Mubeen ARA Thesis Pdf.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Mubeen ARA Thesis Pdf.Pdf ACKNOWLEGMENT…………………………………………………………… i LIST OF TABLE……………………………………………………………..…….ii-iii LIST OF FIGURES…………………………………………………………….…..iv-x THESIS ABSTRACT………………………………………………………………xi-xii CHAPTER # 1 INTRODUCTION OF DISSERTATION…………………………………………1 INTRODUCTION.................................................................................................2 AIMS AND OBJECTIVES OF STUDY………………………………………...6 STRUCTURE OF THESIS……...........................................................................6-7 REFERENCES......................................................................................................9-14 CHAPTER # 2 ENVIRONMENTAL EFFECTS ON ZOOPLANKTONS COMMUNITY DYNAMICS AND ABUNDANCE IN COASTAL WATERS, MANORA, PAKISTAN..................................................................................................................8 ABSTRACT .................................................................................................................9 1. INTRODUCTION .........................................................................................10-12 2. MATERIALS & METHODS.........................................................................13-18 3. RESULTS.......................................................................................................19-47 3.1. VARIATIONS IN ENVIRONMENTAL PARAMETERS 3.2 MESOZOOPLANKTON DIVERSITY AND ABUNDANCE 3.3. EFFECTS OF ENVIRONMENTAL VARIABLES ON MZ 3.4. MESOZOOPLANKTONS AND CHLOROPHYLL RELATION 4. DISCUSSION .......................................................................................................48-51 5. CONCLUSION………………………………………………………………..…52 CHAPTER 3 COPEPODS COMMMUNITY STRUCTURE IN SHALLOW, MANGROVE WATERS IN NORTHERN ARABIAN SEA .....................................................53 ABSTRACT ............................................................................................................54 1. INTRODUCTION ……………………………………..................................55-57 2. MATERIALS & METHODS.......................................................................58-60 3. RESULTS.....................................................................................................61-108 3.1 SPECIES DISTRIBUTION AND DENSITY 3.2 SEASONAL VARIATION IN ABUNDANCE OF COPRPODS 3.3 GENUS ASSOCIATION BETWEEN THE STATIONS 4. DISCUSSION ............................................................................................109-113 5. CONCLUSION…………………………………………………………...114 CHAPTER 4 ANNUAL AND TIDAL INDUCED CHANGES IN NUTRIENT ENERGY AND ITS EFFECT ON ZOOPLANKTON ABUNDANCE AND PHYTOPLANKTON BIOMASS......................................................................................................…….115 ABSTRACT.............................................................................................................116 1. INTRODUCTION…..................................................................................118-119 2. MATERIALS & METHODS.....................................................................120-123 3. RESULTS.....................................................................................................124-148 3.1. ANNUAL NUTRIENT DISTRIBUTION 3.2. COMPOSITION OF ZOOPLANKTON FEEDING GUILDS IN MANGROVE FOREST 3.3. AUTOTROPHIC AND HETEROTROPHIC BIOMASS COUPLING 3.4. EFFECT OF NUTRIENTS ON PLANKTON 3.5. MAGROVE TIDAL CYCLE 4. DISCUSSION.............................................................................................149-153 5. CONCLUSION…………………………………………………………...154 CHAPTER 5 DISSERTATION DISCUSSION AND FUTURE RECOMMENDATION…155 GENERAL DISCUSSION ………………………………………………………156-160 FUTURE RECOMMENDATIONS……………………………………………...161 REFERENCES ......................................................................................................162-195 ACKNOWLEDGEMENTS Without the acknowledgments this dissertation would not be encourage. First and foremost especial thanks to ALLAH who made me to achieve this goal. Best regards I would like to pay my mentor and research supervisor, Dr. Sumera Farooq, Who was a sign of inspiration for me. Without her encouragement the dissertation would not be completed as it is. People who supported me guided me throughout the journey of this research, who contributed their efforts morally and professionally are appreciable, I would like to give special thanks to them for their generous sharing. I would like to pay attribute to the