High-Throughput Sequencing Techniques for the Detection and Survey of Marine Non-Indigenous Species : a Valuable Addition to Traditional Methods ? Marjorie Couton
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Attachments Table of Contents
ATTACHMENTS TABLE OF CONTENTS FORESHORE LICENCE APPLICATION Fenit Harbour, Tralee, Co. Kerry ATTACHMENT CONTENTS Attachment A Figure 1 proximity to sensitive shellfish areas Attachment B B.1 Sediment Chemistry Results Attachment B.1(I) Dumping at Sea Material Analysis Reporting Form Attachment B.1(II) Copies of the laboratory reports Attachment B.1(III) Comparison to Irish Action Level B.2 Characteristics /Composition of the Substance or Material for Disposal Attachment B.2 Sediment Characterisation Report (AQUAFACT, 2018) Attachment C Assessment of Alternatives Attachment D D.1 Purpose Of The Operation D.2 Loading Areas D.3 Details Of The Loading Operations Attachment E E.1 DUMPING SITE SELECTION E.2 GENERAL INFORMATION E.3 DETAILS OF THE DUMPING OPERATION Attachment E.1(I) Attachment E.2(I) Marine Benthic Study Fenit Harbour Dredging and Disposal Operations (Aquafact 2018) Attachment F F.1 Assessment of Impact on the Environment Appendix 1 Assessment of Risk to Marine Mammals from Proposed Dredging and Dumping at Sea Activity, Fenit Harbour, Co. Kerry. Appendix 2 Underwater Archaeological Impact Assessment Report Fenit Harbour and Tralee Bay, Co. Kerry. Appendix 3: Nature Impact Statement Attachment G G.1 Monitoring Programme Attachment-A FIGURE 1 SHELLFISH WATERS FORESHORE LICENCE APPLICATION Fenit Harbour, Tralee, Co. Kerry Legend Foreshore Licence Area Shellfish Area 5091m Proposed Dump Site 4 89m Fenit Harbour Map Reproduced From Ordnance Survey Ireland By Permission Of The Government. Licence Number EN 0015719. 0 1.5 3 km Ü Project Title: Fenit Harbour Client: Kerry County Council Drawing Title: Foreshore Licence and Shellfish Areas Drawn: JK Checked: CF Date: 15-10-2019 Scale (A4): 1:85,000 Attachment-B MATERIAL ANALYSIS DUMPING AT SEA PERMIT APPLICATION Fenit Harbour, Tralee, Co. -
Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data. -
Evidence for Cospeciation Events in the Host–Symbiont System Involving Crinoids (Echinodermata) and Their Obligate Associates, the Myzostomids (Myzostomida, Annelida)
Molecular Phylogenetics and Evolution 54 (2010) 357–371 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evidence for cospeciation events in the host–symbiont system involving crinoids (Echinodermata) and their obligate associates, the myzostomids (Myzostomida, Annelida) Déborah Lanterbecq a,*, Grey W. Rouse b, Igor Eeckhaut a a Marine Biology Laboratory, University of Mons, 6 Av. du Champ de Mars, Bât. Sciences de la vie, B-7000 Mons, Belgium b Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA article info abstract Article history: Although molecular-based phylogenetic studies of hosts and their associates are increasingly common Received 14 April 2009 in the literature, no study to date has examined the hypothesis of coevolutionary process between Revised 3 August 2009 hosts and commensals in the marine environment. The present work investigates the phylogenetic Accepted 12 August 2009 relationships among 16 species of obligate symbiont marine worms (Myzostomida) and their echino- Available online 15 August 2009 derm hosts (Crinoidea) in order to estimate the phylogenetic congruence existing between the two lin- eages. The combination of a high species diversity in myzostomids, their host specificity, their wide Keywords: variety of lifestyles and body shapes, and millions years of association, raises many questions about Coevolution the underlying mechanisms triggering their diversification. The phylogenetic -
