositions and introduced by sample. Typical damar gums have acid values ranging the hydroxyaryl-substituted aliphatic acids contribute‘ re~ 55 from 18 to 60. Kauri gums have acid values of from active phenolic hydroxyl groups which for the most part 60-80, while copal gums have acid values in the range do not enter into the esteri?cation reaction used in the of 105-130. The essential composition or" all these preparation of the mixed ‘esters of this invention. These natural-occurring resin acids are cyclic terpenic type functional groups permit further reaction between the acids of which abietic acid is fairly typical. mixed esters of this invention and such materials as 60 The polyhydric alcohols may be the nonresinous type aldehydes, epoxides, and carboxylic acids to yield addi~ or the resinous type. These polyhydric alcohols, be tional complex products. Reaction with aldehydes, cause of their polyfunctionality, will esterify with natural either in' the presence or absence of other compounds resin acids and hydroxyaryl-substituted acids to give a capable of polymerization with aldehydes, gives com resinous phenolic product. Illustrative of the nonresin positions which are valuable constituents of protective 65 ous type polyhydric alcohols are such materials as ethyl coatings and‘ molding resins. Similarly, the phenolic ene glycol, polyethylene glycols, propylene glycol, poly hydroxyl groups of the phenolic residues‘ may be reacted propylene glycols, 1,3-butane diol, 2,5-pentane diol, with polyepoxide compositions to give highly polymer 1,6-hexane diol, neopentyl glycol, glycerol, erythritol, ized products containing within the same molecule the pentaerythritol, polypentaerythritols, sorbitol, mannitol, natural resin acid ester‘residues. Esteri?cation‘ of the 70 alpha methyl, glucoside, polyallyl alcohols, diethanol phenolic hydroxyl groups of the phenolic residue with amine, triethanolamine, and tetramethylol cyclohexanolZ 2,907,738 'i' 3 4 The resinous polyhydfie alcohols Which may be used Esteri?eation of either the nonresinous or resinous in the preparation of the subject esters may be illustrated polyhydric alcohols with Diphenolic Acid and natural by Such materials as the l'esinells Ieaetion Products of resin acids is conveniently carried out by direct heating bisttlehvdroxyphenyl)isopropylidene With ethylene ch10‘ at temperatures of from 190—275° C. under conditions Tohydr’iil . 61‘ glycerol mo?eehlofohydrin- The reaction 5 where the water produced during condensation is continu ef the ‘Same. dihydrie Phenol with ‘epichlorohydfln or ously removed as it is formed. In the case where ep g'll’eei'ol 'die'hlofohydfin gives resinous polyhydric a100- oxide groups of, for example, a resinous composition of H015 which ‘are Polymeric polyhydric alcohols and Which the Epon resin type produced by Shell Chemical Corpo in some cases. in‘ addition to the alcholic hydroxyl groups. ration are partially esteri?ed only to the, extent of one 'eollt'ai‘n ePOXide groups- (The epoxidereenwinihg PYOd- 10 carboxyl group reacting with one epoxide group, lower nets are 'well illustrated by the commercially availa le temperatures may be used and no water is formed since Epon resins marketed by Shell Chemical Corporation) the reaction of the carboxyl group with the epoxide The preparation of these resinous polyhydric alcohols are group is that of direct addition with the formation of an described in US. Patents 2,456,408, 2,503,726, 2,615,008, ester-linkage and a free hydroxyl group. Since the Di '2,6'68,805, 2,668,807 and 2693,315- 15 phenolic Acid ‘and the polyhydric alcohols have boiling ‘ Other resinous polyhydri'c'alwhols which may be em- points which are in all cases above 190° C., the Water ployedwmay be illustrated by those which are prepared mayberemoved by permitting ittoyolatilize during es~ ‘by’ the'reaction of phenol-formaldehyde‘condensates with teriiication, Rgmoval of thelwam-vmayp also-be fad“ ‘chlorohydrins. For example, analkylphenol may be Con- tated by continuously bubblin'gthrou‘gh the reaction mix ‘dells'ed With formaldehyde, followed by treatment of 8m 20 ture during esteri?cation a stream of inert gas, such as alkaline solution of this intermediate methylol derivative carbon dioxideor nitrogen, It is also sometimes conven ‘With ‘3 ‘chlerohydrln, Such as glycerol'mollqehlorohydfini lent to. facilitate
