Norway in Respect of Areas in the Arctic Ocean, the Barents Sea and the Norwegian Sea Executive Summary

Total Page:16

File Type:pdf, Size:1020Kb

Norway in Respect of Areas in the Arctic Ocean, the Barents Sea and the Norwegian Sea Executive Summary Continental Shelf Submission of Norway in respect of areas in the Arctic Ocean, the Barents Sea and the Norwegian Sea Executive Summary 50˚00’ 85˚00’ 45˚00’ 40˚00’ 35˚00’ Continental shelf 30˚00’ 30˚00’ 200 nautical mile limit of Norway beyond 200 nautical 85˚00’ 25˚00’ 25˚00’ 20˚00’ 20˚00’ miles 15˚00’ 15˚00’ 200 nautical mile limits of other states 10˚00’5˚00’ 0˚00’ 5˚00’10˚00’ Bilateral maritime boundaries between Water depth Norway and other states 0 meter Computed median line between 500 meter Norway and the Russian Federation 1000 meter Western 80˚00’ Nansen Basin Preliminary line connecting continental 1500 meter shelf outer limit points of Norway and the Russian Federation 2000 meter Outer limit of the continental shelf 2500 meter beyond 200 nautical miles 3000 meter 2500 meter isobath 3500 meter 80˚00’ Yermak BARENTS Land boundaries between states 4000 meter Plateau Boundary between 200 nautical mile 4500 meter SEA 75˚00’ zones of Mainland Norway and around Svalbard 5000 meter 5500 meter Land Svalbard Continental shelf outer limit points Norwegian territory 60 nautical mile distance criterion Sediment thickness criterion Land, undifferentiated Knipovich Ridge Loop Greenland Hole Point of the Russian Federation 75˚00’ 70˚00’ GREENLAND SEA Bjørnøya 65˚00’ 70˚00’ Mohns Ridge Jan Mayen 60˚00’ NORWEGIAN 50˚00’ Lofoten Jan Mayen Fracture Zone SEA Basin Iceland SEAVøring Spur Jan Mayen Micro Continent Banana Hole Plateau Banana Hole 65˚00’ 45˚00’ Vøring Russian Federation Norway Plateau Basin 40˚00’ Iceland Finland 35˚00’ 60˚00’ 30˚00’ 30˚00’ Storegga Sweden Submitted by Norway to the CLCS in 2006 Faroe 25˚00’ 25˚00’ Outline of the outer limits of the continental shelf submitted for areas in the Arctic Ocean, the Barents Sea and the Norwegian Sea 20˚00’ Islands 20˚00’ Shetland Polar Stereograpic - Latitude true scale 75˚N 15˚00’ 15˚00’ Bathymetry: ETOPO2 data from NGDC data base Mainland Norway 0 100 200 300 400 500 km Coastline: GSHHS data from NGDC data base 10˚00’ 10˚00’ Contour interval: 500m 5˚00’ 5˚00’ 0˚00’ ©Continental Oljedirektoratet Shelf 2006 Submission of Norway 2 ISBNExecutive 82-7257-658-9 Summary Executive Summary Continental Shelf Submission of Norway 3 Executive Summary Contents 1. Introduction 6 2. Maritime areas, maps and coordinates 6 3. Commission members who provided advice during the preparation of the submission 9 4. Provisions of article 76 invoked in support of the submission 9 5. General description of the continental margins 9 6. Maritime delimitations and other issues 11 7. Area-by-area overview 12 Appendix 1. Coordinates and Information on the Outer Limits of the Continental Shelf 19 Continental Shelf Submission of Norway 4 Executive Summary List of fi gures Fig. 1. Overview of the three maritime areas beyond 200 nautical miles in the Arctic Ocean, the Barents Sea and the Norwegian Sea. Fig. 2. Outline of the continental shelf beyond 200 nautical miles in the Arctic Ocean, the Barents Sea and the Norwegian Sea. Fig. 3. Three-dimensional map of parts of the North East Atlantic and the adjacent Barents Sea and Arctic Ocean. Fig. 4. The continental shelf beyond 200 nautical miles in the Loop Hole in the Barents Sea. Fig. 5. Airguns with depressor for acquiring seismic data by icebreaker “Oden” in the Nansen Basin. Technical solution tailor-made by the University of Bergen. Fig. 6. The outer limit of the continental shelf in the Western Nansen Basin. Fig. 7. The outer limit of the continental shelf in the Banana Hole. Fig. 8. The research vessel “G.O. Sars” of Bergen acquiring bathymetric data in the Norwegian Sea (Photo: Harald M. Valderhaug). Continental Shelf Submission of