Ecosystem Services Quake Or Bomb? Earth

Total Page:16

File Type:pdf, Size:1020Kb

Ecosystem Services Quake Or Bomb? Earth VOL. 97 NO. 5 1 MAR 2016 Ecosystem Services Quake or Bomb? Earth 2.0 Thank You to Our Partners & Sponsors Their support helps further develop and expand AGU programs, opportunities for members, and supports meetings. Organizational Partners AGU‘s organizational partnership program develops relationships with organizations that align with AGU’s values of unselfish cooperation in research and the highest standards of scientific integrity, while maintaining AGU’s reputation. These organizations share a vested interest in and commitment to advancing and communicating science and its power to ensure a sustainable future. 2016 Ocean Sciences Meeting Sponsors • PLOS: Public Library of Science • Sea-Bird Scientific • Consortium for Ocean Science Exploration and Engagement (COSEE) Earth & Space Science News Contents 1 MARCH 2016 PROJECT UPDATE VOLUME 97, ISSUE 5 22 Arctic Research on Thin Ice: Consequences of Arctic Sea Ice Loss Scientists embarked on a 6-month expedition in the Arctic Ocean to study the thinning sea ice cover, improve our understanding of sea ice loss effects, and help predict future changes. NEWS New Step Toward 7 Finding Earth 2.0 Researchers unveil a way to tease out the wobble of a star caused by unseen planets despite the confounding effects of star spots, which are the sunspots of distant stars. OPINION 16 10 PROJECT UPDATE Understanding Ecosystem Services from a Geosciences Perspective Drones in a Cold Climate Assessment of ecosystem services— the benefits society receives from As climate change reshapes the Earth’s polar regions, scientists turn ecosystems—can be improved by including to drone-mounted cameras to measure sea ice. One expedition found broader spatial and temporal scales of out that flying drones near Antarctica isn’t easy. geosciences perspectives. Earth & Space Science News Eos.org // 1 Contents DEPARTMENTS Editor in Chief Barbara T. Richman: AGU, Washington, D. C., USA; eos_ [email protected] Editors Christina M. S. Cohen Wendy S. Gordon Carol A. Stein California Institute Ecologia Consulting, Department of Earth and of Technology, Pasadena, Austin, Texas, USA; Environmental Sciences, Calif., USA; wendy@ecologiaconsulting University of Illinois at cohen@srl .caltech.edu .com Chicago, Chicago, Ill., USA; [email protected] José D. Fuentes David Halpern Department of Meteorology, Jet Propulsion Laboratory, Pennsylvania State Pasadena, Calif., USA; University, University davidhalpern29@gmail Park, Pa., USA; .com [email protected] Editorial Advisory Board M. Lee Allison, Earth and Space John W. Lane, Near-Surface Geophysics Science Informatics Jian Lin, Tectonophysics Mark G. Flanner, Atmospheric Figen Mekik, Paleoceanography Sciences and Paleoclimatology Nicola J. Fox, Space Physics Jerry L. Miller, Ocean Sciences and Aeronomy Michael A. Mischna, Planetary Sciences Steve Frolking, Biogeosciences Thomas H. Painter, Cryosphere Sciences Edward J. Garnero, Study of the Philip J. Rasch, Global Environmental Earth’s Deep Interior Change Michael N. Gooseff, Hydrology Eric M. Riggs, Education 12 Brian C. Gunter, Geodesy Adrian Tuck, Nonlinear Geophysics Kristine C. Harper, History Sergio Vinciguerra, Mineral of Geophysics and Rock Physics Susan E. Hough, Natural Hazards Andrew C. Wilcox, Earth and Planetary 10–13 Opinion Emily R. Johnson, Volcanology, Surface Processes Geochemistry, and Petrology Earle Williams, Atmospheric Understanding Ecosystem Services Keith D. Koper, Seismology and Space Electricity Geomagnetism Societal Impacts from a Geosciences Perspective; Robert E. Kopp, Mary Lou Zoback, and Paleomagnetism and Policy Sciences Geochronology: It’s About Time. Staff Production: Faith A. Ishii, Production Manager; Melissa A. Tribur, Senior Production Specialist; Liz Castenson, Editor’s Assistant; Yael Fitzpatrick, Manager, Design and 27–28 Research Spotlight Branding; Valerie Bassett and Travis Frazier, Electronic Graphics