Recommended publications
  • Polar Semivolatile Organic Compounds in Biomass-Burning Emissions and Their Chemical Transformations During Aging in an Oxidation flow Reactor
    Atmos. Chem. Phys., 20, 8227–8250, 2020 https://doi.org/10.5194/acp-20-8227-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Polar semivolatile organic compounds in biomass-burning emissions and their chemical transformations during aging in an oxidation flow reactor Deep Sengupta, Vera Samburova, Chiranjivi Bhattarai, Adam C. Watts, Hans Moosmüller, and Andrey Y. Khlystov Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA Correspondence: Vera Samburova ([email protected]) Received: 20 December 2019 – Discussion started: 23 January 2020 Revised: 7 May 2020 – Accepted: 18 May 2020 – Published: 16 July 2020 Abstract. Semivolatile organic compounds (SVOCs) emit- 350 g mol−1 decreased after OFR aging, while abundances ted from open biomass burning (BB) can contribute to chem- of low-MW compounds (e.g., hexanoic acid) increased. This ical and physical properties of atmospheric aerosols and indicated a significant extent of fragmentation reactions in also may cause adverse health effects. The polar fraction of the OFR. Methoxyphenols decreased after OFR aging, while SVOCs is a prominent part of BB organic aerosols, and thus a significant increase (3.7 to 8.6 times) in the abundance of it is important to characterize the chemical composition and dicarboxylic acids emission factors (EFs), especially maleic reactivity of this fraction. In this study, globally and region- acid (10 to 60 times), was observed. EFs for fresh and ratios ally important representative fuels (Alaskan peat, Moscow from fresh-to-aged BB samples reported in this study can be peat, Pskov peat, eucalyptus, Malaysian peat, and Malaysian used to perform source apportionment and predict processes agricultural peat) were burned under controlled conditions occurring during atmospheric transport.
    [Show full text]
  • Resin Acids in Rosin (Colophony) Solder Flux Fume Laboratory Method Using Gas Chromatography
    Health and Safety Executive Resin acids in rosin (colophony) solder flux fume Laboratory method using gas chromatography Scope 1 This method describes the measurement of time-weighted average concentrations of rosin (also known as colophony) based solder flux fume collected onto membrane filters with analysis of the resin acid components, after derivatisation, by gas chromatography (GC). Summary 2 A measured volume of air is drawn through a membrane filter mounted in a sampling head close to the breathing zone. The filter is solvent desorbed, the resin acids derivatised and then quantified using GC with a flame ionisation detector (FID). If confirmation of the resin acid components’ identities is required, samples may also be analysed by GC with a mass spectrometer (MS) detector. However, MS is not recommended for quantitative analysis as, unlike an FID, the MS detector gives different response factors for the various resin acids. The use of alternative methods not included in the MDHS series is acceptable provided they can demonstrate the accuracy and reliability appropriate to the application. Recommended sampling 3 For long-term exposures: Maximum sampling time: 8 hours; Sampling rate: 1–2 l-1min; Sampled volume: up to 960 litres. For short-term exposures: Sampling time: 15 mins; Sampling rate: 2 lmin-1; Sampled volume: 30 litres. Prerequisites 4 Users of this method will need to be familiar with the content of MDHS14.1 Safety 5 Users of this method should be familiar with normal laboratory practice and MDHS83/3 carry out a suitable risk assessment. It is the user’s responsibility to establish appropriate health and safety practices and to ensure compliance with regulatory requirements.
