|||GET||| the Logic of Expression 1St Edition

Total Page:16

File Type:pdf, Size:1020Kb

|||GET||| the Logic of Expression 1St Edition THE LOGIC OF EXPRESSION 1ST EDITION DOWNLOAD FREE Simon Duffy | 9781351886437 | | | | | The Logic of Explanation in Psychoanalysis Main article: Infinitary logic. All Pages Books Journals. These include propositional logic and monadic predicate logicwhich is first-order logic restricted to unary predicate symbols and no function symbols. Seller Inventory GRP Masked man Mathematical fallacy. Payment details. In either case it is The Logic of Expression 1st edition that the natural axioms for a pairing function and its projections are satisfied. The third schema is known as Leibniz's law"the principle of substitutivity", "the indiscernibility of identicals", or "the replacement property". Infinitary logic allows infinitely long sentences. A common convention is:. Sometimes, "theory" is understood in a more formal sense, which is just a set of sentences in first-order logic. Privacy and Cookies We use cookies to give you the best experience on our website. These rules are similar to the order of operations in arithmetic. The second schema, involving the function symbol fis equivalent to a special case of the third schema, using the formula. Mathematical formulas mix symbolic expressions for quantifiers with natural language quantifiers such as. The set of terms is inductively defined by the following rules:. Institutional Subscription. Consider the two sentences "Socrates is a philosopher" and "Plato is a philosopher". For infinite domains of discourse, the equivalences are similar. Item specifics Condition: Good: A book that has been read but is in The Logic of Expression 1st edition condition. To show that a formula A is provable, the tableaux method attempts to demonstrate that the negation of A is unsatisfiable. In general, predicates The Logic of Expression 1st edition take several variables. Consider, for example, the first-order formula "if a is a philosopher, then a is a scholar". The inductive definition used to make this assignment is called the T-schema. The two most common quantifiers are the universal quantifier and the existential quantifier. It also The Logic of Expression 1st edition a domain of discourse that specifies the range of the quantifiers. Preface Chapter 1. Kosko, Bart. First-order Quantifiers Predicate Second-order Monadic predicate calculus. What follows is a description of the standard or Tarskian semantics for first-order logic. Validating such a system may require showing that no "bad" state can be reached from any "good" state. It is also sufficient to have two predicate symbols of arity 2 that define projection functions from an ordered pair to its components. In interpreted higher-order theories, predicates may be interpreted as sets of sets. Propositional calculus and Boolean logic. They also share the property that it is possible to effectively verify that a purportedly valid deduction is actually a deduction; such deduction systems are called effective. Updating Results. New Logic, First Edition Even if the notation uses typed variables, variables of that type may be used. There are two key types of well-formed expressions: termswhich intuitively represent objects, and formulaswhich intuitively express The Logic of Expression 1st edition that can be true or false. Psychoanalytic Narratives as Explanations C. The preposition "next to" when applied to "John" results in the predicate adverbial "next to John". Peano arithmetic and Zermelo—Fraenkel set theory are axiomatizations of number theory and set theoryrespectively, into first-order logic. This property is known as unique readability of formulas. These algebras are all lattices that properly extend the The Logic of Expression 1st edition Boolean algebra. About this Item: Disney Publishing Worldwide The universal quantifier "for every" in this sentence expresses the idea that the claim "if a The Logic of Expression 1st edition a philosopher, then a is a scholar" holds for all choices of a. For example, one common rule of inference is the rule of substitution. He established two theorems for systems of this type:. For the problem of model checkingefficient algorithms are known to decide whether an input finite structure satisfies a first-order formula, in addition to computational complexity bounds: see Model checking First-order logic. Digital photos The Logic of Expression 1st edition on request for any book. If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website. Published by Viking The majority of pages are undamaged with minimal creasing or tearing, minimal pencil underlining of text, no highlighting of text, no writing in margins. There are many conventions for where parentheses are used in formulas. Thus there is no first-order theory whose only model has the set of natural numbers as its domain, or whose only model has the set of real numbers as its domain. Handling time. This has the appearance of an infinite conjunction of propositions. View