(CEPS) Scientific Papers, Articles, and Blogs 2015 CEPS Employees

Total Page:16

File Type:pdf, Size:1020Kb

(CEPS) Scientific Papers, Articles, and Blogs 2015 CEPS Employees Center for Earth and Planetary Studies (CEPS) Scientific Papers, Articles, and Blogs 2015 CEPS employees’ names are highlighted SCIENTIFIC PAPERS PRESENTED CEPS First Authors Title Conference Author 46th Lunar and B. A. Campbell, G. A. Morgan, N. E. Putzig, J. L. Enhanced Radar Visualization of the Structure in Yes Whitten, J. W. Holt, and R. J. Phillips the South Polar Deposits of Mars Planetary Science Conference Estimates of the Erosion Rates on Mars over Time 46th Lunar and C. Quantin-Nataf, R. A. Craddock, F. Dubuffet, L. No and Their Implications for the Evolution of the Lozac'h, and M. Martinot Planetary Science Atmopshere Conference "Fill and spill" Lava Emplacement Associated with 46th Lunar and C. W. Hamilton, S. P. Scheidt, J. E. Bleacher, R. P. No the December 1974 Flow on Kilauea Volcano, Irwin III, and W. B. Garry Planetary Science Hawaii, USA Conference D. W. Ming, D. W. Mittlefehldt, R. Gellert, T. 46th Lunar and Peretyazhko, B. C. Clark, R. V. Morris, A. S. Yen, R. E. Iron-Manganese Redox Reactions in Endeavour No Arvidson, L. S. Crumpler, W. H. Farrand, J. A. Grant, B. Crater Rim Apron Rocks Planetary Science L. Jolliff, T. J. Parker, and the Athena Science Team Conference D. W. Mittlefehldt, R. Gellert, D. W. Ming, R. V. Morris, Noachian Impact Ejecta on Murray Ridge and Pre- 46th Lunar and C. Schroder, A. S. Yen, W. H. Farrand, R. E. Arvidson, No Impact Rocks on Wdowiak Ridge, Endeavour B. J. Franklin, J. A. Grant, K. E. Herkenhoff, B. L. Jolliff, Planetary Science Crater, Mars: Opportunity Observations and the Athena Science Team Conference Analyses Of Basaltic Sediments Subjected To Wave 46th Lunar and No E. J. Whallon, R. A. Craddock, D. Crowe, and T. Rose Erosion And Their Implications For Past Martian Planetary Science Coastal Processes Conference 46th Lunar and Geospatial Classification of Transverse Aeolian No E. K. Ebinger and J. R. Zimbelman Ridges on Mars Planetary Science Conference 46th Lunar and Yes E. S. Martin, T. R. Watters, and D. A, Patthoff Ancient Ridges and Troughs on Enceladus Planetary Science Conference Earth-Based Radar Prespective of Mare Imbrium: 46th Lunar and G. A. Morgan, B. A. Campbell, B. R. Hawke, and D. B. Yes Understanding Volcanic Unit Boundaries and Campbell Planetary Science Stratigraphy Conference H. Hargitai, M. Gede, J. Zimbelman, Cs. Kőszeghy, D. 46th Lunar and No Sirály, L. Marinangeli, T. Barata, I. López, A. Szakács, Planetary Map Series for Children Planetary Science K. Dębniak, and T. Feuillet Conference I. J. Daubar, M. P. Golombek, A. S. McEwen, S. Byrne, Measurements of the Current Martian Cratering 46th Lunar and No M. Kreslavsky, N. C. Schmerr, M. E. Banks, P. Size Frequency Distribution, Predictions for and Planetary Science Lognonne, T. Kawamura, and F. Karakostas. Expected Improvements from insight Conference 46th Lunar and Aqueous Deposits Related to Formation of Hale Yes J. A. Grant and S. A. Wilson Crater in southern Margaritifer Terra Planetary Science Conference 46th Lunar and J. A. Grant, L. S. Crumpler, T. J. Parker, M. P. Yes Degradation of Endeavour Crater, Mars Golombek, S. A. Wilson and