    [Show full text]
  • Mountain Pine Beetle-Attacked Lodgepole Pine for Pulp and Papermaking
    Operational extractives management from- mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Working Paper 2007-15 Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5 (250) 363-0600 • cfs.nrcan.gc.ca/regions/pfc Natural Resources Ressources naturelles Canada Canada Canadian Forest Service canadien Service des forêts Operational extractives management from mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Initiative W orking Paper 2007œ15 Paprican 3800 W esbrook Mall Vancouver, B.C. V6S 2L9 Mountain Pine Beetle Initiative PO # 8.43 Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 W est Burnside Road Victoria, British Columbia V8Z 1M5 Canada 2007 ≤ Her Majesty the Queen in Right of Canada 2007 Printed in Canada Library and Archives Canada Cataloguing in Publication Allen, Larry Operational extractives m anagem ent from m ountain pine beetle-attached lodgepole pine from pulp and paperm aking / Larry Allen and Vic Uloth. (Mountain Pine Beetle Initiative working paper 2007-15) "Mountain Pine Beetle Initiative, Canadian Forest Service". "MPBI Project # 8.43". "Paprican". Includes bibliographical references: p. Includes abstract in French. ISBN 978-0-662-46480-8 Cat. no.: Fo143-3/2007-15E 1. Pulping--British Colum bia--Quality control. 2. Pulping--Alberta--Quality control. 3. Paper m ills-- Econom ic aspects--British Colum bia. 4. Pulp m ills--Econom ic aspects--Alberta. 5. Lodgepole pine--Diseases and pests–Econom ic aspects. 6. Mountain pine beetle--Econom ic aspects.
    [Show full text]
  • Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-Gc Analysis
    ORIGINAL RESEARCH published: 25 January 2016 doi: 10.3389/fenrg.2016.00002 Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-GC Analysis Anne E. Harman-Ware1* , Robert Sykes1 , Gary F. Peter2 and Mark Davis1 1 National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA, 2 School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts from the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from Edited by: the pine samples were quantified, using standard curves, and included the monoter- Subba Rao Chaganti, University of Windsor, Canada penes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included Reviewed by: caryophyllene, humulene, and α-bisabolene. Diterpenoid resin acids were quantified in Yu-Shen Cheng, derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabi- National Yunlin University of Science and Technology, Taiwan etic, abietic, and neoabietic acids.
    [Show full text]
  • A Review of Wood Biomass-Based Fatty Acidsand Rosin Acids Use In
    polymers Review A Review of Wood Biomass-Based Fatty Acids and Rosin Acids Use in Polymeric Materials Laima Vevere *, Anda Fridrihsone , Mikelis Kirpluks and Ugis Cabulis Polymer Department, Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., LV-1006 Riga, Latvia; [email protected] (A.F.); [email protected] (M.K.); [email protected] (U.C.) * Correspondence: [email protected]; Tel.: +371-28869638 Received: 26 October 2020; Accepted: 14 November 2020; Published: 16 November 2020 Abstract: In recent decades, vegetable oils as a potential replacement for petrochemical materials have been extensively studied. Tall oil (crude tall oil, distilled tall oil, tall oil fatty acids, and rosin acids) is a good source to be turned into polymeric materials. Unlike vegetable oils, tall oil is considered as lignocellulosic plant biomass waste and is considered to be the second-generation raw material, thus it is not competing with the food and feed chain. The main purpose of this review article is to identify in what kind of polymeric materials wood biomass-based fatty acids and rosin acids have been applied and their impact on the properties. Keywords: crude tall oil; tall oil; fatty acids; rosin acids; polymer materials 1. Introduction The success of plastics as a commodity has been significant and polymer materials are a part of everyday life. The advantages of polymers over other materials can be attributed to their adjustable properties, low cost and ease of processing. Worldwide, the manufacturing of polymers grows every year, reaching almost 360 million tonnes in 2018 [1]. In the light of environmental challenges of the 21st century, the development of novel low-cost and scalable monomers from renewable resources is essential.