on ScienceDirect. Good: A book that has been read but is in good condition. More precisely, a quantifier specifies the quantity of specimens in the domain of discourse that satisfy an open formula. Wraps, Condition: Very Good. Imprint: Academic Press. Happy to ship to international locations. There are systems weaker than full first-order logic for which the logical consequence relation is decidable. Simplification of Sequential Circuits. Articles results. Infinitary The Logic of Expression 1st edition allows infinitely long sentences. The resolution rule is a single rule of inference that, together with unificationis sound and complete for first-order logic. Explaining and Understanding D. Very good hardcover with very good dust jacket in new Brodart jacket. Learn More - opens in a new window or tab Any international shipping and import charges are paid in part to Pitney Bowes Inc. Learn More - opens in a new window or tab. Create a Want Tell us what you're looking for and once a match is found, we'll inform you by e-mail. Page Count: The latter could be expressed, in turn, using "all", but this is rarely done. Nice copy overall. The study of the interpretations of formal languages is called formal semantics. These rules are similar to the order of operations in arithmetic. Fetch more users. People who viewed this item also viewed. First-order logic is the standard for the formalization of mathematics into axiomsand is studied in the foundations of mathematics. There are also more subtle limitations of first-order logic that are implied by the compactness theorem. The combination of additional quantifiers and the full semantics for these quantifiers makes higher-order logic stronger than first-order logic. Logic: The Essentials Because a full derivation of any nontrivial result in a first-order deductive system will be extremely long for a human to write, [33] results are often formalized as a series of lemmas, for which derivations can be constructed separately. See more. Although the logical consequence relation is only semidecidablemuch progress has been made in automated theorem proving in first-order logic. In general, logical consequence in first-order logic is only semidecidable : if a sentence A logically implies a sentence B then this can be discovered for example, by searching for a proof until one is found, using some effective, sound, complete proof system. In propositional logic Affirming a disjunct Affirming the consequent Denying the antecedent Argument from fallacy. Automated theorem proving refers to the development of computer programs that search and find derivations formal proofs of mathematical theorems. When there are only finitely many sorts in a theory, many-sorted first-order logic can be reduced to single-sorted first-order logic. Moreover, extra punctuation not required by the definition may be inserted—to make formulas easier to read. From Wikipedia, the free encyclopedia. The rules of inference enable the manipulation of quantifiers. Be the first to write a review. It used to be standard practice to use a fixed, infinite set of non-logical symbols for all purposes. For example, an interpretation I P The Logic of Expression 1st edition a binary predicate symbol P may be the set of pairs of integers such that the first one is less than the second. Users results. Dust Jacket Condition: Near Fine. The variable a in The Logic of Expression 1st edition previous formula can be universally quantified, for instance, with the first-order sentence "For every aif a is a philosopher, then a is a scholar". Some provable identities include:. Flexible - Read on multiple operating systems and devices. The axioms for ordered abelian groups can be expressed as a set of sentences in the language. In first-order logic with equality, only normal models are considered, and so there is no term for a model other than a normal model. Fetch more posts. These finite deductions themselves are often called derivations in proof theory. For instance, first-order logic is undecidable, meaning a sound, complete and terminating decision algorithm for provability is impossible. See all condition definitions - opens in The Logic of Expression 1st edition new window or tab This definition of a formula does not support defining an if-then-else function ite c, a, bwhere "c" is a condition expressed as a formula, that would return "a" if c is true, and "b" if it is false. Recursion Recursive set Recursively enumerable set Decision problem Church—Turing thesis Computable function Primitive recursive function. First-order logic is able to formalize many simple quantifier constructions in natural language, such as "every person who lives in Perth lives in Australia". Unlike natural languages, such as English, the language of first-order logic is completely formal, so that it can be mechanically determined whether a given The Logic of Expression 1st edition is well formed. The interpretation of an n -ary predicate symbol is a set of n -tuples of elements of the domain of discourse.