D. W. Mittlefehldt Planetary Science Conference Concentrating Ice in Polar Deserts: Lessons for 46th Lunar and J. L. Dickson, J. W. Head, J. S. Levy, and G. A. No Mars from Punctuated Gully incision in the McMurdo Morgan Planetary Science Dry Valleys Conference 46th Lunar and Rembrandt Impact Basin on Mercury: Determining Yes J. L. Whitten and J. W. Head the Origin of Low- and High-Albedo Smooth Plains Planetary Science Conference 46th Lunar and Distribution of Venusian Impact Crater Ejecta within Yes J. L. Whitten and B. A. Campbell Tessera Planetary Science Conference Surface Slope Effects for Ripple Orientations on 46th Lunar and Yes J. R. Zimbelman and M. B. Johnson Sand Dunes in Lopez Crater, Terra Tyrrhena Planetary Science Region, Mars Conference L. M. Carter, R. Orosei, T. R. Watters, B. A. Campbell, Stratigraphy and Physical Properties of 46th Lunar and No J. J. Plaut, G. A. Morgan, M. C. Nolan, and R. J. Southeastern Amazonis Planitia and the Eastern Planetary Science Phillips Medusae Fossae Formation Conference L. S. Crumpler, R. E. Arvidson, W. H. Farrand, M. P. Opportunity In Situ Geologic Context of Aqueous 46th Lunar and No Golombek, J. A. Grant, D. W. Ming, D. W. Mittlefehldt, Alteration Along Offsets in the Rim of Endeavour Planetary Science and T. J. Parker Crater Conference 46th Lunar and Ripple Orientations as an Indication of Recent Yes M. B. Johnson and J. R. Zimbelman Winds on Martian Dunes. Planetary Science Conference Predicted Seismic Signatures of Recent Dated 46th Lunar and M. E. Banks, I. J. Daubar, N. C. Schmerr, and M. P. Yes Martian Impact Events: implications for the insight Golombek Planetary Science Lander Conference Science Objectives, Engineering Constraints, and 46th Lunar and No M. P. Golombek, J. A. Grant, K. A. Farley, and A. Chen Landing Sites Proposed for the Mars 2020 Rover Planetary Science Mission Conference 46th Lunar and M. P. Milazzo, K. Herkenhoff, K. Becker, P. Russell, A. No MRO/HiRise Radiometric Calibration Update Delamere, A. S. McEwen Planetary Science Conference 46th Lunar and The Thermal Conducitivity of Soils with Bimodal No M. T. Mellon, C. P. McKay, and J. A. Grant Grain-Sizes at Mars Pressures Planetary Science Conference 46th Lunar and N. E. Putzig, R. J. Phillips, I. B. Smith, C. J. Thomason, Low Radar Reflectivity in Planum Australe Points to No M. T. Mellon, B. A. Campbell, and S. E. Wood Past Episodes of Martian Atmospheric Collapse Planetary Science Conference Formation and Stabilization of Coarse Grain- 46th Lunar and N. T. Bridges, M. G. Spagnuolo, S. L. de Silva, J. R. Mantled Megaripples on Earth and Mars: Insights No Zimbelman, and E. M. Neely From the Argentinean Puna and Wind Tunnel Planetary Science Experiments Conference 46th Lunar and Characteristics Of Basaltic Particles Transported By Yes R. A. Craddock and T. Rose Different Geologic Processes. Planetary Science Conference 46th Lunar and No R. C. Montesi and J. R. Zimbelman Inflated Pahohoe in CTX Images in Tharsis Region Planetary Science Conference 46th Lunar and Yes R. P. Irwin III Development of Intercrater Plains on Mars Planetary Science Conference 46th Lunar and Megaripples and Their Sedimentary Deposits on No R. Sullivan and J. R. Zimbelman Earth and Mars. Planetary Science Conference 46th Lunar and