Galileo End of Mission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lab 7: Gravity and Jupiter's Moons
Lab 7: Gravity and Jupiter's Moons Image of Galileo Spacecraft Gravity is the force that binds all astronomical structures. Clusters of galaxies are gravitationally bound into the largest structures in the Universe, Galactic Superclusters. The galaxies themselves are held together by gravity, as are all of the star systems within them. Our own Solar System is a collection of bodies gravitationally bound to our star, Sol. Cutting edge science requires the use of Einstein's General Theory of Relativity to explain gravity. But the interactions of the bodies in our Solar System were understood long before Einstein's time. In chapter two of Chaisson McMillan's Astronomy Today, you went over Kepler's Laws. These laws of gravity were made to describe the interactions in our Solar System. P2=a3/M Where 'P' is the orbital period in Earth years, the time for the body to make one full orbit. 'a' is the length of the orbit's semi-major axis, for nearly circular orbits the orbital radius. 'M' is the total mass of the system in units of Solar Masses. Jupiter System Montage picture from NASA ID = PIA01481 Jupiter has over 60 moons at the last count, most of which are asteroids and comets captured from Written by Meagan White and Paul Lewis Page 1 the Asteroid Belt. When Galileo viewed Jupiter through his early telescope, he noticed only four moons: Io, Europa, Ganymede, and Callisto. The Jupiter System can be thought of as a miniature Solar System, with Jupiter in place of the Sun, and the Galilean moons like planets. -
Galileo and the Telescope
Galileo and the Telescope A Discussion of Galileo Galilei and the Beginning of Modern Observational Astronomy ___________________________ Billy Teets, Ph.D. Acting Director and Outreach Astronomer, Vanderbilt University Dyer Observatory Tuesday, October 20, 2020 Image Credit: Giuseppe Bertini General Outline • Telescopes/Galileo’s Telescopes • Observations of the Moon • Observations of Jupiter • Observations of Other Planets • The Milky Way • Sunspots Brief History of the Telescope – Hans Lippershey • Dutch Spectacle Maker • Invention credited to Hans Lippershey (c. 1608 - refracting telescope) • Late 1608 – Dutch gov’t: “ a device by means of which all things at a very great distance can be seen as if they were nearby” • Is said he observed two children playing with lenses • Patent not awarded Image Source: Wikipedia Galileo and the Telescope • Created his own – 3x magnification. • Similar to what was peddled in Europe. • Learned magnification depended on the ratio of lens focal lengths. • Had to learn to grind his own lenses. Image Source: Britannica.com Image Source: Wikipedia Refracting Telescopes Bend Light Refracting Telescopes Chromatic Aberration Chromatic aberration limits ability to distinguish details Dealing with Chromatic Aberration - Stop Down Aperture Galileo used cardboard rings to limit aperture – Results were dimmer views but less chromatic aberration Galileo and the Telescope • Created his own (3x, 8-9x, 20x, etc.) • Noted by many for its military advantages August 1609 Galileo and the Telescope • First observed the -
Mission to Jupiter
This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines. -
10. Collisions • Use Conservation of Momentum and Energy and The
10. Collisions • Use conservation of momentum and energy and the center of mass to understand collisions between two objects. • During a collision, two or more objects exert a force on one another for a short time: -F(t) F(t) Before During After • It is not necessary for the objects to touch during a collision, e.g. an asteroid flied by the earth is considered a collision because its path is changed due to the gravitational attraction of the earth. One can still use conservation of momentum and energy to analyze the collision. Impulse: During a collision, the objects exert a force on one another. This force may be complicated and change with time. However, from Newton's 3rd Law, the two objects must exert an equal and opposite force on one another. F(t) t ti tf Dt From Newton'sr 2nd Law: dp r = F (t) dt r r dp = F (t)dt r r r r tf p f - pi = Dp = ò F (t)dt ti The change in the momentum is defined as the impulse of the collision. • Impulse is a vector quantity. Impulse-Linear Momentum Theorem: In a collision, the impulse on an object is equal to the change in momentum: r r J = Dp Conservation of Linear Momentum: In a system of two or more particles that are colliding, the forces that these objects exert on one another are internal forces. These internal forces cannot change the momentum of the system. Only an external force can change the momentum. The linear momentum of a closed isolated system is conserved during a collision of objects within the system. -
Modeling and Adjustment of THEMIS IR Line Scanner Camera Image Measurements
Modeling and Adjustment of THEMIS IR Line Scanner Camera Image Measurements by Brent Archinal USGS Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001 [email protected] As of 2004 December 9 Version 1.0 Table of Contents 1. Introduction 1.1. General 1.2. Conventions 2. Observations Equations and Their Partials 2.1. Line Scanner Camera Specific Modeling 2.2. Partials for New Parameters 2.2.1. Orientation Partials 2.2.2. Spatial Partials 2.2.3. Partials of the observations with respect to the parameters 2.2.4. Parameter Weighting 3. Adjustment Model 4. Implementation 4.1. Input/Output Changes 4.1.1. Image Measurements 4.1.2. SPICE Data 4.1.3. Program Control (Parameters) Information 4.2. Computational Changes 4.2.1. Generation of A priori Information 4.2.2. Partial derivatives 4.2.3. Solution Output 5. Testing and Near Term Work 6. Future Work Acknowledgements References Useful web sites Appendix I - Partial Transcription of Colvin (1992) Documentation Appendix II - HiRISE Sensor Model Information 1. Introduction 1.1 General The overall problem we’re solving is that we want to be able to set up the relationships between the coordinates of arbitrary physical points in space (e.g. ground points) and their coordinates on line scanner (or “pushbroom”) camera images. We then want to do a least squares solution in order to come up with consistent camera orientation and position information that represents these relationships accurately. For now, supported by funding from the NASA Critical Data Products initiative (for 2003 September to 2005 August), we will concentrate on handling the THEMIS IR camera system (Christensen et al., 2003). -