Specialists Early Agriculture Has Kept Earth Editorial: Peter L. Weiss, Manager/Senior News Editor; Mohi Kumar, Scientific Warm for Millennia; Oklahoma’s Content Editor; Randy Showstack, Senior News Writer; JoAnna Wendel, Writer; Dormant Faults Hide Huge Seismic Shannon Kelleher and Cody Sullivan, Interns Angelo Bouselli, Marketing Program Manager; Jamie R. Liu, Manager, Risk Potential; P Wave Amplitude Marketing: Marketing 27 Decay Offers a Glimpse of Earth’s Advertising: Christy Hanson, Manager; Tel: +1-202-777-7536; Email: advertising@ Structure. agu.org ©2016. American Geophysical Union. All Rights Reserved. Material in this issue may 3–8 News be photocopied by individual scientists for research or classroom use. Permission 29–32 Positions Available is also granted to use short quotes, figures, and tables for publication in scientific What Caused the Sudden Heating Current job openings in the Earth books and journals. For permission for any other uses, contact the AGU Publications of Uranus’s Atmosphere?; Quake Office. and space sciences. or Bomb? Seismic Waves Speak Eos (ISSN 0096-3941) is published semi-monthly, on the 1st and 15th of the month by Truth, Even If Nations Don’t; the American Geophysical Union, 2000 Florida Ave., NW, Washington, DC 20009, USA. Periodical Class postage paid at Washington, D. C., and at additional mailing Human Activities Account for Less Inside Back Cover: offices. POSTMASTER: Send address changes to Member Service Center, 2000 Than a Third of Ocean Nitrogen; Postcards from the Field Florida Ave., NW, Washington, DC 20009, USA. United States Still First in Science, Member Service Center: 8:00 a.m.–6:00 p.m. Eastern time; Tel: +1-202-462-6900; Remnants of a glacier’s passing, Fax: +1-202-328-0566; Tel. orders in U.S.: 1-800-966-2481; Email: [email protected]. Tech Research Spending; New Step seen in the Scottish Highlands. Use AGU’s Geophysical Electronic Manuscript Submissions system to submit a Toward Finding Earth 2.0; Claudia manuscript: http://eos-submit.agu.org. Joan Alexander (1959–2015). Views expressed in this publication do not necessarily reflect official positions of the On the Cover American Geophysical Union unless expressly stated. A drone’s-eye view of the U.S. Christine W. McEntee, Executive Director/CEO 9 Meeting Report icebreaker Nathaniel B. Palmer on The Impact of African Dust on Air 13 April 2015, en route to the ice Quality in the Caribbean Basin. shelves near East Antarctica. facebook.com/AmericanGeophysicalUnion @AGU_Eos linkedin.com/company/american-geophysical-union youtube.com/user/AGUvideos 2 // Eos 1 March 2016 NEWS What Caused the Sudden Heating of Uranus’s Atmosphere? heating. However, because the gas giants are so huge and rotate so fast, this heat circles the poles without spreading globally, so it wouldn’t account for the global upper atmospheric heating that’s been observed, Melin said. Given the storm in Uranus’s lower atmo- sphere, Melin suspects that another factor could be at work: low- amplitude “acoustic waves”—also known as gravity waves— generated by huge, turbulent storms. These waves originate from disturbances, like rip- ples in a pond. On Earth, gravity waves come from violent thunderstorms or when wind blows over a mountain. On the gas giants, storms in the lower altitudes create these waves, which propagate toward the higher NASA/JPL altitudes and generate heat, Melin said. The Voyager 2 spacecraft snapped these (left) true- color and (right) false- color images of Uranus in 1986. “Uranus is unique in that it has remained so very quiet [stormwise] for so long and that the appearance of these storms in 2014 cor- odels of Jupiter, Saturn, Uranus, and occur all the time on Jupiter and Saturn, the relates so well with the abrupt heating of the Neptune predict that the tempera- disturbances might have a hand in maintain- upper atmosphere,” Melin said. M tures of their upper atmospheres— ing high temperatures in their upper atmo- the zones of dilute gases far above the planets’ spheres, he