Centre of Excellence in Marine Biology for financial support and for their encouragement. All the respected teachers of the CEMB. I would pay best wishes to the lab attendants for their hard work during and after sampling. Thanks to all of my research colleagues who supported me during the course of my research, who appreciated me to reach the goal. I really pay especial gratitude to the director of CEMB for her kindness and support. I extremely express thanks to my research co supervisor Dr. P.J.A Siddiqui who was very supportive to me till the completion of dissertation. The most recognizable support, love, care and sacrifices from my family who provided me good environment and financial support to complete my task. Whatever the matter was the whole family, my child and husband supported me for being a scientist. To sum up I would like to pay heartily thanks to all the people who raise my spirits from day till the completion of dissertation. MUBEEN ARA i Chapter 2. Table 1 Physical and biological parameters ranges and annual mean values from mangrove and coastal stations……………………………………….…20 Table 2 Relative abundance (%) of different studied groups of MZ (excluding Copepods) in surface and 5m waters (in parenthesis). *Marine planktonic worms include all identified worms…………….………………………28 Table 3 Comparison of Total mean abundance (Ind.m-3) and % Occurrence of mesozooplankton at four stations……….………………………………29 Table 4 Comparison of total copepods mean density at surface and 5m waters (Ind. m-3) from four stations……………………………………………30 Table 5 Linear regression analysis and one-way ANOVA (P < 0.05) for zooplankton groups with four predictor variables at all four stations………………..41 Chapter 3. Table 1 Comparison of copepods diversity index, evenness and richness at all stations……………………………………………………………..……62 Table 2 Group mean abundance and vertical distribution of the copepods at all stations during September 12 to September 13………….……………..66 Table 3 Total abundance of species Ind.m-3 at all stations with their occurrence frequency (OF %) and relative frequency (RA %)……………………...99 Table 4a Species wise seasonal fluctuation of order calanoida during PRE (pre- monsoon), SWM (southwest monsoon), POM (post monsoon) and NEM (northeast monsoon)………………………………….……………102-103 Table 4b Species wise seasonal fluctuation of order cyclopoida and harpacticoida during all four seasons……………………………………………….....104 ii Table 5. Linear regression analysis and one-way ANOVA (P < 0.05) between stations for copepods species……………...……………………...…....105 Chapter 4. Table 1. Regression analysis and one way one way ANOVA (P < 0.05) among stations with respect to the nutrient concentration…………..…………125 Table 2. Regression analysis and one way ANOVA (P < 0.05) for the nutrient concentration with respect to phytoplankton and zooplankton biomass. And total zooplankton abundance with Phytoplankton biomass………………………………………………….…………….135 Table 3. Regression analysis and ANOVA (P < 0.05) between tidal heights and different hydro biological factors…………….………………………139 Table 4. Regression analysis and ANOVA (P < 0.05) for nutrient concentration with respect to phytoplankton and zooplankton biomass during a complete tidal cycle..…………………………………………………………...139 iii Chapter 1 Figure 1 World Ocean data base 2009, geographical distribution of (a) Phytoplankton (37,461 casts). (b) Zooplanktons (44,303 casts) White Point representing the northern Arabian Sea clutches of planktons. (Baranova et al 2009)………….………………………………....…......4 Chapter 2 Figure 1 Study site map showing collection sites in side Manora channel and outside Manora channel……………………..……………………........14 Figure 2 Sampling sites. HS (Harbor station), OC (Open Ocean) and mangrove forest stations HBM (Himalaya backwater mangrove) and SBM (Sandspit backwater mangrove)……………….………...………….……….……15 Figure 3 Annual fluctuation of physicochemical parameters (Temperature and Salinity) at all studied sites, HS and OC and two Mangrove sites HBM and SBM…………………………………………………….…………21 Figure 4. Annual variation in pH and dissolved oxygen (DO, mg-L-1) at HS, OC, HBM and SBM……………………………..……………………….….22 Figure 5. Annual variation between transparency (m) and TSS (mg-L-1) at HS, OC and mangrove sites HBM and SBM……………………………..……..23 Figure 6 Comparison of Annual variation in phytoplankton biomass (Chl a) between HS and OC and mangrove forests, HBM and SBM……….....24 Figure 7 Seasonal Shannon-Wiener Div ersity Index (Hˈ) and species richness (d) at HS, OC, HBM and SBM……………………………………………….31 Figure 8. Mean density (Ind. m-3) of the MZ community groups at studied stations during September and October (2012) at surface and 5m depth......…..32 iv Figure 9. Mean density (Ind. m-3) of the MZ community groups at studied stations during November and December (2012) at surface and 5m depth…….33 Figure 10. Mean density (Ind. m-3) of the MZ community groups at studied stations during January and February (2013) at surface and 5m depth………...34 Figure 11. Mean density (Ind. m-3) of the MZ community groups at studied stations during March and April (2013) at surface and 5m depth………………35 Figure 12. Mean density