    [Show full text]
  • Tall Oil Production and Processing
    TALL OIL PRODUCTION AND PROCESSING Tall oil is a mixture of mainly acidic compounds found, like turpentine, in pine trees and obtained as a by-product of the pulp and paper industry. It is used as a resin in many different industries, including mining, paper manufacture, paint manufacture and synthetic rubber manufacture. It is extracted at the pulp and paper mill, and undergoes the first two processing steps there. Step 1 - Extraction of tall oil soap The "black liquor" from the paper making process is concentrated and left to settle. The top layer is known as "tall oil soap", and is skimmed off. The rest is recycled for further use in paper making. Step2 - Production of crude tall oil The tall oil soap is reacted with acid to form crude tall oil. The following reaction occurs: + + R—COONa + H3O → R—COOH + H2O + Na The acids formed from this reaction, along with small quantities of other compounds of similar volatility, make up the crude tall oil. All crude tall oil produced in New Zealand is then sent to a plant in Mt. Maunganui to complete processing. Step 3 - Crude tall oil distillation The oil is distilled into five components with different boiling points: heads (which boils first), then fatty acids, distilled tall oil (a mixture of fatty and resin acids), resin acids (collectively known as rosin) and pitch (the residue). All of these can be used in various industries as is, but some of the rosin is also further processed on site. Step 4 - Production of rosin paper size "Paper size" is the substance that stops all paper from behaving like blotting paper.
    [Show full text]
  • Resin Profile in a Bleached Kraft Pulp Process
    Resin Profile in a Bleached Kraft Pulp Process Jennie Berglund May 2012 Degree Project in Polymeric Materials, First Level Department of Fibre and Polymer Technology Royal Institute of Technology Stockholm, Sweden Abstract The aim with this project was to investigate how the amount and composition of resins varied during the process producing bleached birch pulp at the mill SCA Packaging Munksund. A literature study about how the resin removal can be improved has also been included. Problems with resins in the process are common at pulp and paper mills, especially when birch is used as a raw material. The resin can cause deposits on the equipment leading to process stops, but also lowered mechanical properties and spots on the paper products. The addition of tall oil to the digester is one way of improving the removal of resins, seasoning of wood, and a good debarking are other ones. Also the different washing and bleaching steps can affect the amount of resin remaining in the pulp. In this study pulp samples from eight different positions in the process were analyzed. To extract the samples a Soxtec device was used. Results showed that the most effective resin removal happened during the washing in their first washing step after the digester, a DD-washer. Here 77 % of the resin was removed, of totally 88 % during the whole process. Another step which was effective was the final washing step, the PO-press. About 36 % of the remaining resins in the pulp which entered the PO-press were washed out here. The extracts were analyzed with GC-FID and GC-MS to identify and quantify the substances, and determine how the composition varied over the manufacturing process.
    [Show full text]
  • Composition of American Distilled Tall Oils Thomas V
    321 Composition of American Distilled Tall Oils Thomas V. Magee and Duane F. Zinkel* USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, Wisconsin 53705-2398 The composition of the acidic components was deter­ mined for a cross section of distilled tall oil products pro­ duced in the United States. The composition varied wide­ ly as a result of different process designs and operations. Filtration of those products that crystallize offers a poten­ tial for upgrading some distilled tall oils. In the course of this work, a new resin acid, 7,15-pimaradien-18-oic acid, was isolated and identified. KEY WORDS: Distilled tall oil, resin acids, rosin, secodehydroabietate, tall oil. Tall oil is the most important domestic source of rosin and a major contributor to the production of fatty acids in the United States. Nearly all U.S. tall oil is distilled. The primary products are tall oil rosin (TOR) and tall oil fatty acids (TOFA); TOR and TOFA products are defined as contain­ ing a minimum of 90% resin acids or 90% fatty acids, respec­ tively. Other distillation cuts of mixed rosin and fatty acids not meeting this 90% minimum are grouped together as distilled tall oils. The yields and characteristics of TOR and TOFA depend on the design and operation of the distilla­ tion process, as does the byproduct distilled tall oil. The ob­ ject of this study was to characterize American distilled tall oils and to identify their principal components. 1 EXPERIMENTAL PROCEDURES = -28.8° (CHCl3; c 1.3); H nuclear magnetic resonance (NMR) (CDCl3): 0.83 (Me-20), 0.96 (Me-17), 1.25 (Me-19), Distilled tall oil samples were obtained from several tall 2.25 (dd, J = 1.7, 14.6 Hz, 1H, H-14), 3.64 (OMe), 4.96 (dd, oil fractionators.