suggested. Stormy Waves frigid cloud tops—should be around 200 kel- Melin presented the data on the Uranian Astronomers have seen a similar effect before vins, or –73°C. However, when the two Voy- heating last December at the 2015 AGU Fall on Saturn, said Leigh Fletcher, a planetary sci- ager spacecraft zipped by those gas giants in Meeting in San Francisco, Calif. (see http://bit entist who is also at the University of Leicester the late 1980s, scientists discovered that the .ly/FM15- abstract). in the United Kingdom but wasn’t involved in planets’ outermost atmospheres were much the research by Melin and his colleagues. In hotter than expected—nearing 1000 kelvins, Turning Up the Heat 2010, a huge storm erupted in Saturn’s lower or more than 700°C. During the past 20 Earth years, the upper atmosphere, and scientists witnessed the evo- Scientists have had trouble coming up with atmosphere of Uranus cooled from 750 to 550 lution of a region of hot gases that rose into a mechanism to explain these searing tem- kelvins, but since 2013, it has heated by about the upper atmosphere (see http://bit.ly/ peratures. Now, after decades of observation, 50 kelvins per Earth year, Melin said. A Uranus Saturn- Storm). they might be closer to an answer. year is 84 Earth years, so small variations in “Connecting this middle- atmospheric Although close monitoring has shown that Uranus’s atmospheric temperature while the activity to the tropospheric storms is very Uranus’s upper atmosphere underwent con- planet orbits the Sun should take place gradu- challenging, but it’s also possible that waves sistent cooling over the past 20 years, mea- ally. That the reversal happened relatively can transfer their energy all the way up to the surements since 2014 by University of Leices- quickly means that “something dramatic has top of the atmosphere, where Dr. Melin has ter’s Henrik Melin and colleagues revealed a changed,” Melin said. been working,” Fletcher continued. reversal toward heating. Several mechanisms can heat a planet, but However, scientists remain unclear as to During this time, other observers detected a none solve the mystery of the gas giants’ so- how these planets’ lower atmospheres inter- storm in the planet’s lower atmosphere.
Recommended publications
  • What Is the Meaning of This?
    What is the Meaning of This? Claudia Alexander Over a decade of exploration... Discovery of an ocean: Priceless Major Findings: • An ocean under the surface of Europa. • First ever successful probe of a gas giant atmosphere. • An icy satellite capable of gggenerating its own magnetosphere (Ganymede). • Characterization of the thin exospheres of icy satellites. • Sufficient detail of Io’s volcanism to call it a window into Earth’s past. • Detailed sampling of the Io plasma environment and its intricate connection to the dynamics of the magnetosphere. • Complete understanding of the formation of the Jovian ring. • High resolution sampling of a rarely Project Inception—November 19, 1977 visited region: the Jovian radiation belts LhdItltCiLaunch and Interplanetary Cruise—Oc t. 18, 1989 - Dec. 5, 1995 Galileo Prime Mission—Dec. 5, 1995 - Dec. 15, 1997 Galileo Europa Mission (GEM)—Dec. 15, 1997 - Jan. 1, 2000 • Discovery of an asteroid with its own Galileo Millennium Mission (GMM)—Jan. 1, 2000 - Sept. 21, 2003 moon 10/21/03 Galileo End of Mission Summary ‐cja‐ 2 Claudia with GLL Comet Nevski‐Novichonok (ISON) as it may appear at sunset on Nov. 29, if it survives its close approach. • Target of Rosetta Mission: Comet 67P/Churymov‐Gerasimenko. • Art Chmielewski’d best joke: Ukrainian sources reported today that the Rosetta target comet Churyumov‐Gerasimenko discoverer Dr. Churyumov married his former graduate student Dr. Gerasimenko. Dr. Gerasimenko will now hyphenate her name, Gerasimenko‐Churyumov. Dr. Churyumov stated that he would like the comet’s name to reflect his complete Russian name including the otchestvo, father’s name – Chury, making the comet’s name Churyvich‐Churyumov‐Gerasimenko‐Churyumov.