Recommended publications
  • General Background
    Guidelines for the Establishment of Environmental Quality Objectives and Targets in the Coastal Zone of the Western Indian Ocean (WIO) Region October 2009 WIO region: Environmental Quality Objectives and Targets October 2009 First published in Kenya in 2009 by the United Nations Environment Programme (UNEP)/Nairobi Convention Secretariat and the Council for Scientific and Industrial Research of South Africa (CSIR). Copyright © 2009, UNEP/Nairobi Convention Secretariat and CSIR. UNEP/GEF WIO-LaB Technical Report Series No. 2009/7 CSIR Report Number: CSIR/NRE/CO/ER/2009/0115/A Copyright notice: This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder provided that acknowledgement of the source is made. UNEP/Nairobi Convention Secretariat and CSIR would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose without prior permission in writing from UNEP/Nairobi Convention Secretariat and CSIR. Disclaimer: The contents of this report do not necessarily reflect the views and policies of UNEP. The designations employed and the presentations do not imply of any opinion whatsoever on the part of the UNEP, or of any cooperating organization concerning the legal status of any country, territory, city or area, of its authorities, or of the delineation of its territories or boundaries. For additional information please contact: UNEP/Nairobi Convention Secretariat Council for Scientific and Industrial Research (CSIR) United Nations Environment Programme P O Box 17001, Durban, South Africa United Nations Avenue, Gigiri, Tel: +27 31 2422356 P.O Box 47074, Nairobi, Kenya Fax: +27 31 2612509 Tel: +254 20 7621250/7622025 E-mail: [email protected] E-mail: [email protected] Principal Authors: Susan Taljaard (CSIR, Stellenbosch), Steven Weerts (CSIR, Durban), Shamilla Pillay (CSIR, Durban) and Anisha Rajkumar (CSIR, Durban) Technical Editors: Dr.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Chemical Use in Salmon Aquaculture: a Review of Current Practices and Possible Environmental Effects
    CHEMICAL USE IN SALMON AQUACULTURE: A REVIEW OF CURRENT PRACTICES AND POSSIBLE ENVIRONMENTAL EFFECTS Les Burridge1, Judith Weis2, Felipe Cabello3 and Jaime Pizarro4 1Fisheries and Oceans Canada St. Andrews Biological Station St. Andrews, New Brunswick Canada E5B 2H7 2 Department of of Biological Sciences Rutgers University, Newark, New Jersey 07102 3 Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595 4Facultad de Ingeniería Universidad de Santiago de Chile Alameda 3363 Santiago, Chile March 20, 2008 Executive Summary Chemical inputs to the marine environment from aquaculture activities generally fall into two categories: intentional and unintentional inputs. Intentional inputs include pesticides, drugs, antifoulants, anaesthetics and disinfectants. Unintentional inputs include contaminants from fish feeds additives and so-called inert ingredients in pesticide and drug formulations. This report addresses the current status of intentional chemical inputs, regulation and research in the salmon aquaculture industry in Norway, Scotland, Canada and Chile. Research gaps are identified and recommendations presented. Antibiotics Antibiotics in salmon aquaculture, as in other industrial husbandry of food animals including cattle and poultry, are used in the control of infections. A veterinary prescription is required to use these compounds and veterinarians are ethically bound to respond to disease outbreaks in fish under their care. Antibiotics are characterized by low toxicity to vertebrates. Some compounds are persistent in sediments and can therefore affect the microbial community near aquaculture sites. One of the major concerns with use of antibiotics (from any source) is the potential for bacteria to develop resistance to the compounds and for the resistance traits to be manifested in other bacteria including human pathogens.