S. A. Wilson, J. A. Grant, D. L. Buczkowski, and C. M. Geologic Mapping and the Gradational History of Yes Weitz Southern Margaritifer Terra on Mars Planetary Science Conference Gravel-mantled Aeolian Bedforms from Mono-Inyo 46th Lunar and No S. P. Scheidt and J. R. Zimbelman Domes, California, USA: Morphology, Planetary Science Characteristics and Relevance to Mars Conference T. R. Watters, S. C. Solomon, K. E. Daud, M. E. Banks, 46th Lunar and M. M. Selvans, M. S. Robinson, S. L. Murchie, N. L. Small Thrust Fault Scarps on Mercury Revealed in Yes Chabot, B. W. Denevi, C. M. Ernst, C. R. Chapman, C. Low-Altitude MESSENGER Images Planetary Science I. Fassett, C. Klimczak, P. K. Byrne, and D. T. Blewett Conference D. Y. Sumner, R. M. E. Williams, J. Schieber, M. Palucis, D. Z. Oehler, N. Mangold, L. C. Kah, S. Gupta, Fluvial to Lacustrine Facies Transitions in Gale AGU Chapman No J. P. Grotzinger, J. A. Grant, L. A. Edgar, and W. E. Crater, Mars Conference Dietrich Association of District of Columbia urban tree cover variability and Yes A. K. Johnston neighborhood dynamics. American Geographers Meeting Fourth International Mapping Winds over Martian Sand Dunes from Yes M. B. Johnson and J. R. Zimbelman Ripples and Digital Terrain Models Planetary Dunes Workshop Fourth International No R. K. Hayward, T. N. Titus, and J. R. Zimbelman Mars Aeolian Analog: Instrument Evaluation Planetary Dunes Workshop Fourth International T. N. Titus, R. K. Hayward, R. Bogle, and J. R. No Sediment Flux Measurements at a Mars Analog Site Zimbelman Planetary Dunes Workshop Wind patterns on the southern end of the Bruneau Fourth International sand dunes in comparison to data taken from the No C. A. Wishard and J. R. Zimbelman Remote Automated Weather Station at Mountain Planetary Dunes Home Air Force Base, Idaho Workshop TARs on Mars: A study of the spatial variability and Fourth International No A. D. Jessar, J. R. Zimbelman, and L. A. Hennig. physical characteristics of Martian Transverse Planetary Dunes Aeolian Ridges Workshop Field Trip to the Bruneau Sand Dunes and the Fourth International Yes J. R. Zimbelman Snake River Plains Basalts Planetary Dunes Workshop D. A. Patthoff, R. T. Pappalardo, E. S. Martin, T. R. Geologic Evidence for the Long-Term Potential of No Watters, H. T. Chilton, P. T. Thomas, and P. Schenk Enceladus' subsurface liquid layer AbSciCon Geologic mapping in southern Margaritifer Terra on S. A. Wilson, J. A. Grant, D. L. Buczkowski, and C. M. Planetary Geology Yes Mars: Constraining the timing and origin of fluvial Weitz activity Mappers Geologic mapping to constrain the sources and C. M. Weitz, S. A. Wilson, R. P. Irwin III, and J. A. Planetary Geology No timing of fluvial activity in western Ladon basin, Grant Mars Mappers L. Bruzzone, J. J. Plaut, G. Alberti, D. D. Blankenship, International F. Bovolo, B. A. Campbell, D. Castelletti, Y.Gim, A. M. JUipter ICy moon Explorer (JUICE): Advances in Geoscience and No Ilisei,W. Kofman, G. Komatsu, W. McKinnon, G. Mitri, the Design of the Radar for Icy Moons A. Moussessian, R. Orosei, G. W. Patterson, and D. Remote Sensing Plettemeier Symposium Martian Dune Ripples as Indicators of Recent Yes M. B. Johnson and J. R. Zimbelman Surface Winds AGU Fall Meeting Use of Digital Terrain Models of Martian Sand Yes J.