    [Show full text]
  • Rosetta at Comet 67P/Churyumov- Gerasimenko: Get Ready for the Ride NASA SBAG Report
    Rosetta at Comet 67P/Churyumov- Gerasimenko: Get Ready for the Ride NASA SBAG Report Bonnie Buratti, US Rosetta Project Scientist, JPL Arthur B. Chmielewski US Rosetta Project Manager, JPL 1 Mathieu Choukroun, US RosettaDeputy Project Scientist, JPL June 28, 2016 Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI. The US Contribution to Rosetta 1. 3 ½ instruments 2. 3 PI’s, PS, DPS, IDS 3. 46 Co-I’s and researchers 4. DSN 70 m and 34 m support 5. ASPEN scheduling software for science observations 6. SPICE support 7. Comet modeling 8. Shadow navigation for flight dynamics verification 9. Outreach and media products 2 10. Leadership for ESA's Amateur Ground Observing Campaign Pre-and post- 19 Feb 2016 outburst amateur images mages of 67P 13 Feb 2016 19 Feb 2016 27 February 17 Feb 2016 3 Instrument Purpose Country of Origin Alice Ultraviolet spectrometer United States CONSERT Radar tomography France COSIMA Dust composition Germany GIADA Dust detector Italy MIDAS Atomic Force Microscope Austria MIRO Microwave spectrometer/radiometer United States OSIRIS Narrow-angle and wide-angle cameras Germany 4 ROSINA Gas composition Switzerland RPC Magnetometer, plasma detectors Various, inc. US RSI Radio science investigation Germany VIRTIS Infrared spectrometer Italy Instrument Purpose Country of Origin APXS Alpha/x-ray spectrometer Germany CIVA Panoramic cameras and microscope France CONSERT Radar tomography of nucleus France COSAC Evolved gas analyzer: molecules Germany Ptolemy Evolved gas analyzer: isotopes United Kingdom MUPUS Surface and subsurface properties Germany ROLIS Descent imaging Germany 5 ROMAP Magnetometer and plasma monitor Germany/Hungary SD2 Sample drill and distribution system Italy SESAME Surface electric/acoustic properties Germany/Finland MIRO: Microwave Instrument on the Rosetta Orbiter • MIRO is a millimeter/submillimeter radio telescope.
    [Show full text]
  • Dr. Claudia Alexander Jet Propulsion Laboratory - California Institute of Technology, United States, [email protected]
    65th International Astronautical Congress 2014 Paper ID: 26655 MULTILINGUAL ASTRONAUTICAL TERMINOLOGY SYMPOSIUM (E8) Multilingual Astronautical Terminology (1) Author: Dr. Claudia Alexander Jet Propulsion Laboratory - California Institute of Technology, United States, [email protected] Ms. Andrea Angrum NASA, United States, [email protected] Ms. Melba Martin United States, [email protected] ASTRONOMY AND GEOLOGY VOCABULARY, I.E. "NASA WORDS" IN NATIVE AMERICAN LANGUAGES Abstract Language preservation is an issue of urgent concern to indigenous communities in the U.S. and Canada. The US Rosetta Project has developed a program in selected Native American communities in which contemporary STEM vocabulary is taught alongside the same vocabulary in an indigenous language. The program has been applied in Navajo, with extensions to Hopi, Ojibwe, and Hawaiian. NASA images and science are used and described in the native language, alongside both lay English, and scientific English. Additionally, science curriculum (geology/chemistry/botany/physics) elements drawn from the reservation itself, including geomorphology, geochemistry, soil physics, are included and discussed in the native language as much as possible | with their analogs in other planetary environments (such as Mars). The program began with a student defining 30 brand new Navajo words to describe what he called `NASA' words, such as: cell phone, astronaut, space suit, computer, and planets that are not visible to the naked eye. Building the program beyond the Navajo, unique issues in each reservation community presented challenges, ranging from organizing Elder's Round Tables for discussion, and recording, of language with first speakers, to cultural awareness of clans and local variations in dialects and customs.