    [Show full text]
  • Terpene and Terpenoid Emissions and Secondary Organic Aerosol Production
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2013 TERPENE AND TERPENOID EMISSIONS AND SECONDARY ORGANIC AEROSOL PRODUCTION Rosa M. Flores Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Atmospheric Sciences Commons, and the Environmental Engineering Commons Copyright 2013 Rosa M. Flores Recommended Citation Flores, Rosa M., "TERPENE AND TERPENOID EMISSIONS AND SECONDARY ORGANIC AEROSOL PRODUCTION", Dissertation, Michigan Technological University, 2013. https://doi.org/10.37099/mtu.dc.etds/818 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Atmospheric Sciences Commons, and the Environmental Engineering Commons TERPENE AND TERPENOID EMISSIONS AND SECONDARY ORGANIC AEROSOL PRODUCTION By Rosa M. Flores A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Environmental Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2013 © Rosa M. Flores This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Environmental Engineering. Department of Civil and Environmental Engineering Dissertation Advisor: Paul V. Doskey Committee Member : Chandrashekhar P. Joshi Committee Member : Claudio Mazzoleni Committee Member : Lynn Mazzoleni Committee Member : Judith Perlinger Department Chair: David Hand To dad
    [Show full text]
  • Tlu M Na Lp Eh to Nu Fitl U M Ab
    sessi n tuopi otetrapeD rapeD rapeD tnemt fo iBfotnemt iBfotnemt cudorpo stcudorpoiB cudorpo t t dna iBdnas iBdnas syso syso smetsysoiB smet smet - o t- o l t- o aA l t aA l aA DD DD DD 65 65 65 MMultifunctionalMultifunctionalultifunctional coatings coatings coatings for for for / / / 0202 0202 0202 as oFaninamsr N oFaninamsr N oFaninamsr N pplant-basedplant-basedlant-based textiles textiles textiles and and and ootherotherther cellulosic cellulosic cellulosic substrates substrate substratess NNinainaNina Forsman Forsman Forsman setartsbuscisolullecrehtodnaselitxetdesab-tnalprofsgnitaoclanoitcnufitluM setartsbuscisolullecrehtodnaselitxetdesab-tnalprofsgnitaoclanoitcnufitluM setartsbuscisolullecrehtodnaselitxetdesab-tnalprofsgnitaoclanoitcnufitluM BUSINESSBUSINESSBUSINESS + + + ECONOMECONOMECONOMYYY B I I I NBS NBS NBS 879 - 879 - 879 259 - - 259 - 06 259 - - 06 - 06 - 8283 - 8283 5 - 8283 5 ( p - 5 ( r p i n ( r p i t n r i t de n ) t de ) de ) ARTARTART + + + B I I I NBS NBS NBS 879 - 879 - 879 259 - - 259 - 06 259 - 06 - 06 - 9283 - 9283 2 - 9283 2 ( - 2 ( dp f ( dp ) f dp ) f ) DESIGNDESIGNDESIGN + + + S I I I NSS NSS NSS 9971 - 9971 - 9971 - 4394 4394 ( p 4394 ( r p i n ( r p i t n r i t de n ) t de ) de ) ARCHITECTURARCHITECTURARCHITECTUREEE S I I I NSS NSS NSS 9971 - 9971 - 9971 - 2494 2494 ( 2494 ( dp f ( dp ) f dp ) f ) SCIENCESCIENCESCIENCE + + + TECHNOLOGTECHNOLOGTECHNOLOGYYY tirvno laA laA laA ot isrevinUot yt isrevinUot yt isrevinU yt CROSSOVECROSSOVECROSSOVERRR nirenigE cieC loohcS oohcS ol oohcS ol l o f imehCf imehCf ac imehC ac ac l gnEl i gnEl i gnE een i r een i r een i gn r i gn gn DOCTORALDOCTORALDOCTORAL mtss BnstcdroiftetrapeD rapeD rapeD tnemt iBfotnemt fo iBfotnemt cudorpo t cudorpo t stcudorpoiB dna iBdnas iBdnas syso syso smet smet smetsysoiB +ficida*GMFTSH9 +ficida*GMFTSH9 +ficida*GMFTSH9 DOCTORALDOCTORALDOCTORAL DISSERTATIONSDISSERTATIONDISSERTATION SS www .