Fossil and Recent Molluscan Types in the Auckland War Memorial Museum
Fossil and Recent molluscan types in the Auckland War Memorial Museum. Part 2: Polyplacophora and Scaphopoda Wilma M. Blom Auckland War Memorial Museum Abstract The Marine Department of Auckland War Memorial Museum has nearly 1800 primary types and a further 1811 paratypes and paralectotypes types in its collections. The majority are molluscan and this second part of a catalogue of these collections reviews the types for 14 chiton and two scaphopod species. It deals with seven primary types and 12 secondary type lots, which are split between 12 Recent taxa and four fossil taxa. All of the holotypes reviewed here have been illustrated. KEYWORDS Auckland Museum, name–bearing types, Mollusca, Polyplacophora, Scaphopoda. INTRODUCTION Iredale & Mestayer 1908; Webster 1908; Ashby 1926; Finlay 1926; Laws 1932). Each would have drawn on The Marine Department of Auckland War Memorial the expertise of the others despite living widely apart. Museum (AWMM) holds nearly 1800 lots of name– As chance would have it, four of the seven – Ashby, bearing primary types, in the form of holotypes, neotypes, Iredale, Mestayer and Webster – were born in England syntypes and lectotypes, and a further 1811 iconotypes, before moving to Australia or New Zealand, or both. paratypes and paralectotypes. These are spread across E. (Edwin) Ashby (1861–1941) was born in several phyla, but the great majority are Mollusca. They England and for health reasons moved to South Australia include terrestrial as well as marine species, and fossil as as a young man, where he became an estate agent well as extant taxa. and naturalist. He collected flowering plants, birds, Auckland Museum’s first list of biological primary and insects, but was particularly interested in Recent types, which included the molluscs, was published by and fossil chitons on which he published 60 papers Powell (1941) and he followed this with a supplement (Winckworth 1942). -
Evolutionary History of Inversions in the Direction of Architecture-Driven
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Evolutionary history of inversions in the direction of architecture- driven mutational pressures in crustacean mitochondrial genomes Dong Zhang1,2, Hong Zou1, Jin Zhang3, Gui-Tang Wang1,2*, Ivan Jakovlić3* 1 Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Bio-Transduction Lab, Wuhan 430075, China * Corresponding authors Short title: Evolutionary history of ORI events in crustaceans Abbreviations: CR: control region, RO: replication of origin, ROI: inversion of the replication of origin, D-I skew: double-inverted skew, LBA: long-branch attraction bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Inversions of the origin of replication (ORI) of mitochondrial genomes produce asymmetrical mutational pressures that can cause artefactual clustering in phylogenetic analyses. It is therefore an absolute prerequisite for all molecular evolution studies that use mitochondrial data to account for ORI events in the evolutionary history of their dataset. -
Gastropods Morphometric Shell Landmarks Variation in Diyala River