Norway 5 Executive Summary 1. Introduction The preparation of the present submission be- gan after Norway’s ratifi cation of the Conven- Norway signed the 1982 United Nations Con- tion in 1996. Since then, acquisition of seismic vention on the Law of the Sea (hereinafter and bathymetric data, and processing, analysis the Convention) on the day it was opened for and interpretation of data have continued until signature and ratifi ed it on 24 June 1996. It this year. The preparation has been carried out entered into force for Norway on 24 July 1996. by the Norwegian Petroleum Directorate, an independent agency under the Royal Ministry This submission fulfi ls the obligation Norway of Petroleum and Energy. The Directorate is has under article 76 and article 4 of Annex II Norway’s expert body for offshore geology of the Convention to submit information on the and geophysics. Various other agencies and outer limits of its continental shelf beyond 200 institutions, including in particular the Norwe- nautical miles from the baselines from which gian Mapping Authority, the Norwegian Polar the breadth of the territorial sea is measured, Institute and the Universities of Bergen and in respect of areas in the Arctic Ocean, the Oslo have also made scientifi c or other con- Barents Sea and the Norwegian Sea. tributions to the submission. The preparation of the submission has been undertaken under The rights of the coastal State over the con- the direction of the Royal Ministry of Foreign tinental shelf exist ipso facto and ab initio, as Affairs. refl ected in article 77 of the Convention. By Royal Decree of 31 May 1963 Norway proclaimed sovereign rights over the seabed and subsoil outside the coast of the Kingdom of Norway as regards exploitation and explora- 2. Maritime areas, maps and tion of natural deposits, to such extent as the coordinates depth of the sea permits the exploitation of such deposits. This defi nition of the continen- The data and information contained in this tal shelf was restated in Act No. 12 of 21 June submission are intended to enable the estab- 1963 relating to the exploration for and exploi- lishment of the outer limits of the continental tation of submarine natural resources. Later, shelf where those limits extend beyond 200 Act No. 11 of 22 March 1985 pertaining to pe- nautical miles from the baselines in three troleum activities specifi ed that the continental separate maritime areas in the North East shelf comprises the seabed and subsoil beyond Atlantic and the Arctic. These are described in the territorial sea, as far as it may be deemed this submission as: to be the natural prolongation of Norwegian land territory, but no less than 200 nautical 1. the Loop Hole in the Barents Sea miles from the baselines. The current defi nition 2. the Western Nansen Basin in the Arctic is contained in Act of 29 November 1996 No. Ocean; and 72 relating to petroleum activities, and builds 3. the Banana Hole in the Norwegian Sea. on article 76 of the Convention. It refers to the seabed and subsoil of the submarine areas The present submission deals only with the that extend beyond the Norwegian territorial outer limits of the continental shelf in these sea, throughout the natural prolongation of the three areas (see Fig. 1). A further submission Norwegian land territory to the outer edge of may be made in respect of other areas. the continental margin, but no less than 200 nautical miles from the baselines. Five maps are included in this executive sum- Continental Shelf Submission of Norway 6 Executive Summary 50˚00’ 85˚00’ 45˚00’ 40˚00’ 35˚00’ Water depth 30˚00’ 30˚00’ 200 nautical mile limit of Norway 0 meter 85˚00’ 25˚00’ 25˚00’ 20˚00’ 20˚00’ 15˚00’ 15˚00’ 200 nautical mile limits of other states 500 meter 10˚00’5˚00’ 0˚00’ 5˚00’10˚00’ Bilateral maritime boundaries between 1000 meter Norway and other states 1500 meter Western Computed median line