    [Show full text]
  • Study of Methods for Processing Tall Oil. Frank Abel Anderson Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1947 Study of Methods for Processing Tall Oil. Frank Abel Anderson Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Part of the Chemical Engineering Commons Recommended Citation Anderson, Frank Abel, "Study of Methods for Processing Tall Oil." (1947). LSU Historical Dissertations and Theses. 7897. https://digitalcommons.lsu.edu/gradschool_disstheses/7897 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. MANUSCRIPT THESES Unpublished theses submitted for the master’s and doctor’s degrees and deposited in the Louisiana State University Library are available Tor inspection. Use of any thesis is limited by the rights of the author. Bibliographical references may be noted, but passages may not be copied unless the author has given permission. Credit must be given in subsequent v>?ritten or published work. A library which borrows this thesis for use by its clientele is expected to make sure that the borrower is aware of the above restrictions # LOUISIANA STATE UNIVERSITY LIBRARY 119-a STUDY OF METHODS FOE PROCESSING TALL OIL A Dissertation Submitted to the Graduate Faculty or the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemical Engineering by Frank Abel Anderson S*, University of Southern California, 1936 M.S*, University of Maine, 1940 June, 1947 UMI Number: DP69275 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Resin and Fatty Acids in Water – PBM
    Organics Revision Date: Jun 23, 2021 Resin and Fatty Acids in Water – PBM Parameter Resin and Fatty Acids Analytical Method Solvent extraction, methylation, florisil cleanup, GC/MS Introduction This method is applicable to the quantitative determination of resin and fatty acids in water. Resin and fatty acids are naturally carboxylic acids. Resin acids are a primary component of tree pitch (together with terpenes). Fatty acids are ubiquitous natural products with many common sources, particularly vegetable oils and animal fats, where they occur primarily within triglycerides. The majority of environmental testing for resin and fatty acids in BC is conducted for pulp mill effluents and wastewaters. There are no current CSR standards for resin or fatty acids, but BC Working Water Quality Guidelines exist for Total Resin Acids. Resin acids are toxic to freshwater aquatic life, with increasing toxicity at lower pH levels. Method Summary Water samples are pH-adjusted and extracted with MTBE (methyl-t-butyl ether). Extracts are concentrated and derivatized with diazomethane (or equivalent) to produce the corresponding methyl ester derivatives, or other suitable derivatives. If required, extracts are cleaned-up by florisil adsorption column chromatography. The derivatives are analyzed by GC/MS or by an alternative mass spectrometric detection technique. LC/MS or preferably LC/MS/MS may alternatively be used (if performance criteria are met), which avoids the requirement for derivatization. This method is performance-based. Laboratories may adopt
    [Show full text]