International Journal of Applied Research 2015; 1(10): 660-664 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Gastropods Morphometric Shell Landmarks variation Impact Factor: 5.2 IJAR 2015; 1(10): 660-664 in Diyala River Basin, Iraq www.allresearchjournal.com Received: 22-07-2015 Accepted: 24-08-2015 Khansaa S Farman, Emaduldeen A Almukhtar Khansaa S Farman Department of Biology, Abstract Collage of Science for Women, The present study was conducted to detected the variation in the shells of the Freshwater Gastropods Baghdad University Iraq. species of Diyala River Basin in Iraq. For this purpose the study area was divided to two sectors, Northern and Southern sectors. The morphological variation in the shells among common species to Emaduldeen A Almukhtar Northern and Southern sectors using a Geometric Morphometric technique were examined. Department of Biology, The most abundant species Theodoxus jordani, Melanopsis praemorsa, Lymnaea natalensis, and Collage of Science for Women, Planorbis gibbonsi were collected and their shells variation in the size and shape were measured. The Baghdad University Iraq. results showed significant difference in centroid size for M. praemorsa and L. natalensis while didn’t record in T. jordani and Poggibonsi. Also the study didn’t record significance variance of symmetrical for size and shape of the shell in all species. Key words: Geometric morphometric, Landmarks, Gastropods, Diyala river Introduction Diyala river is one of the most important tributaries of River Tigris, and is one of the main water bodies of Iraq. It runs through Iran and Iraq drains an area of 32600 km2 and about [2] 445 km. -
Smithsonian Miscellaneous Collections [Vol
NEW GENERA OF RECENT FREE CRINOIDS By AUSTIN HOBART CLARK Assistant, Bureau of Fisheries Since the publication of Dr. P. H. Carpenter's great monograph on the recent unstalked crinoids in 1888, the group has received very- little attention from systematists, probably because of the rarity of most of the species and the difficulty in getting together representative material of even the more common ones. Dr. Carpenter included in the family Comatulidse the genera Thaumatocrinus, Eudiocrinus, Promachocrinus (including the subsequently differentiated Decame- trocrinus), Atelecrinus, Antedon, Comatula (=Actinometra) , and Thiolliericrinus. All of these, with the exception of Antedon and Comatula, are comparatively small, strictly homogeneous genera; with them, however, the case is quite different. The genus Antedon was divided by Dr. Carpenter into four "series," and all but the first series into two or more "groups," the characters used in the differ- entiation of the groups and series being (1) the character of the joint between the costals, (2) the number of arms, (3) the number of the distichals, (4) the character of the lower pinnules, (5) the development or absence of covering plates on the ambulacra, and (6) the rounded or "wall-sided" character of the costals and lower brachials. Of all these characters, the first alone is the only one not common to two or more of his series or groups, as diagnosed by him. Taking No. 2, for instance, five of his groups and also several unassigned species are ten-armed ; all the rest have more than ten arms. A number of single species have both ten and more than ten arms, as a result of purely individual variation. -
Seashore Pocket Guide
. y a B e e L d n a n i t r a M e b m o C , h t u o m n y L ) e v o b a ( . e m i t m e h t e v i g u o y f i e c i v e r c n e d d i h a m o r f t u o . a n i l l a r o c d n a e s l u d s a h c u s s d e e w a e s b a r C e l b i d E k u . v o g . k r a p l a n o i t a n - r o o m x e . w w w e r a t s a o c s ’ r o o m x E n o e f i l d l i w e r o h s a e s k c a b e v o m n e t f o l l i w s b a r c d n a h s i F . l l i t s y r e v g n i p e e k d e r r e v o c s i d n a c u o y s l o o p k c o r r o f k o o l o t s e c a l p e t i r u o v a f r u o f o e m o S , g n i h c t a w e m i t d n e p S . -