between Norway and the Russian 2000 meter Federation Nansen Basin 80˚00’ 2500 meter 2500 meter isobath 3000 meter Land boundaries between states 3500 meter Boundary between 200 nautical mile zones of Mainland Norway and around 4000 meter Svalbard 4500 meter k Outline of areas beyond 200 80˚00’ nautical miles 5000 meter Yerma BARENTS 5500 meter Plateau SEA 75˚00’ Land Norwegian territory Land, undifferentiated Svalbard Loop Knipovich Ridge Loop Greenland Hole 75˚00’ 70˚00’ GREENLAND SEA Bjørnøya 65˚00’ 70˚00’ Mohns Ridge 7 ole Jan Mayen 60˚00’ NORWEGIAN 50˚00’ ntinent Lofoten Jan Mayen Fracture Zone Mayen SEA Basin Iceland Vøring Spur Jan Micro Co Banana Hole Plateau Banana H 65˚00’ 45˚00’ Vøring Russian Federation Norway Plateau Basin 40˚00’ Iceland Finland 35˚00’ ga 60˚00’ 30˚00’ 30˚00’ Storeg Sweden Faroe 25˚00’ 25˚00’ 20˚00’ Islands 20˚00’ Shetland nland Norway 15˚00’ 15˚00’ Mai 0 100 200 300 400 500 km 10˚00’ 10˚00’ 5˚00’ 5˚00’ 0˚00’ Fig. 1. Overview of the three maritime areas beyond 200 nautical miles in the Arctic Ocean, the Barents Sea and the Norwegian Sea. Continental Shelf Submission of Norway Summary Executive 50˚00’ 85˚00’ 45˚00’ Executive Summary Executive Continental Shelf Submission ofNorway 40˚00’ 35˚00’ Continental shelf 30˚00’ 30˚00’ 200 nautical mile limit of Norway beyond 200 nautical 85˚00’ 25˚00’ 25˚00’ 20˚00’ 20˚00’ miles 15˚00’ 15˚00’ 200 nautical mile limits of other states 10˚00’5˚00’ 0˚00’ 5˚00’10˚00’ Bilateral maritime boundaries between Water depth Norway and other states 0 meter Computed median line between 500 meter Norway and the Russian Federation 1000 meter Western 80˚00’ Nansen Basin Preliminary line connecting continental 1500 meter shelf outer limit points of Norway and the Russian Federation 2000 meter Outer limit of the continental shelf 2500 meter beyond 200 nautical miles 3000 meter k 2500 meter isobath 3500 meter 80˚00’ Yerma BARENTS Land boundaries between states 4000 meter Plateau Boundary between 200 nautical mile 4500 meter SEA 75˚00’
Recommended publications
  • Northern Sea Route Cargo Flows and Infrastructure- Present State And
    Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential By Claes Lykke Ragner FNI Report 13/2000 FRIDTJOF NANSENS INSTITUTT THE FRIDTJOF NANSEN INSTITUTE Tittel/Title Sider/Pages Northern Sea Route Cargo Flows and Infrastructure – Present 124 State and Future Potential Publikasjonstype/Publication Type Nummer/Number FNI Report 13/2000 Forfatter(e)/Author(s) ISBN Claes Lykke Ragner 82-7613-400-9 Program/Programme ISSN 0801-2431 Prosjekt/Project Sammendrag/Abstract The report assesses the Northern Sea Route’s commercial potential and economic importance, both as a transit route between Europe and Asia, and as an export route for oil, gas and other natural resources in the Russian Arctic. First, it conducts a survey of past and present Northern Sea Route (NSR) cargo flows. Then follow discussions of the route’s commercial potential as a transit route, as well as of its economic importance and relevance for each of the Russian Arctic regions. These discussions are summarized by estimates of what types and volumes of NSR cargoes that can realistically be expected in the period 2000-2015. This is then followed by a survey of the status quo of the NSR infrastructure (above all the ice-breakers, ice-class cargo vessels and ports), with estimates of its future capacity. Based on the estimated future NSR cargo potential, future NSR infrastructure requirements are calculated and compared with the estimated capacity in order to identify the main, future infrastructure bottlenecks for NSR operations. The information presented in the report is mainly compiled from data and research results that were published through the International Northern Sea Route Programme (INSROP) 1993-99, but considerable updates have been made using recent information, statistics and analyses from various sources.