Recommended publications
  • Revised 15555 Olivine-Normative Basalt 9614 Grams
    Revised 15555 Olivine-normative Basalt 9614 grams Figure 1: Photo of S1 surface of 15555, illustrating large mirometeorite crater (zap pit) and vuggy nature of rock. NASA S71-43954. Scale is in cm. Introduction Lunar sample 15555 (called “Great Scott”, after the experimental studies related to the origin of lunar collector Dave Scott) is one of the largest samples basalts (e.g. Walker et al. 1977). returned from the moon and is representative of the basaltic samples found on the mare surface at Apollo 15555 has a large zap pit (~1 cm) on the S1 face, various 15. It contains olivine and pyroxene phenocrysts and penetrating fractures and a few percent vugs (figure is olivine normative in composition (Rhodes and 1). It has a subophitic, basaltic texture (figure 4) and Hubbard 1973, Ryder and Shuraytz 2001). The bulk there is little evidence for shock in the minerals. It has composition of 15555 is thought to represent that of a been found to be 3.3 b.y. old and has been exposed to primitive volcanic liquid and has been used for various cosmic rays for 80 m.y. Mineralogical Mode of 15555 Longhi et McGee et Heuer et Nord et al. 1972 al. 1977 al. 1972 al. 1973 Olivine 12.1 5-12 20 20 Pyroxene 52.4 52-65 40 40 Plagioclase 30.4 25-30 35 35 Opaques 2.7 5 Mesostasis 2.3 0.2-0.4 5 5 Silica 0.3-2 Lunar Sample Compendium C Meyer 2009 picritic CMeyer basalt 2006 olivine-normative 15385 15659 13 basalt 12 15555 15536 pigeonite basalt 15016 15535 15636 11 (quartz normative) MgO 15545 15647 15379 15065 10 15598 15256 15485 15058 15595 15557 15076 15499 9 15597 15495 15529 15476 15596 8 15388 15556 15085 15117 15682 7 15118 43 44 45 46 47 48 49 SiO2 Figure 2: Composition diagram for Apollo 15 basalts (best data available) showing two basic types.
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]
  • Open Hanagan Thesis Schreyer.Pdf
    THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF EARTH AND MINERAL SCIENCES CHANGES IN CRATER MORPHOLOGY ASSOCIATED WITH VOLCANIC ACTIVITY AT TELICA VOLCANO, NICARAGUA: INSIGHT INTO SUMMIT CRATER FORMATION AND ERUPTION TRIGGERING CATHERINE E. HANAGAN SPRING 2019 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in the Geosciences with honors in the Geosciences Reviewed and approved* by the following: Peter La Femina Associate Professor of Geosciences Thesis Supervisor Maureen Feineman Associate Research Professor and Associate Head for Undergraduate Programs Honors Adviser * Signatures are on file in the Schreyer Honors College. i ABSTRACT Telica is a persistently active basaltic-andesite stratovolcano in the Central American Volcanic Arc of Nicaragua. Poorly predicted sub-decadal, low explosivity (VEI 1-2) phreatic eruptions and background persistent activity with high-rates of seismic unrest and frequent degassing contribute to morphologic change in Telica’s active crater on a small spatiotemporal scale. These changes sustain a morphology similar to those of commonly recognized calderas or pit craters (Roche et al., 2001; Rymer et al., 1998), and have been related to sealing of the hydrothermal system prior to eruption (INETER Buletin Anual, 2013). We use photograph observations and Structure from Motion point cloud construction and comparison (Multiscale Model to Model Cloud Comparison, Lague et al., 2013; Westoby et al., 2012) from 1994 to 2017 to correlate changes in Telica’s crater with sustained summit crater formation and eruptive pre- cursors. Two previously proposed mechanisms for sealing at Telica are: 1) widespread hydrothermal mineralization throughout the magmatic-hydrothermal system (Geirsson et al., 2014; Rodgers et al., 2015; Roman et al., 2016); and/or 2) surficial blocking of the vent by landslides and rock fall (INETER Buletin Anual, 2013).