Nudipleura Bathydorididae Bathydoris Clavigera AY165754 2064 AY427444 1383 AF249222 445 AF249808 599
!"#$"%&'"()*&**'+),#-"',).+%/0+.+()-,)12+),",1+.)$./&3)1/),+-),'&$,)45&("3'+&.-6) !"#$%&'()*"%&+,)-"#."%)-'/%0(%1/'2,3,)45/6"%7/')89:0/5;,)8/'(7")<=)>(5#&%?)@)A(BC"/5)DBC'E752,3 +F/G"':H/%:)&I)A"'(%/)JB&#K#:/H#)FK%"H(B#,)4:H&#GC/'/)"%7)LB/"%)M/#/"'BC)N%#.:$:/,)OC/)P%(Q/'#(:K)&I)O&RK&,)?S+S?) *"#C(T"%&C",)*"#C(T",)UC(V")2WWSX?Y;,)Z"G"%=)2D8D-S-"Q"'("%)D:":/)U&55/B.&%)&I)[&&5&1K,)A9%BCC"$#/%#:'=)2+,)X+2;W) A9%BC/%,)</'H"%K=)3F/G"':H/%:)-(&5&1K)NN,)-(&[/%:'$H,)\$7T(1SA"6(H(5("%#SP%(Q/'#(:]:,)<'&^C"7/'%/'#:'=)2,)X2+?2) _5"%/11SA"'.%#'(/7,)</'H"%K`);D8D-S-"Q"'("%)D:":/)U&55/B.&%)&I)_"5/&%:&5&1K)"%7)</&5&1K,)</&V(&)U/%:/')\AP,) M(BC"'7S>"1%/'SD:'=)+a,)Xa333)A9%BC/%,)</'H"%K`)?>/#:/'%)4$#:'"5("%)A$#/$H,)\&BR/7)-"1);b,)>/5#CG&&5)FU,)_/':C,) >4)YbXY,)4$#:'"5("=))U&''/#G&%7/%B/)"%7)'/c$/#:#)I&')H":/'("5#)#C&$57)V/)"77'/##/7):&)!=*=)d/H"(5e)R"%&f"&'(=$S :&RK&="B=gGh) 7&33'+8+#1-.9)"#:/.8-;/#<) =-*'+)7>?)8$B5/&.7/)#/c$/%B/#)&I)G'(H/'#)$#/7)I&')"HG5(iB".&%)"%7)#/c$/%B(%1 =-*'+)7@?)<"#:'&G&7)#G/B(/#)"%7)#/c$/%B/#)$#/7)(%):C/)GCK5&1/%/.B)'/B&%#:'$B.&%)&I)/$:CK%/$'"%)B5"7/#)(%B5$7(%1) M(%1(B$5&(7/" A"$&.+)7>?)M46A\):'//#)V"#/7)&%)I&$'S1/%/)7":"#/:)T(:C&$:)&%/)&I):T&)H"g&')%$7(G5/$'"%)#$VB5"7/#e)d"h)8$7(V'"%BC(") d!"#$%&'()*+"%7),-.)/)&"h)"%7)dVh)_5/$'&V'"%BC&(7/")d0.-1('2("34$1*+"%7)5'/#$'/6*'3)"h= A"$&.+)7@?)O(H/SB"5(V'":/7)-J4DO):'//#)T(:C&$:)&%/)&I)I&$')B"5(V'".&%)G'(&'#e)d"h)i'#:)#G5(:)T(:C(%)J$&G(#:C&V'"%BC(")"%7) dVh)#G5(:#)V/:T//%)7"(%4$)1/)"%7)8/-"9'.)"%7)dBh)V/:T//%):)39)41.'6*)*)"%7):C'//)&:C/')'(%1(B$5(7#= A"$&.+)7B?)A'-"K/#):'//)V"#/7)&%)I&$'S1/%/)7":"#/:= -
Anuário Do Instituto De Geociências - UFRJ
Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br As Famílias Veneridae, Trochidae, Akeridae e Acteonidae (Mollusca), na Formação Romualdo: Aspectos Paleoecológicos e Paleobiogeográicos no Cretáceo Inferior da Bacia do Araripe, NE do Brasil The Families Veneridae, Trochidae, Akeridae and Acteonidae (Mollusca), in the Romualdo Formation: Paleoecological and Paleobiogeographic Aspects in the Lower Cretaceous of the Araripe Basin, NE of Brazil Priscilla Albuquerque Pereira1; Rita de Cassia Tardin Cassab2 & Alcina Magnólia Franca Barreto1 1Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, Departamento de Geologia, Laboratório de Paleontologia, Av. Hélio Acadêmico Ramos, s/n, Cidade Universitária, 50740-533, Recife, PE, Brasil 2 Universidade Federal do Rio de Janeiro, Instituto de Geociências, Departamento de Geologia, Avenida Athos da Silveira Ramos, 274, 21910-900, Cidade Universitária, Ilha do Fundão, s/n, Rio de Janeiro, Rio de Janeiro-RJ, Brasil E-mail: [email protected]; [email protected]; [email protected] Recebido em: 18/07/2018 Aprovado em: 21/09/2018 DOI: http://dx.doi.org/10.11137/2018_3_137_152 Resumo Moluscos fósseis na Bacia Sedimentar do Araripe são relatados desde a década de 1960, com biválvios presentes nas forma- ções Crato, Romualdo e gastrópodos, restritos a Formação Romualdo. A identiicação e descrição desses moluscos tem auxiliado na reconstituição paleoambiental da Formação Romualdo (Aptiano-Albiano) e na interpretação da rota de incursão marinha que aponta para inluência do mar de Tétis na bacia. Este trabalho, descreve e ilustra fósseis coletados nas localidades de Zé Gomes, Cedro/ Tabuleiro e Santo Antônio município de Exu, Pernambuco, pontuando a paleoecologia e a distribuição paleogeográica dos gêneros, além de observar as ainidades faunísticas entre as formaçõe Romualdo e Riachuelo. -