    [Show full text]
  • Catalogue of Type and Figured Specimens in the New Zealand Oceanographic Institute
    ISSN 0083-7903, 76 (Print) ISSN 2538-1016; 76 (Online) Catalogue of Type and Figured Specimens in the New Zealand Oceanographic Institute by ELLIOT W. DAWSON New Zealand Oceanographic Institute Memoir 76 1979 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH Catalogue of Type and Figured Specimens in the New Zealand Oceanographic Institute by ELLIOT W. DAWSON Nev. Zealand Oceanographic Institute, Wellington New Zealand Oceanographic Institute Memoir 76 1979 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Citation according to "World List of Scientific Periodicals" (4th edn): Mem. N.Z. oceanogr. Inst. 76 ISSN 0083-7903 Received for publication : October 1974 (Revised December 1978) Crown Copyright I 979 E.C. KEATING, GOVERNMENT PRINTER, WELLINGTON, NEW ZEALAND - 1979 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page ABSTRACT 5 INTRODUCTION 6 Conditions for the loan of types 6 Designation and dispersal of type specimens 7 Use of the catalogue 8 Future additions 8 ACKNOWLEDGMENTS 8 SYSTEMATIC LISTING OF TYPE AND FIGURED SPECIMENS 9 CATALOGUE 15 Phylum Protozoa 15 Porifera 23 Coelenterata 24 Annelida 30 Sipunculida 31 Arthropoda 31 Mollusca 60 Brachiopoda 67 Bryozoa 67 Echinodermata 69 Chordata 89 REFERENCES 94 STATION DATA 103 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Catalogue of Type and Figured Specimens in the New Zealand Oceanographic Institute by Elliot W.
    [Show full text]
  • The Distribution of Calanoid Copepods Off
    THOMAS E. BOWM The Distribution of Calanoid Copepods off r the Southeastern W United States Between Cape Hatteras and j Southern Florida SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 96 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of profes- sional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These publications are distributed by subscription to libraries, laboratories, and other in- terested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available.
    [Show full text]
  • Oithona Similis (Copepoda: Cyclopoida) - a Cosmopolitan Species?
    OITHONA SIMILIS (COPEPODA: CYCLOPOIDA) - A COSMOPOLITAN SPECIES? DISSERTATION Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften -Dr. rer. nat- Am Fachbereich Biologie/Chemie der Universität Bremen BRITTA WEND-HECKMANN Februar 2013 1. Gutachter: PD. Dr. B. Niehoff 2. Gutachter: Prof. Dr. M. Boersma Für meinen Vater Table of contents Summary 3 Zusammenfassung 6 1. Introduction 9 1.1 Cosmopolitan and Cryptic Species 9 1.2 General introduction to the Copepoda 12 1.3 Introduction to the genus Oithona 15 1.4 Feeding and role of Oithona spp in the food web 15 1.5 Geographic and vertical distribution of Oithona similis 16 1.6. Morphology 19 1.6.1 General Morphology of the Subclass Copepoda 19 1.6.1.1 Explanations and Abbrevations 31 1.6.2 Order Cyclopoida 33 1.6.2.1 Family Oithonidae Dana 1853 35 1.6.2.2 Subfamily Oithoninae 36 1.6.2.3 Genus Oithona Baird 1843 37 1.7 DNA Barcoding 42 2. Aims of the thesis (Hypothesis) 44 3. Material and Methods 45 3.1. Investigation areas and sampling 45 3.1.1 The Arctic Ocean 46 3.1.2 The Southern Ocean 50 3.1.3 The North Sea 55 3.1.4 The Mediterranean Sea 59 3.1.5 Sampling 62 3.1.6 Preparation of the samples 62 3.2 Morphological studies and literature research 63 3.3 Genetic examinations 71 3.4 Sequencing 73 4 Results 74 4.1 Morphology of Oithona similis 74 4.1.1 Literature research 74 4.1.2 Personal observations 87 4.2.
    [Show full text]
  • Nyctiphanes Couchii As Intermediate Host for the Acanthocephalan Bolbosoma Balaenae in Temperate Waters of the NE Atlantic
    Vol. 99: 37–47, 2012 DISEASES OF AQUATIC ORGANISMS Published May 15 doi: 10.3354/dao02457 Dis Aquat Org Nyctiphanes couchii as intermediate host for the acanthocephalan Bolbosoma balaenae in temperate waters of the NE Atlantic M. Gregori1,*, F. J. Aznar2, E. Abollo3, Á. Roura1, Á. F. González1, S. Pascual1 1Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain 2Departamento de Biología Animal, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Burjassot, 46071 Valencia, Spain 3Centro Tecnológico el Mar, Fundación CETMAR, Eduardo Cabello s/n, 36208 Vigo, Spain ABSTRACT: Cystacanths of the acanthocephalan Bolbosoma balaenae (Gmelin, 1790) were found encapsulated in the cephalothorax of the euphausiid Nyctiphanes couchii (Bell, 1853) from tem- perate waters in the NE Atlantic Ocean. Euphausiids were caught in locations outside the Ría de Vigo in Galicia, NW Spain, and prevalence of infection was up to 0.1%. The parasite was identi- fied by morphological characters. Cystacanths were 8.09 ± 2.25 mm total length (mean ± SD) and had proboscises that consisted of 22 to 24 longitudinal rows of hooks, each of which had 8 or 9 hooks per row including 2 or 3 rootless ones in the proboscis base and 1 field of small hooks in the prebulbar part. Phylogenetic analyses of 18S rDNA and cytocrome c oxidase subunit I revealed a close relationship with other taxa of the family Polymorphidae (Meyer, 1931). The results extend northwards ot the known distribution of B. balaenae. Taxonomic affiliation of parasites and trophic ecology in the sampling area suggest that N. couchii is the intermediate host for B.