Recommended publications
  • False Dilemma Wikipedia Contents
    False dilemma Wikipedia Contents 1 False dilemma 1 1.1 Examples ............................................... 1 1.1.1 Morton's fork ......................................... 1 1.1.2 False choice .......................................... 2 1.1.3 Black-and-white thinking ................................... 2 1.2 See also ................................................ 2 1.3 References ............................................... 3 1.4 External links ............................................. 3 2 Affirmative action 4 2.1 Origins ................................................. 4 2.2 Women ................................................ 4 2.3 Quotas ................................................. 5 2.4 National approaches .......................................... 5 2.4.1 Africa ............................................ 5 2.4.2 Asia .............................................. 7 2.4.3 Europe ............................................ 8 2.4.4 North America ........................................ 10 2.4.5 Oceania ............................................ 11 2.4.6 South America ........................................ 11 2.5 International organizations ...................................... 11 2.5.1 United Nations ........................................ 12 2.6 Support ................................................ 12 2.6.1 Polls .............................................. 12 2.7 Criticism ............................................... 12 2.7.1 Mismatching ......................................... 13 2.8 See also
    [Show full text]
  • Forensic Pattern Recognition Evidence an Educational Module
    Forensic Pattern Recognition Evidence An Educational Module Prepared by Simon A. Cole Professor, Department of Criminology, Law, and Society Director, Newkirk Center for Science and Society University of California, Irvine Alyse Berthental PhD Candidate, Department of Criminology, Law, and Society University of California, Irvine Jaclyn Seelagy Scholar, PULSE (Program on Understanding Law, Science, and Evidence) University of California, Los Angeles School of Law For Committee on Preparing the Next Generation of Policy Makers for Science-Based Decisions Committee on Science, Technology, and Law June 2016 The copyright in this module is owned by the authors of the module, and may be used subject to the terms of the Creative Commons Attribution-NonCommercial 4.0 International Public License. By using or further adapting the educational module, you agree to comply with the terms of the license. The educational module is solely the product of the authors and others that have added modifications and is not necessarily endorsed or adopted by the National Academy of Sciences, Engineering, and Medicine or the sponsors of this activity. Contents Introduction .......................................................................................................................... 1 Goals and Methods ..................................................................................................................... 1 Audience .....................................................................................................................................
    [Show full text]
  • Yesterday's Algorithm: Penrose on the Gödel Argument
    Yesterday’s Algorithm: Penrose and the Gödel Argument §1. The Gödel Argument. Roger Penrose is justly famous for his work in physics and mathematics but he is notorious for his endorsement of the Gödel argument (see his 1989, 1994, 1997). This argument, first advanced by J. R. Lucas (in 1961), attempts to show that Gödel’s (first) incompleteness theorem can be seen to reveal that the human mind transcends all algorithmic models of it1. Penrose's version of the argument has been seen to fall victim to the original objections raised against Lucas (see Boolos (1990) and for a particularly intemperate review, Putnam (1994)). Yet I believe that more can and should be said about the argument. Only a brief review is necessary here although I wish to present the argument in a somewhat peculiar form. Let us suppose that the human cognitive abilities that underlie our propensities to acquire mathematical beliefs on the basis of what we call proofs can be given a classical cognitive psychological or computational explanation (henceforth I will often use ‘belief’ as short for ‘belief on the basis of proof’). These propensities are of at least two types: the ability to appreciate chains of logical reasoning but also the ability to recognise ‘elementary proofs’ or, it would perhaps be better to say, elementary truths, such as if a = b and b = c then a = c, without any need or, often, any possibility of proof in the first sense. On this supposition, these propensities are the realization of a certain definite algorithm or program somehow implemented by the neural hardware of the brain.
    [Show full text]
  • The Critical Thinking Toolkit
    Galen A. Foresman, Peter S. Fosl, and Jamie Carlin Watson The CRITICAL THINKING The THE CRITICAL THINKING TOOLKIT GALEN A. FORESMAN, PETER S. FOSL, AND JAMIE C. WATSON THE CRITICAL THINKING TOOLKIT This edition first published 2017 © 2017 John Wiley & Sons, Inc. Registered Office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 350 Main Street, Malden, MA 02148-5020, USA 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK For details of our global editorial offices, for customer services, and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell. The right of Galen A. Foresman, Peter S. Fosl, and Jamie C. Watson to be identified as the authors of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners.
    [Show full text]
  • Reasoning in School
    Reasoning in School For this I’m indebted to my Dad, who has over the years wisely entertained my impassioned ideas about education, to my Mom, whose empathy I’ve internalized, and to many liberal teachers. Preface A fifth grader taught me the word ‘metacognition’, which, following her, we can take to mean “thinking about thinking”. This is an analogical exercise in metacognition. It is secondarily an introduction to the process of reasoning and primarily an examination of basic notions about that process, especially those that are supposed commonsense and those that are missing from our self-concepts. As it turns out, subjecting popular metacognitive attitudes to even minor scrutiny calls some of them seriously into question. It is my goal to do so, and to form in the mind of the reader better founded beliefs about reasoning and thereby a more accurate, and consequently empowering, self-understanding. I would love to set in motion the mind that frees itself. I am in the end interested in reasoning in school as it relates to the practice of Philosophy for Children (p4c). It is amazing that reasoning is not a part of the K-12 curriculum. That it is not I find plainly unjustifiable and seriously unjust. In what follows I defend this position and consider p4c in light of it. Because I am focused on beliefs about thinking, as opposed to the cognitive psychology of thought, I am afforded some writing leeway. I am not a psychologist, but I have a fair metacognitive confidence thanks to my background in philosophy.