    [Show full text]
  • What Is the Meaning of This?
    What is the Meaning of This? Claudia Alexander Over a decade of exploration... Discovery of an ocean: Priceless Major Findings: • An ocean under the surface of Europa. • First ever successful probe of a gas giant atmosphere. • An icy satellite capable of gggenerating its own magnetosphere (Ganymede). • Characterization of the thin exospheres of icy satellites. • Sufficient detail of Io’s volcanism to call it a window into Earth’s past. • Detailed sampling of the Io plasma environment and its intricate connection to the dynamics of the magnetosphere. • Complete understanding of the formation of the Jovian ring. • High resolution sampling of a rarely Project Inception—November 19, 1977 visited region: the Jovian radiation belts LhdItltCiLaunch and Interplanetary Cruise—Oc t. 18, 1989 - Dec. 5, 1995 Galileo Prime Mission—Dec. 5, 1995 - Dec. 15, 1997 Galileo Europa Mission (GEM)—Dec. 15, 1997 - Jan. 1, 2000 • Discovery of an asteroid with its own Galileo Millennium Mission (GMM)—Jan. 1, 2000 - Sept. 21, 2003 moon 10/21/03 Galileo End of Mission Summary ‐cja‐ 2 Claudia with GLL Comet Nevski‐Novichonok (ISON) as it may appear at sunset on Nov. 29, if it survives its close approach. • Target of Rosetta Mission: Comet 67P/Churymov‐Gerasimenko. • Art Chmielewski’d best joke: Ukrainian sources reported today that the Rosetta target comet Churyumov‐Gerasimenko discoverer Dr. Churyumov married his former graduate student Dr. Gerasimenko. Dr. Gerasimenko will now hyphenate her name, Gerasimenko‐Churyumov. Dr. Churyumov stated that he would like the comet’s name to reflect his complete Russian name including the otchestvo, father’s name – Chury, making the comet’s name Churyvich‐Churyumov‐Gerasimenko‐Churyumov.
    [Show full text]
  • New Views of Lunar Geoscience: an Introduction and Overview Harald Hiesinger and James W
    Reviews in Mineralogy & Geochemistry Vol. 60, pp. XXX-XXX, 2006 1 Copyright © Mineralogical Society of America New Views of Lunar Geoscience: An Introduction and Overview Harald Hiesinger and James W. Head III Department of Geological Sciences Brown University Box 1846 Providence, Rhode Island, 02912, U.S.A. [email protected] [email protected] 1.1. INTRODUCTION Beyond the Earth, the Moon is the only planetary body for which we have samples from known locations. The analysis of these samples gives us “ground-truth” for numerous remote sensing studies of the physical and chemical properties of the Moon and they are invaluable for our fundamental understanding of lunar origin and evolution. Prior to the return of the Apollo 11 samples, the Moon was thought by many to be a primitive undifferentiated body (e.g., Urey 1966), a concept shattered by the data returned from the Apollo and Luna missions. Ever since, new data have helped to address some of our questions, but of course, they also produced new questions. In this chapter we provide a summary of knowledge about lunar geologic processes and we describe major scientifi c advancements of the last decade that are mainly related to the most recent lunar missions such as Galileo, Clementine, and Lunar Prospector. 1.1.1. The Moon in the planetary context Compared to terrestrial planets, the Moon is unique in terms of its bulk density, its size, and its origin (FFig.ig. 11.1.1a-c), all of which have profound effects on its thermal evolution and the formation of a secondary crust (Fig.