    [Show full text]
  • JGE Special Issue on Diversity: Broadening Participation in the Earth and Space Sciences
    JGE Special Issue on Diversity: Broadening Participation in the Earth and Space Sciences Claudia Alexander Jet Propulsion Laboratory and Eric Riggs Purdue University 2002 Challenge to the AGU Diversity Subcommittee • Fred Spilhaus, President of AGU, challenged the newly formed Diversity Sub-committee to ‘educate’ the AGU membership about the issue of Diversity • Simultaneously (2003) a Joint Society Conference on Diversity among groups (below) drafted a joint policy statement – GSA (Geological Society of America) – AMS (American Meteorological Society) – AGU (American Geophysical Union) – AIP (American Institute of Physics) – others http://www.agu.org/sci_soc/education/jsc/ 2003 Policy Statement on Diversity (partial) • Increased participation and retention of women, minorities, and persons with disabilities is an essential component of maintaining a robust and productive scientific workforce in the Earth, ocean, atmospheric, space, and related physical sciences. The future health of these disciplines in the U.S. is threatened by declining undergraduate and graduate enrollments, loss of degree-granting geosciences programs, and ageing of the current scientific workforce. • Failure to attract and retain women and minorities in the geosciences is not well understood. • The scientific societies and organizations listed below commit to take an active leadership role in efforts to increase participation of women, minorities, and persons with disabilities in the Earth, ocean, atmospheric, space, and physical sciences workforce. Specifically, these groups agree to: – • Make diversity a priority in the use of their organizational resources, educate the members about the need to become more involved in promoting diversity, and provide access to resources that will enable their members to work productively on this issue.
    [Show full text]
  • Galileo Probe
    September 16, 2003 Many Miles, Many Moons: A Galileo Album By JOHN NOBLE WILFORD On Sunday, several hundred engineers and scientists will gather at the Jet Propulsion Laboratory in Pasadena, Calif., and await the end of the Galileo spacecraft in a suicide plunge into Jupiter's dense atmosphere. They are the kind of professionals who try to resist anthropomorphizing their machines, even one like Galileo, which has been a longtime companion in their lives and careers. But they freely concede that they will be there at the end as an act of homage. "It will be the equivalent of a wake," said Dr. Claudia Alexander, manager of the project. NASA Few flight teams have had to contend IO At left, a composite image of the moon, photographed by Galileo in April with a spacecraft more demanding of 1997. The surface, right, bubbles with erupting volcanoes. their attention and ingenuity. Launched in 1989 after a long delay caused by the loss of the space shuttle Challenger in 1986, Galileo took six years going to Jupiter, almost half a billion miles away, by a circuitous route dictated by the limited power of its initial rocket boost. From then on, the three-ton spacecraft was tormented by as many afflictions as poor Job. The main antenna, the one that scientists counted on for the return of pictures and data of Jupiter and its four largest moons, failed to unfurl. Engineers had to rely on a smaller antenna and an improvised system of data shorthand. Galileo was further hobbled by an erratic tape recorder.