    [Show full text]
  • The 13Th Annual ISNA-CISNA Education Forum Welcomes You!
    13th Annual ISNA Education Forum April 6th -8th, 2011 The 13th Annual ISNA-CISNA Education Forum Welcomes You! The ISNA-CISNA Education Forum, which has fostered professional growth and development and provided support to many Islamic schools, is celebrating its 13-year milestone this April. We have seen accredited schools sprout from grassroots efforts across North America; and we credit Allah, subhanna wa ta‘alla, for empowering the many men and women who have made the dreams for our schools a reality. Today the United States is home to over one thousand weekend Islamic schools and several hundred full-time Islamic schools. Having survived the initial challenge of galvanizing community support to form a school, Islamic schools are now attempting to find the most effective means to build curriculum and programs that will strengthen the Islamic faith and academic excellence of their students. These schools continue to build quality on every level to enable their students to succeed in a competitive and increasingly multicultural and interdependent world. The ISNA Education Forum has striven to be a major platform for this critical endeavor from its inception. The Annual Education Forum has been influential in supporting Islamic schools and Muslim communities to carry out various activities such as developing weekend schools; refining Qur‘anic/Arabic/Islamic Studies instruction; attaining accreditation; improving board structures and policies; and implementing training programs for principals, administrators, and teachers. Thus, the significance of the forum lies in uniting our community in working towards a common goal for our youth. Specific Goals 1. Provide sessions based on attendees‘ needs, determined by surveys.
    [Show full text]
  • In Defence of a Princess Margaret Premise
    Fabrice Pataut: “In Defence of a Princess Margaret Premise,” Introductory chapter to Truth, Objects, Infinity – New Perspectives on the Philosophy of Paul Benacerraf, Fabrice Pataut, editor. Springer International Publishing, Logic, Epistemology, and the Unity of Science, vol. 28, Switzerland, 2016, pp. xvii-xxxviii. ISBN 978-3-319-45978-3 ISSN 2214-9775 ISBN 978-3-319-45980-6 (eBook) ISSN 2214-9783 (electronic) DOI 10.1007/978-3-319-45980-6 Library of Congress Control Number : 2016950889 © Springer International Publishing Swtizerland 2016 1 IN DEFENCE OF A PRINCESS MARGARET PREMISE Fabrice Pataut 1. Introductory remarks In their introduction to the volume Benacerraf and his Critics, Adam Morton and Stephen Stich remark that “[t]wo bits of methodology will stand out clearly in anyone who has talked philosophy with Paul Benacerraf”: (i) “[i]n philosophy you never prove anything; you just show its price,” and (ii) “[f]ormal arguments yield philosophical conclusions only with the help of hidden philosophical premises” (Morton and Stich 1996b: 5). The first bit will come to some as a disappointment and to others as a welcome display of suitable modesty. Frustration notwithstanding, the second bit suggests that, should one stick to modesty, one might after all prove something just in case one discloses the hidden premises of one’s chosen argument and pleads convincingly in their favor on independent grounds. I would like to argue that a philosophical premise may be uncovered — of the kind that Benacerraf has dubbed “Princess Margaret Premise” (PMP)1 — that helps us reach a philosophical conclusion to be drawn from an argument having a metamathematical result as one of its other premises, viz.