    [Show full text]
  • Rosetta at Comet 67P/Churyumov- Gerasimenko: Get Ready for the Ride NASA SBAG Report
    Rosetta at Comet 67P/Churyumov- Gerasimenko: Get Ready for the Ride NASA SBAG Report Bonnie Buratti, US Rosetta Project Scientist, JPL Arthur B. Chmielewski US Rosetta Project Manager, JPL 1 Mathieu Choukroun, US RosettaDeputy Project Scientist, JPL June 28, 2016 Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI. The US Contribution to Rosetta 1. 3 ½ instruments 2. 3 PI’s, PS, DPS, IDS 3. 46 Co-I’s and researchers 4. DSN 70 m and 34 m support 5. ASPEN scheduling software for science observations 6. SPICE support 7. Comet modeling 8. Shadow navigation for flight dynamics verification 9. Outreach and media products 2 10. Leadership for ESA's Amateur Ground Observing Campaign Pre-and post- 19 Feb 2016 outburst amateur images mages of 67P 13 Feb 2016 19 Feb 2016 27 February 17 Feb 2016 3 Instrument Purpose Country of Origin Alice Ultraviolet spectrometer United States CONSERT Radar tomography France COSIMA Dust composition Germany GIADA Dust detector Italy MIDAS Atomic Force Microscope Austria MIRO Microwave spectrometer/radiometer United States OSIRIS Narrow-angle and wide-angle cameras Germany 4 ROSINA Gas composition Switzerland RPC Magnetometer, plasma detectors Various, inc. US RSI Radio science investigation Germany VIRTIS Infrared spectrometer Italy Instrument Purpose Country of Origin APXS Alpha/x-ray spectrometer Germany CIVA Panoramic cameras and microscope France CONSERT Radar tomography of nucleus France COSAC Evolved gas analyzer: molecules Germany Ptolemy Evolved gas analyzer: isotopes United Kingdom MUPUS Surface and subsurface properties Germany ROLIS Descent imaging Germany 5 ROMAP Magnetometer and plasma monitor Germany/Hungary SD2 Sample drill and distribution system Italy SESAME Surface electric/acoustic properties Germany/Finland MIRO: Microwave Instrument on the Rosetta Orbiter • MIRO is a millimeter/submillimeter radio telescope.
    [Show full text]
  • 15415 Ferroan Anorthosite 269.4 Grams “Don’T Lose Your Bag Now, Jim”
    15415 Ferroan Anorthosite 269.4 grams “don’t lose your bag now, Jim” Figure 1: Photo of 15415 before processing. Cube is 1 inch. NASA# S71-44990 Transcript CDR Okay. Now let’s go down and get that unusual one. CDR Yes. We’ll get some of these. - - - No, let’s don’t mix Look at the little crater here, and the one that’s facing us. There is them – let’s make this a special one. I’ll zip it up. Make this bag this little white corner to the thing. What do you think the best 196, a special bag. Our first one. Don’t lose your bag now, Jim. way to sample it would be? O, boy. LMP I think probably – could we break off a piece of the clod underneath it? Or I guess you could probably lift that top fragment Transearth Coast Press Conference off. CC Q2: Near Spur Crater, you found what may be “Genesis CDR Yes. Let me try. Yes. Sure can. And it’s a white clast, Rock”, the oldest yet collected on the Moon. Tell us more about and it’s about – oh, boy! it. LMP Look at the – glint. Almost see twinning in there. CDR Well, I think the one you’re referring to was what we CDR Guess what we found? Guess what we just found? felt was almost entirely plagioclase or perhaps anorthosite. And it LMP I think we found what we came for. was a small fragment sitting on top of a dark brown larger fragment, CDR Crystal rock, huh? Yes, sir.