General Background
Guidelines for the Establishment of Environmental Quality Objectives and Targets in the Coastal Zone of the Western Indian Ocean (WIO) Region October 2009 WIO region: Environmental Quality Objectives and Targets October 2009 First published in Kenya in 2009 by the United Nations Environment Programme (UNEP)/Nairobi Convention Secretariat and the Council for Scientific and Industrial Research of South Africa (CSIR). Copyright © 2009, UNEP/Nairobi Convention Secretariat and CSIR. UNEP/GEF WIO-LaB Technical Report Series No. 2009/7 CSIR Report Number: CSIR/NRE/CO/ER/2009/0115/A Copyright notice: This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder provided that acknowledgement of the source is made. UNEP/Nairobi Convention Secretariat and CSIR would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose without prior permission in writing from UNEP/Nairobi Convention Secretariat and CSIR. Disclaimer: The contents of this report do not necessarily reflect the views and policies of UNEP. The designations employed and the presentations do not imply of any opinion whatsoever on the part of the UNEP, or of any cooperating organization concerning the legal status of any country, territory, city or area, of its authorities, or of the delineation of its territories or boundaries. For additional information please contact: UNEP/Nairobi Convention Secretariat Council for Scientific and Industrial Research (CSIR) United Nations Environment Programme P O Box 17001, Durban, South Africa United Nations Avenue, Gigiri, Tel: +27 31 2422356 P.O Box 47074, Nairobi, Kenya Fax: +27 31 2612509 Tel: +254 20 7621250/7622025 E-mail: [email protected] E-mail: [email protected] Principal Authors: Susan Taljaard (CSIR, Stellenbosch), Steven Weerts (CSIR, Durban), Shamilla Pillay (CSIR, Durban) and Anisha Rajkumar (CSIR, Durban) Technical Editors: Dr. -
From Western Samoa
E . Schwabe 1 & F. J . A . S l i e ker 2 1Zoologische Staatssammlung München 2N a t u u r museum Rotterd a m A new species of C a l l o c h i t o n G r ay, 1847 (Mollusca: Po lyplacophora) from Western Samoa Schwabe, E. & Slieker, F.J.A., 2001 - A new species of C a l l o c h i t o n G r a y, 1847 (Mollusca: Polyplacophora) from Western Samoa - DEINSEA 8: 225-228 [ISSN 0923-9308]. Published 09 November 2001 Among molluscan material from Western Samoa collected by H. Bayer and sent to the first author an unknown species of chiton was found. It is here described as Callochiton mumuena spec. nov. The new taxon is only known from the holotype, collected on Savaii Island under coral slab at a depth of one metre. Keywords: Mollusca, Polyplacophora, Callochiton, new species, Western Samoa Correspondence: Enrico Schwabe, Zoologische Staatssammlung München, Münchhausenstraße 21, 81247 München, Germany, e-mail [email protected]; Frans J. A. Slieker, Natuurmuseum Rotterdam, P.O. Box 23452, 3001 KL Rotterdam, T h e Netherlands, e-mail natuurmuseum@nmr. n l I N T RO D U C T I O N M ATERIAL EXAMINED R e c e n t l y, Mr H. Bayer (Savaii Island, For direct comparison the following material Western Samoa) has sent many molluscan was studied: Callochiton empleurus (HU T TO N, specimens to the first author. This material 1872) from New Zealand (National Museum included several different chiton species, of of New Zealand, Wellington: lectotype which the following could be identified: NMNZ M279); Callochiton klemi AS H B Y, To n i c i a (L u c i l