    [Show full text]
  • LECTURE 2 Propositional Logic
    LECTURE 2 Propositional logic EGG 2019 | Introduction to Semantics | Elizabeth Coppock Boolean I connectives BOOLEAN CONNECTIVES o and - ∧ o or - ∨ o not - ¬ George Boole (1815-1864) BOOLEAN SEARCH DISJUNCTION An “or” statement is called a disjunction. The statements that are disjoined are called the disjuncts. CONJUNCTION An “and” statement is called a conjunction. The statements that are conjoined are called the conjuncts. NEGATION A “not” statement is called a negation. Not is a unary connective, because it only applies to a single statement. Conjunction and disjunction are binary connectives. SCOPE AMBIGUITY WITH NEGATION & CONJUNCTION Antonio didn’t take Phonology and Syntax. p = Geordi consulted Troi r = Geordi consulted Worf Reading 1: Conjunction scoping over negation (& > ¬) ¬p & ¬r Reading 2: Negation scoping over conjunction (¬ > &) ¬(p & r) SCOPE AMBIGUITY WITH NEGATION & CONJUNCTION Antonio didn’t take Phonology and Syntax. p = Antonio took Phonology q = Antonio took Syntax Reading 1: Conjunction scoping over negation (& > ¬) ¬p & ¬r Reading 2: Negation scoping over conjunction (¬ > &) ¬(p & r) SCOPE AMBIGUITY WITH NEGATION & CONJUNCTION Antonio didn’t take Phonology and Syntax. p = Antonio took Phonology q = Antonio took Syntax Reading 1: Conjunction of negations [¬p & ¬q] Reading 2: Negation scoping over conjunction (¬ > &) ¬(p & r) SCOPE AMBIGUITY WITH NEGATION & CONJUNCTION Antonio didn’t take Phonology and Syntax. p = Antonio took Phonology q = Antonio took Syntax Reading 1: Conjunction of negations [¬p & ¬q] Reading 2: Negation of a conjunction ¬[p & q] Suppose he took both ✓ [¬p & ¬q] ✓ ✓ ¬[p & q] ✓ Suppose he took both ✓ [¬p & ¬q] - false ✓ ✓ ¬[p & q] - false ✓ Suppose he took neither ✓ [¬p & ¬q] ✓ ✓ ¬[p & q] ✓ Suppose he took neither ✓ [¬p & ¬q] - true ✓ ✓ ¬[p & q] - true ✓ Suppose he took only one ✓ [¬p & ¬q] ✓ ✓ ¬[p & q] ✓ Suppose he took only one ✓ [¬p & ¬q] - false ✓ ✓ ¬[p & q] - true ✓ SCOPE AMBIGUITY WITH NEGATION & CONJUNCTION Antonio didn’t take Phonology and Syntax.
    [Show full text]
  • Leading Logical Fallacies in Legal Argument – Part 1 Gerald Lebovits
    University of Ottawa Faculty of Law (Civil Law Section) From the SelectedWorks of Hon. Gerald Lebovits July, 2016 Say It Ain’t So: Leading Logical Fallacies in Legal Argument – Part 1 Gerald Lebovits Available at: https://works.bepress.com/gerald_lebovits/297/ JULY/AUGUST 2016 VOL. 88 | NO. 6 JournalNEW YORK STATE BAR ASSOCIATION Highlights from Today’s Game: Also in this Issue Exclusive Use and Domestic Trademark Coverage on the Offensive Violence Health Care Proxies By Christopher Psihoules and Jennette Wiser Litigation Strategy and Dispute Resolution What’s in a Name? That Which We Call Surrogate’s Court UBE-Shopping and Portability THE LEGAL WRITER BY GERALD LEBOVITS Say It Ain’t So: Leading Logical Fallacies in Legal Argument – Part 1 o argue effectively, whether oral- fact.3 Then a final conclusion is drawn able doubt. The jury has reasonable ly or in writing, lawyers must applying the asserted fact to the gen- doubt. Therefore, the jury hesitated.”8 Tunderstand logic and how logic eral rule.4 For the syllogism to be valid, The fallacy: Just because the jury had can be manipulated through fallacious the premises must be true, and the a reasonable doubt, the jury must’ve reasoning. A logical fallacy is an inval- conclusion must follow logically. For hesitated. The jury could’ve been id way to reason. Understanding falla- example: “All men are mortal. Bob is a entirely convinced and reached a con- cies will “furnish us with a means by man. Therefore, Bob is mortal.” clusion without hesitation. which the logic of practical argumen- Arguments might not be valid, tation can be tested.”1 Testing your though, even if their premises and con- argument against the general types of clusions are true.