    [Show full text]
  • Diversity and Life-Cycle Analysis of Pacific Ocean Zooplankton by Videomicroscopy and DNA Barcoding: Crustacea
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2021 doi:10.20944/preprints202007.0594.v2 Article Diversity and life-cycle analysis of Pacific Ocean zooplankton by videomicroscopy and DNA barcoding: Crustacea Peter Bryant 1 and Timothy Arehart 2 * 1 Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA; [email protected] ORCID iD: 0000-0003-1989-3921 2 Crystal Cove Conservancy, Newport Coast, CA, USA; [email protected] * Correspondence: [email protected] Abstract: Determining the DNA sequencing of a small element in the mitochondrial DNA (DNA barcoding) makes it possible to easily identify individuals of different larval stages of marine crustaceans without the need for laboratory rearing. It can also be used to construct taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Newport Beach, California (Lat. 33.628342, Long. -117.927933) between May 2013 and January 2020, and individual crustacean specimens were documented by videomicroscopy. Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 544 COI sequences were obtained falling into 199 Barcode Identification Numbers (BINs), of which 76 correspond to recognized species. The results show the utility of DNA barcoding for matching life-cycle stages as well as for documenting the diversity of this group of organisms.
    [Show full text]
  • DNA Barcoding of Marine Metazoa
    MA03CH18-Bucklin ARI 8 November 2010 12:4 DNA Barcoding of Marine Metazoa Ann Bucklin,1 Dirk Steinke,2 and Leocadio Blanco-Bercial1 1Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340; email: [email protected], [email protected] 2Biodiversity Institute of Ontario, University of Guelph, Ontario, N1G 2W1 Canada; email: [email protected] Annu. Rev. Mar. Sci. 2011. 3:471–508 Keywords First published online as a Review in Advance on DNA barcode, marine biodiversity, taxonomy, species identification, August 18, 2010 mitochondrial DNA The Annual Review of Marine Science is online at marine.annualreviews.org Abstract This article’s doi: More than 230,000 known species representing 31 metazoan phyla populate 10.1146/annurev-marine-120308-080950 the world’s oceans. Perhaps another 1,000,000 or more species remain to Copyright c 2011 by Annual Reviews. be discovered. There is reason for concern that species extinctions may out- All rights reserved by University of Connecticut on 12/16/10. For personal use only. pace discovery, especially in diverse and endangered marine habitats such as 1941-1405/11/0115-0471$20.00 coral reefs. DNA barcodes (i.e., short DNA sequences for species recogni- tion and discrimination) are useful tools to accelerate species-level analysis Annu. Rev. Marine. Sci. 2011.3:471-508. Downloaded from www.annualreviews.org of marine biodiversity and to facilitate conservation efforts. This review fo- cuses on the usual barcode region for metazoans: a ∼648 base-pair region of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Barcodes have also been used for population genetic and phylogeographic analysis, identification of prey in gut contents, detection of invasive species, foren- sics, and seafood safety.
    [Show full text]
  • Smithsonian at the Poles Contributions to International Polar Year Science
    A Selection from Smithsonian at the Poles Contributions to International Polar Year Science Igor Krupnik, Michael A. Lang, and Scott E. Miller Editors A Smithsonian Contribution to Knowledge WASHINGTON, D.C. 2009 This proceedings volume of the Smithsonian at the Poles symposium, sponsored by and convened at the Smithsonian Institution on 3–4 May 2007, is published as part of the International Polar Year 2007–2008, which is sponsored by the International Council for Science (ICSU) and the World Meteorological Organization (WMO). Published by Smithsonian Institution Scholarly Press P.O. Box 37012 MRC 957 Washington, D.C. 20013-7012 www.scholarlypress.si.edu Text and images in this publication may be protected by copyright and other restrictions or owned by individuals and entities other than, and in addition to, the Smithsonian Institution. Fair use of copyrighted material includes the use of protected materials for personal, educational, or noncommercial purposes. Users must cite author and source of content, must not alter or modify content, and must comply with all other terms or restrictions that may be applicable. Cover design: Piper F. Wallis Cover images: (top left) Wave-sculpted iceberg in Svalbard, Norway (Photo by Laurie M. Penland); (top right) Smithsonian Scientifi c Diving Offi cer Michael A. Lang prepares to exit from ice dive (Photo by Adam G. Marsh); (main) Kongsfjorden, Svalbard, Norway (Photo by Laurie M. Penland). Library of Congress Cataloging-in-Publication Data Smithsonian at the poles : contributions to International Polar Year science / Igor Krupnik, Michael A. Lang, and Scott E. Miller, editors. p. cm. ISBN 978-0-9788460-1-5 (pbk.