    [Show full text]
  • Satellite Ice Extent, Sea Surface Temperature, and Atmospheric 2 Methane Trends in the Barents and Kara Seas
    The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237 Manuscript under review for journal The Cryosphere Discussion started: 22 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Satellite ice extent, sea surface temperature, and atmospheric 2 methane trends in the Barents and Kara Seas 1 2 3 2 4 3 Ira Leifer , F. Robert Chen , Thomas McClimans , Frank Muller Karger , Leonid Yurganov 1 4 Bubbleology Research International, Inc., Solvang, CA, USA 2 5 University of Southern Florida, USA 3 6 SINTEF Ocean, Trondheim, Norway 4 7 University of Maryland, Baltimore, USA 8 Correspondence to: Ira Leifer ([email protected]) 9 10 Abstract. Over a decade (2003-2015) of satellite data of sea-ice extent, sea surface temperature (SST), and methane 11 (CH4) concentrations in lower troposphere over 10 focus areas within the Barents and Kara Seas (BKS) were 12 analyzed for anomalies and trends relative to the Barents Sea. Large positive CH4 anomalies were discovered around 13 Franz Josef Land (FJL) and offshore west Novaya Zemlya in early fall. Far smaller CH4 enhancement was found 14 around Svalbard, downstream and north of known seabed seepage. SST increased in all focus areas at rates from 15 0.0018 to 0.15 °C yr-1, CH4 growth spanned 3.06 to 3.49 ppb yr-1. 16 The strongest SST increase was observed each year in the southeast Barents Sea in June due to strengthening of 17 the warm Murman Current (MC), and in the south Kara Sea in September. The southeast Barents Sea, the south 18 Kara Sea and coastal areas around FJL exhibited the strongest CH4 growth over the observation period.
    [Show full text]
  • Earth in Upheaval – Velikovsky
    KANSAS CITY, MO PUBLIC LIBRARY MAR 1989 JALS DATE DUE Earth in upheaval. 1 955 . Books by Immarvjel Velikoviky Earth in Upheaval Worlds in Collision Published by POCKET BOOKS Most Pot Ian Books arc available at special quantify discounts for hulk purchases for sales promotions premiums or fund raising SpeciaJ books* or txx)k e\( erj)ts can also tx.' created to ht specific needs FordetaJs write the office of the Vice President of Special Markets, Pocket Books, 12;K) Avenue of the Arm-mas New York New York 10020 EARTH IN UPHEAVAL Smnianue! Velikovsky F'OCKET BOOKS, a division of Simon & Schuster, IMC 1230 Avenue of the Americas, New York, N Y 10020 Copyright 1955 by Immanuel Vehkovskv Published by arrangement with Doubledav tx Compauv, 1m Library of Congiess Catalog Card Number 55-11339 All rights reserved, including the right to reproduce this book or portions thereof in any form whatsoever For information address 6r Inc. Doubledav Company, , 245 Park Avenue, New York, N Y' 10017 ISBN 0-fi71-524f>5-tt Fust Pocket Books punting September 1977 10 9 H 7 6 POCKET and colophon ae registered trademarks of Simon & Schuster, luc Printed in the USA ACKNOWLEDGMENTS WORKING ON Earth in Upheaval and on the essay (Address before the Graduate College Forum of Princeton University) added at the end of this volume, I have incurred a debt of gratitude to several scientists. Professor Walter S. Adams, for many years director of Mount Wilson Observatory, gave me all the in- formation and instruction for which I asked concern- ing the atmospheres of the planets, a field in which he is the outstanding authority.
    [Show full text]
  • USCGC Glacier (WAGB-4)
    NATIONAL REGISTER ELIGIBILITY ASSESSMENT VESSEL: USS Glacier (AGB-4) USCGC Glacier (WAGB-4) USCGC Glacier underway circa 1966-1972. Photo courtesy of U.S. Coast Guard. The icebreaker Glacier. Vessel History The former U.S. Coast Guard Cutter Glacier is an oceangoing icebreaker that was originally designed and constructed for the U.S. Navy in the mid-1950s. In 1966, Glacier was transferred to the Coast Guard. Ingalls Shipbuilding in Pascagoula, Mississippi began constructing the icebreaker in August 1953 and delivered the ship to the U.S. Navy in May 1955. It was named for Glacier Bay, Alaska, and was the fourth ship to carry this name. After its initial shakedown cruise, Glacier sailed from its homeport of Boston, Massachusetts as Admiral Richard E. Byrd’s flagship bound for the Antarctic as part of Operation Deep Freeze I1 in late 1955. It reached the 1 Operation Deep Freeze I was the codename for a series of scientific expeditions to Antarctica in 1955-56. The impetus behind the expeditions was the International Geophysical Year 1957-58. IGY was a collaborative effort of 40 nations to study the North and South Poles and points in between. Their goal was to advance knowledge of Antarctic hydrography and weather systems, glacial movements, and marine life. The U.S. Navy was charged with supporting the U.S. scientists for their portion of the IGY studies. 2 Ross Ice Pack in December where it smashed through thick ice “carving” out a harbor in Kainan Bay for ships delivering materials, supplies, and labor for the construction of Little America V.2 After clearing a channel and leading a group of ships to Kainan Bay, Glacier headed toward the Ross Ice Shelf to assist in the construction of a naval air station at McMurdo Sound.