    [Show full text]
  • Dr. Claudia Alexander Jet Propulsion Laboratory - California Institute of Technology, United States, [email protected]
    65th International Astronautical Congress 2014 Paper ID: 26655 MULTILINGUAL ASTRONAUTICAL TERMINOLOGY SYMPOSIUM (E8) Multilingual Astronautical Terminology (1) Author: Dr. Claudia Alexander Jet Propulsion Laboratory - California Institute of Technology, United States, [email protected] Ms. Andrea Angrum NASA, United States, [email protected] Ms. Melba Martin United States, [email protected] ASTRONOMY AND GEOLOGY VOCABULARY, I.E. "NASA WORDS" IN NATIVE AMERICAN LANGUAGES Abstract Language preservation is an issue of urgent concern to indigenous communities in the U.S. and Canada. The US Rosetta Project has developed a program in selected Native American communities in which contemporary STEM vocabulary is taught alongside the same vocabulary in an indigenous language. The program has been applied in Navajo, with extensions to Hopi, Ojibwe, and Hawaiian. NASA images and science are used and described in the native language, alongside both lay English, and scientific English. Additionally, science curriculum (geology/chemistry/botany/physics) elements drawn from the reservation itself, including geomorphology, geochemistry, soil physics, are included and discussed in the native language as much as possible | with their analogs in other planetary environments (such as Mars). The program began with a student defining 30 brand new Navajo words to describe what he called `NASA' words, such as: cell phone, astronaut, space suit, computer, and planets that are not visible to the naked eye. Building the program beyond the Navajo, unique issues in each reservation community presented challenges, ranging from organizing Elder's Round Tables for discussion, and recording, of language with first speakers, to cultural awareness of clans and local variations in dialects and customs.
    [Show full text]
  • Monitoring of the 2015 Villarrica Volcano Eruption by Means of DLR’S Experimental TET-1 Satellite
    remote sensing Article Monitoring of the 2015 Villarrica Volcano Eruption by Means of DLR’s Experimental TET-1 Satellite Simon Plank 1,* ID , Michael Nolde 1, Rudolf Richter 2 ID , Christian Fischer 3, Sandro Martinis 1, Torsten Riedlinger 1, Elisabeth Schoepfer 1 and Doris Klein 1 ID 1 German Remote Sensing Data Center, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany; [email protected] (M.N.); [email protected] (S.M.); [email protected] (T.R.); [email protected] (E.S.); [email protected] (D.K.) 2 Remote Sensing Technology Institute, German Aerospace Center DLR, 82234 Oberpfaffenhofen, Germany; [email protected] 3 Institute of Optical Sensor Systems, German Aerospace Center DLR, 12489 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-8153-28-3460 Received: 17 July 2018; Accepted: 28 August 2018; Published: 30 August 2018 Abstract: Villarrica Volcano is one of the most active volcanoes in the South Andes Volcanic Zone. This article presents the results of a monitoring of the time before and after the 3 March 2015 eruption by analyzing nine satellite images acquired by the Technology Experiment Carrier-1 (TET-1), a small experimental German Aerospace Center (DLR) satellite. An atmospheric correction of the TET-1 data is presented, based on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GDEM) and Moderate Resolution Imaging Spectroradiometer (MODIS) water vapor data with the shortest temporal baseline to the TET-1 acquisitions. Next, the temperature, area coverage, and radiant power of the detected thermal hotspots were derived at subpixel level and compared with observations derived from MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) data.