    [Show full text]
  • (CEPS) Scientific Papers, Articles, and Blogs 2015 CEPS Employees
    Center for Earth and Planetary Studies (CEPS) Scientific Papers, Articles, and Blogs 2015 CEPS employees’ names are highlighted SCIENTIFIC PAPERS PRESENTED CEPS First Authors Title Conference Author 46th Lunar and B. A. Campbell, G. A. Morgan, N. E. Putzig, J. L. Enhanced Radar Visualization of the Structure in Yes Whitten, J. W. Holt, and R. J. Phillips the South Polar Deposits of Mars Planetary Science Conference Estimates of the Erosion Rates on Mars over Time 46th Lunar and C. Quantin-Nataf, R. A. Craddock, F. Dubuffet, L. No and Their Implications for the Evolution of the Lozac'h, and M. Martinot Planetary Science Atmopshere Conference "Fill and spill" Lava Emplacement Associated with 46th Lunar and C. W. Hamilton, S. P. Scheidt, J. E. Bleacher, R. P. No the December 1974 Flow on Kilauea Volcano, Irwin III, and W. B. Garry Planetary Science Hawaii, USA Conference D. W. Ming, D. W. Mittlefehldt, R. Gellert, T. 46th Lunar and Peretyazhko, B. C. Clark, R. V. Morris, A. S. Yen, R. E. Iron-Manganese Redox Reactions in Endeavour No Arvidson, L. S. Crumpler, W. H. Farrand, J. A. Grant, B. Crater Rim Apron Rocks Planetary Science L. Jolliff, T. J. Parker, and the Athena Science Team Conference D. W. Mittlefehldt, R. Gellert, D. W. Ming, R. V. Morris, Noachian Impact Ejecta on Murray Ridge and Pre- 46th Lunar and C. Schroder, A. S. Yen, W. H. Farrand, R. E. Arvidson, No Impact Rocks on Wdowiak Ridge, Endeavour B. J. Franklin, J. A. Grant, K. E. Herkenhoff, B. L. Jolliff, Planetary Science Crater, Mars: Opportunity Observations and the Athena Science Team Conference Analyses Of Basaltic Sediments Subjected To Wave 46th Lunar and No E.
    [Show full text]
  • Discover NASA
    SPACE SCIENCE INSTITUTE NEWSLETTER WINTER 2016 W Space Science Institute Newsletter THE CARINA NEBULA IMAGE CREDIT: NASA, ESA/ STSCI IN THIS ISSUE NCIL News… Big News in Astronomy Conference Highlights: Clouds Over Martian DPS, AGU and AAS Low Latitudes! By Dr. Karly Pitman, Executive Director Submitted by Dr. Todd Clancy – SSI NC While the rest of the world is Over the past two slowing down around the holidays, decades, the our scientists kick into high gear in importance of the winter months submitting grant clouds in Mars’ proposals, judging others’ proposals atmosphere has at review panels, and traveling to been established present results at national and through new More on Page 6… international conferences. This year, observations and Cassini Completes Final Close conference season kicked off with the modeling. A Enceladus Flyby! American Astronomical Society’s variety of cloud Division for Planetary Sciences forms reflects the (DPS) held Nov. 8-13, 2015 at the variety in Gaylord National Resort and saturation Figure 1. CRISM color Convention Center in National conditions (e.g. limb image of CO2 Harbor, MD. More on Page 10 atmospheric clouds – credit page 3. temperatures) and dynamical forcing ranging from local to global conditions. This range of behaviors spans narrow vertical pipes of uplift that force high altitude More on Page 2… perihelion (nearest to the Sun) cloud trails in the warm orbital phase of the Covering science news around Mars atmosphere, to the global low Boulder! latitude gird of the aphelion (farthest More on Page 5… from the Sun) cloud belt in the cold orbital phase of the Mars atmosphere.