    [Show full text]
  • The Place of the Oceans in Norway's Foreign and Development Policy
    Norwegian Ministry of Foreign Affairs Published by: Meld. St. 22 (2016–2017) Report to the Storting (white paper) Norwegian Ministry of Foreign Affairs Public institutions may order additional copies from: Norwegian Government Security and Service Organisation The place of the oceans E-mail: [email protected] Internet: www.publikasjoner.dep.no KET T ER RY Telephone: + 47 222 40 000 M K Ø K J E L R in Norway's foreign and I I Photo: Peter Prokosch / Grid Arendal M 0 Print: 07 PrintMedia AS 7 9 7 P 3 R 0 I 1 N 4 08/2017 – Impression 500 TM 0 EDIA – 2 development policy 2016–2017 Meld. St. 22 (2016–2017) Report to the Storting (white paper) 1 The place of the oceans in Norway’s foreign and development policy Meld. St. 22 (2016–2017) Report to the Storting (white paper) The place of the oceans in Norway’s foreign and development policy Translation from Norwegian. For information only. Contents 1 Introduction................................... 5 Part III Priority areas for Norway ......... 41 2 Summary ....................................... 8 5 Sustainable use and value creation ......................................... 43 Part I Ocean interests ............................ 13 5.1 Oil and gas sector .......................... 43 5.1.1 International cooperation in the 3 Norwegian ocean interests in oil and gas sector ........................... 44 an international context ............ 15 5.2 Maritime industry .......................... 45 3.1 The potential of the oceans ........... 15 5.2.1 International cooperation in 3.2 Forces shaping international shipping .......................................... 45 ocean policy .................................... 16 5.2.2 Shipping in the north ..................... 47 3.3 Need for knowledge ....................... 17 5.3 Seafood industry ...........................
    [Show full text]
  • 5.2 Barents Sea Ecoregion – Fisheries Overview
    ICES Fisheries Overviews Barents Sea Ecoregion Published 29 November 2019 5.2 Barents Sea Ecoregion – Fisheries overview Table of contents Executive summary ...................................................................................................................................................................................... 1 Introduction .................................................................................................................................................................................................. 1 Who is fishing ............................................................................................................................................................................................... 2 Catches over time ......................................................................................................................................................................................... 6 Description of the fisheries........................................................................................................................................................................... 8 Fisheries management ............................................................................................................................................................................... 12 Status of the fishery resources ..................................................................................................................................................................
    [Show full text]
  • MARITIME ACTIVITY in the HIGH NORTH – CURRENT and ESTIMATED LEVEL up to 2025 MARPART Project Report 1
    MARITIME ACTIVITY IN THE HIGH NORTH – CURRENT AND ESTIMATED LEVEL UP TO 2025 MARPART Project Report 1 Authors: Odd Jarl Borch, Natalia Andreassen, Nataly Marchenko, Valur Ingimundarson, Halla Gunnarsdóttir, Iurii Iudin, Sergey Petrov, Uffe Jacobsen and Birita í Dali List of authors Odd Jarl Borch Project Leader, Nord University, Norway Natalia Andreassen Nord University, Norway Nataly Marchenko The University Centre in Svalbard, Norway Valur Ingimundarson University of Iceland Halla Gunnarsdóttir University of Iceland Iurii Iudin Murmansk State Technical University, Russia Sergey Petrov Murmansk State Technical University, Russia Uffe Jakobsen University of Copenhagen, Denmark Birita í Dali University of Greenland 1 Partners MARPART Work Package 1 “Maritime Activity and Risk” 2 THE MARPART RESEARCH CONSORTIUM The management, organization and governance of cross-border collaboration within maritime safety and security operations in the High North The key purpose of this research consortium is to assess the risk of the increased maritime activity in the High North and the challenges this increase may represent for the preparedness institutions in this region. We focus on cross-institutional and cross-country partnerships between preparedness institutions and companies. We elaborate on the operational crisis management of joint emergency operations including several parts of the preparedness system and resources from several countries. The project goals are: • To increase understanding of the future demands for preparedness systems in the High North including both search and rescue, oil spill recovery, fire fighting and salvage, as well as capacities fighting terror or other forms of destructive action. • To study partnerships and coordination challenges related to cross-border, multi-task emergency cooperation • To contribute with organizational tools for crisis management Project characteristics: Financial support: -Norwegian Ministry of Foreign Affairs, -the Nordland county Administration -University partners.