JUICE Red Book
ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat. -
The Physics of a Car Collision by Andrew Zimmerman Jones, Thoughtco.Com on 09.10.19 Word Count 947 Level MAX
The physics of a car collision By Andrew Zimmerman Jones, ThoughtCo.com on 09.10.19 Word Count 947 Level MAX Image 1. A crash test dummy sits inside a Toyota Corolla during the 2017 North American International Auto Show in Detroit, Michigan. Crash test dummies are used to predict the injuries that a human might sustain in a car crash. Photo by: Jim Watson/AFP/Getty Images During a car crash, energy is transferred from the vehicle to whatever it hits, be it another vehicle or a stationary object. This transfer of energy, depending on variables that alter states of motion, can cause injuries and damage cars and property. The object that was struck will either absorb the energy thrust upon it or possibly transfer that energy back to the vehicle that struck it. Focusing on the distinction between force and energy can help explain the physics involved. Force: Colliding With A Wall Car crashes are clear examples of how Newton's Laws of Motion work. His first law of motion, also referred to as the law of inertia, asserts that an object in motion will stay in motion unless an external force acts upon it. Conversely, if an object is at rest, it will remain at rest until an unbalanced force acts upon it. Consider a situation in which car A collides with a static, unbreakable wall. The situation begins with car A traveling at a velocity (v) and, upon colliding with the wall, ending with a velocity of 0. The force of this situation is defined by Newton's second law of motion, which uses the equation of This article is available at 5 reading levels at https://newsela.com. -
The Economic Impact of Physics Research in the UK: Satellite Navigation Case Study
The economic impact of physics research in the UK: Satellite Navigation Case Study A report for STFC November 2012 Contents Executive Summary................................................................................... 3 1 The science behind satellite navigation......................................... 4 1.1 Introduction ................................................................................................ 4 1.2 The science................................................................................................ 4 1.3 STFC’s role in satellite navigation.............................................................. 6 1.4 Conclusions................................................................................................ 8 2 Economic impact of satellite navigation ........................................ 9 2.1 Introduction ................................................................................................ 9 2.2 Summary impact of GPS ........................................................................... 9 2.3 The need for Galileo................................................................................. 10 2.4 Definition of the satellite navigation industry............................................ 10 2.5 Methodological approach......................................................................... 11 2.6 Upstream direct impacts .......................................................................... 12 2.7 Downstream direct impacts..................................................................... -
Exploration of the Moon
Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms. -
Carbon Monoxide in Jupiter After Comet Shoemaker-Levy 9
ICARUS 126, 324±335 (1997) ARTICLE NO. IS965655 Carbon Monoxide in Jupiter after Comet Shoemaker±Levy 9 1 1 KEITH S. NOLL AND DIANE GILMORE Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218 E-mail: [email protected] 1 ROGER F. KNACKE AND MARIA WOMACK Pennsylvania State University, Erie, Pennsylvania 16563 1 CAITLIN A. GRIFFITH Northern Arizona University, Flagstaff, Arizona 86011 AND 1 GLENN ORTON Jet Propulsion Laboratory, Pasadena, California 91109 Received February 5, 1996; revised November 5, 1996 for roughly half the mass. In high-temperature shocks, Observations of the carbon monoxide fundamental vibra- most of the O is converted to CO (Zahnle and MacLow tion±rotation band near 4.7 mm before and after the impacts 1995), making CO one of the more abundant products of of the fragments of Comet Shoemaker±Levy 9 showed no de- a large impact. tectable changes in the R5 and R7 lines, with one possible By contrast, oxygen is a rare element in Jupiter's upper exception. Observations of the G-impact site 21 hr after impact atmosphere. The principal reservoir of oxygen in Jupiter's do not show CO emission, indicating that the heated portions atmosphere is water. The Galileo Probe Mass Spectrome- of the stratosphere had cooled by that time. The large abun- ter found a mixing ratio of H OtoH of X(H O) # 3.7 3 dances of CO detected at the millibar pressure level by millime- 2 2 2 24 P et al. ter wave observations did not extend deeper in Jupiter's atmo- 10 at P 11 bars (Niemann 1996). -
What Is the Meaning of This?