    [Show full text]
  • Women in Astronomy: an Introductory Resource Guide
    Women in Astronomy: An Introductory Resource Guide by Andrew Fraknoi (Fromm Institute, University of San Francisco) [August 2021] © copyright 2021 by Andrew Fraknoi. All rights reserved. For permission to use, or to suggest additional materials, please contact the author at e-mail: fraknoi {at} fhda {dot} edu This guide to non-technical English-language materials is not meant to be a comprehensive or scholarly introduction to the complex topic of the role of women in astronomy. It is simply a resource for educators and students who wish to begin exploring the challenges and triumphs of women of the past and present. It’s also an opportunity to get to know the lives and work of some of the key women who have overcome prejudice and exclusion to make significant contributions to our field. We only include a representative selection of living women astronomers about whom non-technical material at the level of beginning astronomy students is easily available. Lack of inclusion in this introductory list is not meant to suggest any less importance. We also don’t include Wikipedia articles, although those are sometimes a good place for students to begin. Suggestions for additional non-technical listings are most welcome. Vera Rubin Annie Cannon & Henrietta Leavitt Claudia Alexander Cecilia Payne Table of Contents: 1. Resources on the History of Women in Astronomy 2. Resources on Issues Women Face 3. Material on Some Women Astronomers of the Past 4. Material on Some Living Astronomers who are Women 5. A Sampling of Material about Other Women Astronomers
    [Show full text]
  • Galileo to Go out with a Bang
    Inside September 12, 2003 Volume 33 Number 18 News Briefs . 2 An Independent Voice . 3 Special Events Calendar . 2 Safety: A One NASA Endeavor . 4 Secretarial Workshops . 2 Letters, Classifieds . 4 Jet Propulsion Laboratory a point about 22 degrees above the local horizon. The WF-PC 2 helps GALILEO, THE VENERABLE SPACECRAFT speed of the craft relative to observers would be 48.2 launched in 1989 and in orbit about Jupiter and its kilometers per second (nearly 108,000 mph). That is ID Rosetta moons since late 1995, will come to the end of its like traveling from Los Angeles to New York City in mission with a controlled dive into the planet on 82 seconds. comet target Sunday, Sept. 21. Galileo will rapidly burn up through friction with The Wide Field Planetary Camera Among Galileo’s bountiful science return is the the atmosphere, returning to its constituent atoms as 2, the JPL-built and developed discovery of likely subsurface water oceans on it makes its unnoticeable impact on the vast weather camera onboard NASA’s Hubble Europa, which has fueled speculation systems of Jupiter. Space Telescope, played a major about the possibility of life on Following its arrival at Jupiter part in identifying a football- the icy Jovian moon. Galileo in December 1995, Galileo shaped comet as the new target Galileo was not designed for circled the solar system’s for the European Space Agency’s such a search, so it largest planet 35 Rosetta mission, the first ever to was not subjected times. From launch land on a comet.
    [Show full text]
  • NASA`S Contribution to the International Rosetta Mission
    The U.S. Rosetta Project: NASA`s Contribution to the International Rosetta Mission C. Alexander, S. Gulkis, M. Frerking, M. Janssen, D. Holmes California Institute of Technology/Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena, CA 91109 818-393-7773 [email protected], [email protected], [email protected], [email protected], [email protected] J. Burch, A. Stern, W. Gibson, R. Goldstein, J. Parker, J. Scherrer, D. Slater Southwest Research Institute PO Drawer 28510 San Antonio, TX 78228-0510 (210) 522-6223 [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] S. Fuselier Lockheed Martin Advanced Technology Center Dept. ADCS, Bldg. 255 3251 Hanover St Palo Alto, CA 94304 650-424-3334 [email protected] T. Gombosi Department of Atmospheric, Oceanic and Space Sciences The University of Michigan 2455 Hayward Street Ann Arbor, MI 48109-2143 734-764-722 [email protected] Abstract—The International Rosetta Mission was TABLE OF CONTENTS successfully launched on March 2, 2004. NASA's 1. INTRODUCTION .............................................................1 contribution to this mission consists of the following three 2. THE U.S. ROSETTA PROJECT .......................................2 hardware experiments: Alice (an Ultraviolet Spectrometer), 3. LAUNCH SUPPORT ........................................................5 the Ion and Electron Sensor (IES - a plasma instrument), 4. COMMISSIONING...........................................................6 and the Microwave Instrument for the Rosetta Orbiter 5. OBSERVATIONS OF COMET C/2002 T7 (LINEAR) ...10 (MIRO), as well as other components. Collectively these 6. SUMMARY OF POST-LAUNCH OPERATIONS ..............11 elements are known as the U.S.