    [Show full text]
  • Russia and Siberia: the Beginning of the Penetration of Russian People Into Siberia, the Campaign of Ataman Yermak and It’S Consequences
    The Aoyama Journal of International Politics, Economics and Communication, No. 106, May 2021 CCCCCCCCC Article CCCCCCCCC Russia and Siberia: The Beginning of the Penetration of Russian People into Siberia, the Campaign of Ataman Yermak and it’s Consequences Aleksandr A. Brodnikov* Petr E. Podalko** The penetration of the Russian people into Siberia probably began more than a thousand years ago. Old Russian chronicles mention that already in the 11th century, the northwestern part of Siberia, then known as Yugra1), was a “volost”2) of the Novgorod Land3). The Novgorod ush- * Associate Professor, Novosibirsk State University ** Professor, Aoyama Gakuin University 1) Initially, Yugra was the name of the territory between the mouth of the river Pechora and the Ural Mountains, where the Finno-Ugric tribes historically lived. Gradually, with the advancement of the Russian people to the East, this territorial name spread across the north of Western Siberia to the river Taz. Since 2003, Yugra has been part of the offi cial name of the Khanty-Mansiysk Autonomous Okrug: Khanty-Mansiysk Autonomous Okrug—Yugra. 2) Volost—from the Old Russian “power, country, district”—means here the territo- rial-administrative unit of the aboriginal population with the most authoritative leader, the chief, from whom a certain amount of furs was collected. 3) Novgorod Land (literally “New City”) refers to a land, also known as “Gospodin (Lord) Veliky (Great) Novgorod”, or “Novgorod Republic”, with its administrative center in Veliky Novgorod, which had from the 10th century a tendency towards autonomy from Kiev, the capital of Ancient Kievan Rus. From the end of the 11th century, Novgorod de-facto became an independent city-state that subdued the entire north of Eastern Europe.
    [Show full text]
  • Cop13 Inf. 66 (English Only / Únicamente En Inglés / Seulement En Anglais)
    CoP13 Inf. 66 (English only / únicamente en inglés / seulement en anglais) Written Statement by Japan on the naming of Sea of Japan In response to the written statement distributed by the RoK Delegation, Japan would like to present the pamphlet and related information on the appellation of the Sea of Japan, which show that the Sea of Japan is the standard appellation of the regional sea, and that all the UN publications shall exclusively use this specific appellation. Naming of the Sea of Japan The purpose of the United Nations Group of Experts on Geographical Names (UNGEGN) is to consider the technical problems of standardization of geographical names with a view to furthering it at both the national and international levels thereby preventing confusion in the use of names of geographical features. The delegation of Japan therefore believes that as a matter of principle it is not appropriate to discuss the issue of the naming of any particular geographical feature such as the Sea of Japan at this meeting. The views of the Government of Japan on this matter were clearly expressed at the previous sessions of the UNGEGN and the United Nations Conference on the Standardization of Geographical Names (UNCSGN), including its last session in Berlin in 2002, and have been duly recorded. It should be reiterated here that the name “Sea of Japan” is geographically and historically established and is used at present all over the world, except the ROK and the DPRK that claim the name should be replaced or at least co-named the “East Sea.” The following are the major points Japan wishes to make in response to these unfounded and politically motivated assertions.