    [Show full text]
  • Mapping of Planetary Surface Age Based on Crater Statistics Obtained by an Automatic Detection Algorithm
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic MAPPING OF PLANETARY SURFACE AGE BASED ON CRATER STATISTICS OBTAINED BY AN AUTOMATIC DETECTION ALGORITHM Atheer L. Saliha, M. Mühlbauera, A. Grumpea, J. H. Pasckertb, C. Wöhlera, H. Hiesingerb aImage Analysis Group, TU Dortmund, 44227 Dortmund, Germany – {atheer.altameemi | maximilian.muehlbauer | arne.grumpe | christian.woehler}@tu-dortmund.de bInstitut für Planetologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany – {jhpasckert | hiesinger}@uni-muenster.de Commission IV, WG IV/8 KEY WORDS: Crater statistics; CSFD; automatic crater detection; absolute model age; age mapping ABSTRACT: The analysis of the impact crater size-frequency distribution (CSFD) is a well-established approach to the determination of the age of planetary surfaces. Classically, estimation of the CSFD is achieved by manual crater counting and size determination in spacecraft images, which, however, becomes very time-consuming for large surface areas and/or high image resolution. With increasing availability of high-resolution (nearly) global image mosaics of planetary surfaces, a variety of automated methods for the detection of craters based on image data and/or topographic data have been developed. In this contribution a template-based crater detection algorithm is used which analyses image data acquired under known illumination conditions. Its results are used to establish the CSFD for the examined area, which is then used to estimate the absolute model age of the surface. The detection threshold of the automatic crater detection algorithm is calibrated based on a region with available manually determined CSFD such that the age inferred from the manual crater counts corresponds to the age inferred from the automatic crater detection results.
    [Show full text]
  • A Multispectral Assessment of Complex Impact Craters on the Lunar Farside
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 2-15-2013 12:00 AM A Multispectral Assessment of Complex Impact Craters on the Lunar Farside Bhairavi Shankar The University of Western Ontario Supervisor Dr. Gordon R. Osinski The University of Western Ontario Graduate Program in Planetary Science A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Bhairavi Shankar 2013 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons, Geomorphology Commons, Physical Processes Commons, and the The Sun and the Solar System Commons Recommended Citation Shankar, Bhairavi, "A Multispectral Assessment of Complex Impact Craters on the Lunar Farside" (2013). Electronic Thesis and Dissertation Repository. 1137. https://ir.lib.uwo.ca/etd/1137 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. A MULTISPECTRAL ASSESSMENT OF COMPLEX IMPACT CRATERS ON THE LUNAR FARSIDE (Spine title: Multispectral Analyses of Lunar Impact Craters) (Thesis format: Integrated Article) by Bhairavi Shankar Graduate Program in Geology: Planetary Science A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Bhairavi Shankar 2013 ii Abstract Hypervelocity collisions of asteroids onto planetary bodies have catastrophic effects on the target rocks through the process of shock metamorphism. The resulting features, impact craters, are circular depressions with a sharp rim surrounded by an ejecta blanket of variably shocked rocks.
    [Show full text]
  • JGE Special Issue on Diversity: Broadening Participation in the Earth and Space Sciences
    JGE Special Issue on Diversity: Broadening Participation in the Earth and Space Sciences Claudia Alexander Jet Propulsion Laboratory and Eric Riggs Purdue University 2002 Challenge to the AGU Diversity Subcommittee • Fred Spilhaus, President of AGU, challenged the newly formed Diversity Sub-committee to ‘educate’ the AGU membership about the issue of Diversity • Simultaneously (2003) a Joint Society Conference on Diversity among groups (below) drafted a joint policy statement – GSA (Geological Society of America) – AMS (American Meteorological Society) – AGU (American Geophysical Union) – AIP (American Institute of Physics) – others http://www.agu.org/sci_soc/education/jsc/ 2003 Policy Statement on Diversity (partial) • Increased participation and retention of women, minorities, and persons with disabilities is an essential component of maintaining a robust and productive scientific workforce in the Earth, ocean, atmospheric, space, and related physical sciences. The future health of these disciplines in the U.S. is threatened by declining undergraduate and graduate enrollments, loss of degree-granting geosciences programs, and ageing of the current scientific workforce. • Failure to attract and retain women and minorities in the geosciences is not well understood. • The scientific societies and organizations listed below commit to take an active leadership role in efforts to increase participation of women, minorities, and persons with disabilities in the Earth, ocean, atmospheric, space, and physical sciences workforce. Specifically, these groups agree to: – • Make diversity a priority in the use of their organizational resources, educate the members about the need to become more involved in promoting diversity, and provide access to resources that will enable their members to work productively on this issue.
    [Show full text]