    [Show full text]
  • MATH 9: ALGEBRA: FALLACIES, INDUCTION 1. Quantifier Recap First, a Review of Quantifiers Introduced Last Week. Recall That
    MATH 9: ALGEBRA: FALLACIES, INDUCTION October 4, 2020 1. Quantifier Recap First, a review of quantifiers introduced last week. Recall that 9 is called the existential quantifier 8 is called the universal quantifier. We write the statement 8x(P (x)) to mean for all values of x, P (x) is true, and 9x(P (x)) to mean there is some value of x such that P (x) is true. Here P (x) is a predicate, as defined last week. Generalized De Morgan's Laws: :8x(P (x)) $ 9x(:P (x)) :9x(P (x)) $ 8x(:P (x)) Note that multiple quantifiers can be used in a statement. If we have a multivariable predicate like P (x; y), it is possible to write 9x9y(P (x; y)), which is identical to a nested statement, 9x(9y(P (x; y))). If it helps to understand this, you can realize that the statement 9y(P (x; y)) is a logical predicate in variable x. Note that, in general, the order of the quantifiers does matter. To negate a statement with multiple predicates, you can do as follows: :8x(9y(P (x; y))) = 9x(:9y(P (x; y))) = 9x(8y(:P (x; y))): 2. Negations :(A =) B) $ A ^ :B :(A $ B) = (:A $ B) = (A $ :B) = (A ⊕ B) Here I am using = to indicate logical equivalence, just because it is a little less ambiguous when the statements themselves contain the $ sign; ultimately, the meaning is the same. The ⊕ symbol is the xor logical relation, which means that exactly one of A, B is true, but not both.
    [Show full text]
  • A Searchable Bibliography of Fallacies – 2016
    A Searchable Bibliography of Fallacies – 2016 HANS V. HANSEN Department of Philosophy University of Windsor Windsor, ON CANADA N9B 3P4 [email protected] CAMERON FIORET Department of Philosophy University of Guelph Guelph, ON CANADA N1G 2W1 [email protected] This bibliography of literature on the fallacies is intended to be a resource for argumentation theorists. It incorporates and sup- plements the material in the bibliography in Hansen and Pinto’s Fallacies: Classical and Contemporary Readings (1995), and now includes over 550 entries. The bibliography is here present- ed in electronic form which gives the researcher the advantage of being able to do a search by any word or phrase of interest. Moreover, all the entries have been classified under at least one of 45 categories indicated below. Using the code, entered as e.g., ‘[AM-E]’, one can select all the entries that have been des- ignated as being about the ambiguity fallacy, equivocation. Literature about fallacies falls into two broad classes. It is either about fallacies in general (fallacy theory, or views about fallacies) or about particular fallacies (e.g., equivocation, appeal to pity, etc.). The former category includes, among others, con- siderations of the importance of fallacies, the basis of fallacies, the teaching of fallacies, etc. These general views about fallacies often come from a particular theoretical orientation about how fallacies are best understood; for example, some view fallacies as epistemological mistakes, some as mistakes in disagreement resolution, others as frustrations of rhetorical practice and com- munication. Accordingly, we have attempted to classify the en- © Hans V. Hansen & Cameron Fioret.
    [Show full text]
  • On Computer-Based Assessment of Mathematics
    ON COMPUTER-BASED ASSESSMENT OF MATHEMATICS DANIEL ARTHUR PEAD, BA Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy December 2010 Abstract This work explores some issues arising from the widespread use of computer based assessment of Mathematics in primary and secondary education. In particular, it considers the potential of computer based assessment for testing “process skills” and “problem solving”. This is discussed through a case study of the World Class Tests project which set out to test problem solving skills. The study also considers how on-screen “eAssessment” differs from conventional paper tests and how transferring established assessment tasks to the new media might change their difficulty, or even alter what they assess. Once source of evidence is a detailed comparison of the paper and computer versions of a commercially published test – nferNelson's Progress in Maths - including a new analysis of the publisher's own equating study. The other major aspect of the work is a design research exercise which starts by analysing tasks from Mathematics GCSE papers and proceeds to design, implement and trial a computer-based system for delivering and marking similar styles of tasks. This produces a number of insights into the design challenges of computer-based assessment, and also raises some questions about the design assumptions behind the original paper tests. One unanticipated finding was that, unlike younger pupils, some GCSE candidates expressed doubts about the idea of a computer-based examination. The study concludes that implementing a Mathematics test on a computer involves detailed decisions requiring expertise in both assessment and software design, particularly in the case of richer tasks targeting process skills.
    [Show full text]