    [Show full text]
  • Redacted for Privacy Abstract Approved: John V
    AN ABSTRACT OF THE THESIS OF MIAH ALLAN BEAL for the Doctor of Philosophy (Name) (Degree) in Oceanography presented on August 12.1968 (Major) (Date) Title:Batymety and_Strictuof_thp..4rctic_Ocean Redacted for Privacy Abstract approved: John V. The history of the explordtion of the Central Arctic Ocean is reviewed.It has been only within the last 15 years that any signifi- cant number of depth-sounding data have been collected.The present study uses seven million echo soundings collected by U. S. Navy nuclear submarines along nearly 40, 000 km of track to construct, for the first time, a reasonably complete picture of the physiography of the basin of the Arctic Ocean.The use of nuclear submarines as under-ice survey ships is discussed. The physiography of the entire Arctic basin and of each of the major features in the basin are described, illustrated and named. The dominant ocean floor features are three mountain ranges, generally paralleling each other and the 40°E. 140°W. meridian. From the Pacific- side of the Arctic basin toward the Atlantic, they are: The Alpha Cordillera; The Lomonosov Ridge; andThe Nansen Cordillera. The Alpha Cordillera is the widest of the three mountain ranges. It abuts the continental slopes off the Canadian Archipelago and off Asia across more than550of longitude on each slope.Its minimum width of about 300 km is located midway between North America and Asia.In cross section, the Alpha Cordillera is a broad arch rising about two km, above the floor of the basin.The arch is marked by volcanoes and regions of "high fractured plateau, and by scarps500to 1000 meters high.The small number of data from seismology, heat flow, magnetics and gravity studies are reviewed.The Alpha Cordillera is interpreted to be an inactive mid-ocean ridge which has undergone some subsidence.
    [Show full text]
  • Arctic Report Card 2017
    Arctic Report Card 2017 Arctic Report Card 2017 Arctic shows no sign of returning to reliably frozen region of recent past decades 2017 Headlines 2017 Headlines Video Executive Summary Contacts Arctic shows no sign of returning to reliably frozen Vital Signs region of recent past decades Surface Air Temperature Despite relatively cool summer temperatures, Terrestrial Snow Cover observations in 2017 continue to indicate that the Greenland Ice Sheet Arctic environmental system has reached a 'new Sea Ice normal', characterized by long-term losses in the Sea Surface Temperature extent and thickness of the sea ice cover, the extent Arctic Ocean Primary Productivity and duration of the winter snow cover and the mass of ice in the Greenland Ice Sheet and Arctic glaciers, Tundra Greenness and warming sea surface and permafrost Other Indicators temperatures. Terrestrial Permafrost Groundfish Fisheries in the Highlights Eastern Bering Sea Wildland Fire in High Latitudes • The average surface air temperature for the year ending September 2017 is the 2nd warmest since 1900; however, cooler spring and summer temperatures contributed to a rebound in snow cover in the Eurasian Arctic, slower summer sea ice loss, Frostbites and below-average melt extent for the Greenland ice sheet. Paleoceanographic Perspectives • The sea ice cover continues to be relatively young and thin with older, thicker ice comprising only 21% of the ice cover in on Arctic Ocean Change 2017 compared to 45% in 1985. Collecting Environmental • In August 2017, sea surface temperatures in the Barents and Chukchi seas were up to 4° C warmer than average, Intelligence in the New Arctic contributing to a delay in the autumn freeze-up in these regions.
    [Show full text]
  • Grade 6 Social Studies
    Grade 6 SEPTEMBER OCTOBER NOVEMBER 5 Themes of Geography – Europe Europe st (1 week or 2) E.1 E.1 A. absolute and relative On a map of the world, locate On a map of the world, locate locations, B. climate, C. the continent of Europe. On a the continent of Europe. On a major physical characteristics, map of Europe, locate the map of Europe, locate the D. major natural resources, Atlantic Ocean, Arctic Ocean, Atlantic Ocean, Arctic Ocean, E. population size Norwegian Sea, and Barents Norwegian Sea, and Barents Sea. Locate the Volga, Sea. Locate the Volga, Europe Danube, Ural, Rhine, Elbe, Danube, Ural, Rhine, Elbe, E.1 Seine, Po, and Thames Seine, Po, and Thames On a map of the world, locate Rivers. Locate the Alps, Rivers. Locate the Alps, the continent of Europe. On a Pyrenees, and Balkan Pyrenees, and Balkan map of Europe, locate the Mountains. Locate the Mountains. Locate the Atlantic Ocean, Arctic Ocean, countries in the northern, countries in the northern, Norwegian Sea, and Barents southern, central, eastern, and southern, central, eastern, and Sea. Locate the Volga, western regions of Europe. western regions of Europe. Danube, Ural, Rhine, Elbe, E.2 E.2 Seine, Po, and Thames Use a map key to locate Use a map key to locate Rivers. Locate the Alps, countries and major cities in countries and major cities in Pyrenees, and Balkan Europe. (G) Europe. (G) Mountains. Locate the E.3 E.3 countries in the northern, Explain how the following five Explain how the following five southern, central, eastern, and factors have influenced factors have influenced western regions of Europe.
    [Show full text]