What is the Meaning of This? Claudia Alexander Over a decade of exploration... Discovery of an ocean: Priceless Major Findings: • An ocean under the surface of Europa. • First ever successful probe of a gas giant atmosphere. • An icy satellite capable of gggenerating its own magnetosphere (Ganymede). • Characterization of the thin exospheres of icy satellites. • Sufficient detail of Io’s volcanism to call it a window into Earth’s past. • Detailed sampling of the Io plasma environment and its intricate connection to the dynamics of the magnetosphere. • Complete understanding of the formation of the Jovian ring. • High resolution sampling of a rarely Project Inception—November 19, 1977 visited region: the Jovian radiation belts LhdItltCiLaunch and Interplanetary Cruise—Oc t. 18, 1989 - Dec. 5, 1995 Galileo Prime Mission—Dec. 5, 1995 - Dec. 15, 1997 Galileo Europa Mission (GEM)—Dec. 15, 1997 - Jan. 1, 2000 • Discovery of an asteroid with its own Galileo Millennium Mission (GMM)—Jan. 1, 2000 - Sept. 21, 2003 moon 10/21/03 Galileo End of Mission Summary ‐cja‐ 2 Claudia with GLL Comet Nevski‐Novichonok (ISON) as it may appear at sunset on Nov. 29, if it survives its close approach. • Target of Rosetta Mission: Comet 67P/Churymov‐Gerasimenko. • Art Chmielewski’d best joke: Ukrainian sources reported today that the Rosetta target comet Churyumov‐Gerasimenko discoverer Dr. Churyumov married his former graduate student Dr. Gerasimenko. Dr. Gerasimenko will now hyphenate her name, Gerasimenko‐Churyumov. Dr. Churyumov stated that he would like the comet’s name to reflect his complete Russian name including the otchestvo, father’s name – Chury, making the comet’s name Churyvich‐Churyumov‐Gerasimenko‐Churyumov. -
Galileo Telecommunications
Chapter 4 Galileo Telecommunications Jim Taylor, Kar-Ming Cheung, and Dongae Seo 4.1 Mission and Spacecraft Description This chapter describes how the Galileo orbiter received and transmitted data with the Deep Space Network (DSN). The relay communications subsystems and the link between the Galileo probe and the orbiter are also described briefly. The chapter is at a functional level, intended to illuminate the unique mission requirements and constraints that led to both design of the communications system and how the mission had to be modified and operated in flight. Augmenting the spacecraft downlink design and the supporting ground system for science return with only the low-gain antenna (LGA) was a particular challenge for the Galileo planetary mission. The Galileo orbiter was designed and built at the Jet Propulsion Laboratory (JPL) in Pasadena, California, and the Galileo probe was designed and built at the NASA Ames Research Center (ARC) in Sunnyvale, California. The orbiter flight team was located at JPL, as was the probe flight team during that portion of the mission. 4.1.1 The Mission The Galileo spacecraft was launched in 1989 aboard the Space Shuttle Atlantis (STS [Space Transportation System]-34). Its primary objective was to study the Jovian System. The Galileo launch delay after the Challenger Space Shuttle 81 82 Chapter 4 accident in 1986 necessitated a change in the strategy to get Galileo to Jupiter.1 The original strategy was a relatively direct flight to Jupiter with a single gravity assist at Mars. The new mission plan had to work with less propulsion, so it made use of a longer, much less direct flight, with gravitational assists from Venus once and Earth twice, to give the spacecraft enough energy to get to Jupiter.