    [Show full text]
  • C S a S S C C S
    C S A S S C C S Canadian Science Advisory Secretariat Secrétariat canadien de consultation scientifique Research Document 2010/017 Document de recherche 2010/017 Pathway of effects of chemical inputs Séquence des effets des produits from the aquaculture activities in chimiques utilisés en production Canada aquicole au Canada L.E. Burridge1, K.G. Doe2 and W. Ernst3 1Fisheries and Oceans Canada, St. Andrews Biological Station, 531 Brandy Cove Rd. St. Andrews, NB E5B 2L9 2Environment Canada, Atlantic Laboratory for Environmental Testing, 443 Antoinine-Maillet Avenue, Moncton, NB E1A 3E9 3Environment Canada, Environmental Protection Branch, 45 Alderney Dr Dartmouth, NS B2Y 2N6 This series documents the scientific basis for the La présente série documente les fondements evaluation of aquatic resources and ecosystems in scientifiques des évaluations des ressources et Canada. As such, it addresses the issues of the des écosystèmes aquatiques du Canada. Elle day in the time frames required and the traite des problèmes courants selon les documents it contains are not intended as échéanciers dictés. Les documents qu’elle definitive statements on the subjects addressed contient ne doivent pas être considérés comme but rather as progress reports on ongoing des énoncés définitifs sur les sujets traités, mais investigations. plutôt comme des rapports d’étape sur les études en cours. Research documents are produced in the official Les documents de recherche sont publiés dans language in which they are provided to the la langue officielle utilisée dans
    [Show full text]
  • Copepoda, Calanoida)
    UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA ENGENHARIA AMBIENTAL DENISE TIEME OKUMURA Estudos ecotoxicológicos com as espécies Argyrodiaptomus furcatus e Notodiaptomus iheringi (Copepoda, Calanoida) Orientadora : Profa. Tit. Odete Rocha São Carlos - SP 2011 DENISE TIEME OKUMURA Estudos ecotoxicológicos com as espécies Argyrodiaptomus furcatus e Notodiaptomus iheringi (Copepoda, Calanoida) Tese apresentada à Escola de Engenharia de São Carlos, da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Doutor em Ciências – Programa em Ciências da Engenharia Ambiental. Orientadora : Profa. Tit. Odete Rocha São Carlos - SP 2011 Dedico este trabalho a meus pais, a minha Família. AGRADECIMENTOS À minha orientadora, Profa. Dra. Odete Rocha, pelo apoio, estímulo e, principalmente, pela orientação com que pude contar e valiosas lições que pude aprender. À FAPESP pelo apoio financeiro, por meio da concessão da bolsa de Doutorado. À doutoranda Erika Cavalcante-Silva e seu orientador Prof. Dr. João Dias de Toledo Arruda Neto, do Programa de Pós-Graduação Interunidades em Biotecnologia da Universidade de São Paulo (USP/Instituto Butantan/IPT), pelo trabalho de cooperação dentro do projeto de pesquisa “Estudo da ação combinada de radiações ionizantes com campos elétricos e magnéticos em cianobactérias - viabilidade celular e atenuação de toxinas” (Processo FAPESP nº 2006/60096-8). À amiga e colega que tornou essa fase mais fácil, muito mais produtiva. Obrigada, Ferrr. Às meninas do laboratório de Ecotoxicologia, Erika, Amanda, Laira e Emanuela, pelos momentos de descontração. À Edna pela boa vontade e carinho com que sempre me ajudou quando solicitada. Ao Zezinho, Luis, Airton e Alcídio pela boa vontade sempre demonstrada nos trabalhos técnicos realizados em vários momentos durante este trabalho.
    [Show full text]