    [Show full text]
  • Lessons Learned from Low Cost Participation in Flagship Missions
    Abstract for 11th Low Cost Planetary Missions Conference June 9-11, 2015, Berlin, Germany US Rosetta – Lessons Learned from Low Cost Participation in Flagship Missions Arthur B. Chmielewski, Jet Propulsion Laboratory, California Institute of Technology, Project Manager, [email protected]; Claudia Alexander, Jet Propulsion Laboratory, California Institute of Technology, Project Scientist, [email protected] Rosetta, an ESA cornerstone mission, after dropping a lander on the surface of comet 67P/Churyumov-Gerasimenko has embarked on a yearlong task of studying the nucleus and its environment. The Lander primary mission lasted approximately 60 hours after which the orbiter started the escort phase conducting observations from both far and close proximity to the nucleus. The orbiter mission includes close approach passes at distances as close as 6 km. The orbiter will escort the comet through perihelion, to a post-perihelion distance of about 2.5 AU. The prime scientific objectives of the Rosetta mission are to study the origin of comets, the workings of a nucleus as a ‘machine,’ the relationships between the nucleus and coma material, as well as that between cometary and interstellar material, and implications to the origin of the solar system. Rosetta is an ESA cornerstone mission or what NASA calls a flagship mission. The approximate cost of the mission was 1 billion euro, it was under development for several years, its flight time is approximately 11 years, it is an international endeavor by 12 countries, and it was launched on a powerful Ariane V rocket. As much as Rosetta is a flagship mission, the cost of NASA’s contribution is approximately $150M or equivalent to the cost of payload for a Discovery class mission.
    [Show full text]
  • How to Land on a Comet 4 November 2014, by Dr
    How to land on a comet 4 November 2014, by Dr. Tony Phillips spacecraft bounces off the atmosphere, becoming an unintended meteor. Landing is ridiculously difficult. Just play NASA's "Seven Minutes of Terror" video. Watching Curiosity parachute, retrorocket, and sky-crane its way to the surface of Mars rarely fails to produce goosebumps. Since the Space Age began, the space agencies of Earth have succeeded in landing on only six bodies: Venus, Mars, the Moon, Titan, and asteroids 433 Eros and Itokawa. In a move that could set a new standard for difficulty, the European Space Agency is about to add a seventh member to the list. On Nov. 12th ESA's Rosetta spacecraft will drop a lander named "Philae" onto the surface of Comet 67P/Churyumov–Gerasimenko. "How hard is this landing?" asks Art Chmielewski, the US Rosetta Project Manager at JPL. "Consider Close-up of the region containing Philae’s primary this: The comet will be moving 40 times faster than landing site J, which is located on the ‘head’ of Comet a speeding bullet, spinning, shooting out gas and 67P/Churyumov–Gerasimenko. The mosaic comprises welcoming Rosetta on the surface with boulders, two images taken by Rosetta’s OSIRIS narrow-angle cracks, scarps and possibly meters of dust!" camera on 14 September 2014 from a distance of about 30 km. The image scale is 0.5 m/pixel. The circle is centred on the landing site and is approximately 500 m Rosetta will drop Philae from a height of 22 km as in radius. Credits: ESA/Rosetta/MPS for OSIRIS Team the comet rotates freely below.
    [Show full text]