Review Article Macroscopic Modelling of Environmental Influence on Growth and Form of Sponges and Corals Using the Accretive Growth Model

Total Page:16

File Type:pdf, Size:1020Kb

Review Article Macroscopic Modelling of Environmental Influence on Growth and Form of Sponges and Corals Using the Accretive Growth Model UvA-DARE (Digital Academic Repository) Macroscopic modelling of environmental influence on growth and form of sponges and corals using the accretive growth model Kaandorp, J.A. DOI 10.1155/2013/159170 Publication date 2013 Document Version Final published version Published in ISRN Biomathematics Link to publication Citation for published version (APA): Kaandorp, J. A. (2013). Macroscopic modelling of environmental influence on growth and form of sponges and corals using the accretive growth model. ISRN Biomathematics, 2013, 159170. https://doi.org/10.1155/2013/159170 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 Hindawi Publishing Corporation ISRN Biomathematics Volume 2013, Article ID 159170, 14 pages http://dx.doi.org/10.1155/2013/159170 Review Article Macroscopic Modelling of Environmental Influence on Growth and Form of Sponges and Corals Using the Accretive Growth Model Jaap A. Kaandorp Section Computational Science, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands Correspondence should be addressed to Jaap A. Kaandorp; [email protected] Received 10 December 2012; Accepted 17 January 2013 Academic Editors: M. Glavinovic, S.-C. Ngan, and A. A. Polezhaev Copyright © 2013 Jaap A. Kaandorp. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We discuss a macroscopical growth model which can be used to simulate growth forms of complex-shaped branching organisms with radiate accretive growth. This type of growth processes can be found in many different marine sessile organisms. We use scleractinian corals and a branching sponge as an example. With the radiate accretive growth model a wide range of morphologies and the influence of the physical environment (light and nutrient distribution by advection-diffusion) can be modelled. We showan (preliminary) example of how the accretive growth model can be coupled with a model of gene regulation and body plan formation in a branching sponge. 1. Introduction influence of the environment can be found in a recent paper by Todd [14]. Many marine sessile organisms from very different taxonom- Therearealargenumberofstudies[14] where scle- ical groups show a strong morphological plasticity, which is in ractinian coral colonies have been transplanted from one manycasesrelatedtotheimpactofthephysicalenvironment. environment to a different one to identify the impact of Two dominant parameters influencing morphological plas- the physical environment on the growth form of the colony. ticity are water movement and the availability of light in pho- In [4] hydrozoan colonies (Millepora)andin[13]sponges tosynthetic organisms. Environmental parameters, closely (Haliclona oculata) were transplanted from sheltered to linked to water movement, are the supply of suspended exposed environment and vice versa. There are a number of material in filter-feeding organisms and sedimentation. Sed- problematic issues in these experiments. The first issue is that imentation may also strongly influence the availability of many transplantation experiments were done with organisms light. Examples of studies in which the morphological plas- or colonies which were not necessarily of the same genotype, ticity and the relation to physical environment have been and in this nonclonal approach it cannot be excluded that investigated are growth forms of the scleractinian Montastrea morphologicalchangesarecausedbythegenotypeandnotby annularis and local light intensities [1, 2]; growth forms of the theinfluenceoftheenvironment.Byusingclonemates(e.g., hydrozoan Millepora andtheexposuretowatermovement[3, fragments of the same colony or individual) it is basically 4]; variations in morphology due to differences in exposure possible to determine the morphological response to the to water movement in the scleractinians Pocillopora [5, 6], environment. The second issue is that the interaction between Madracis [7, 8], and Agaricia agaricites [9]; colony forms the physical environment (flux of nutrients over boundary of the bryozoan Electra pilosa and the influence of nutrient layers, local flow velocities, and local light intensities) and supply [10]; shape of coralline algae and the effect of exposure local growth velocities is very difficult (if not impossible) to to water movement [11]; growth forms of the sponge Haliclona assess in detail in experiments. An alternative option is to use oculata [12, 13] and exposure to water movement. A detailed simulation models where these quantities can be estimated in review on the morphological plasticity in corals and the great detail. By using simulation models it is also possible to 2 ISRN Biomathematics obtain a deeper insight into the morphogenetic process itself Hydrodynamics affects the distribution of food parti- and to find mathematical rules capturing the biomechanics cles [7, 27] and dissolved material [5, 6, 28–42]inthe of the growth process of a coral colony or a sponge and immediate environment of the coral. For zooxanthellate the impact of the physical environment on morphogenesis. corals, calcification depends on a phototrophic component The third issue is that the morphological changes at the related to local availability of light and local gradients of organismal level due to transplantation experiments are, dissolved inorganic carbon [5, 36, 37] and a heterotrophic especially in three-dimensional complex-shaped branching component related to the uptake of nutrients from the forms, are difficult to be interpreted and to be quantified. A environment. The relative contribution of the phototrophic solution here is to use detailed morphometric methods to and heterotrophic components can be estimated from skeletal 13 18 detect local changes in the growth, form [8, 15]. An important Cand Oisotopes.[43–45]. In [45] it was demonstrated complication in the quantitative morphological analysis of that the calcification of M. mirabilis is mainly supported by 13 18 growth forms of scleractinian corals, sponges and many photosynthesisbasedontheanalysisofthe Cand O other marine sessile organisms is that the growth forms are isotopes. If photosynthesis is the main source of energy, usually indeterminate and complex. Most methods for the then local gradients of inorganic carbon will play a crucial analysis of growth and form use landmark-based geometric role in the morphogenesis of M. mirabilis as they represent morphometrics [16, 17]. These methods are more suitable a limiting resource to skeleton formation. In recent field for unitary organisms and less applicable for the analysis experiments by Mass et al. [46–48] and simulation exper- of indeterminate growth forms of modular organisms [18– iments [6]itwasfoundthatPocillopora verrucosa develops 23]. In a number of cases, the organism is built from well- asymmetricalcoloniesduetotheinfluenceofanasym- defined modules (e.g., the corallites and polyps in scler- metric directed flow. The increase in fluid motion around actinian corals). In other cases, the module itself has no organism is believed to increase nutrient transport and well-defined shape but an irregular and indeterminate form uptake and ultimately enhances the organism’s growth rate (e.g., an osculum and its corresponding aquiferous system in [49]. sponges). Morphological plasticity is directly related to various biologically relevant parameters as, for example, the diameter of the branches, branching rate, branching angles, and branch 1.1. Scleractinian Corals. Water flow has a strong influence spacing in scleractinian corals. In, for example, studies on on the growth process of several scleractinian corals. Veron particle capture in the branching scleractinian coral M. and Pichon [24] present several series of growth forms of Mirabilis and the influence of hydrodynamics [7], it was scleractinians (e.g., Pocillopora damicornis and Seriatopora demonstrated that branch diameters and branch spacing hystrix), which are arranged along a gradient of increasing are crucial morphological properties. The diameter of the water movement. Both species show a gradual transformation branches and spacing between branches are variable and from a compact shape with a relatively low branch spacing, maybecontrolledbyacombinationofhydrodynamicsand under exposed conditions, to a thin-branching shape with a genetics. In [7]itisarguedthatthroughmodificationsof relatively larger branch-spacing under sheltered conditions. its branch structure and branch spacing, M. mirabilis can In the Caribbean coral Madracis
Recommended publications
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Omnibus Essential Fish Habitat (Efh) Amendment 2 Draft Environmental Impact Statement
    New England Fishery Management Council 50 WATER STREET | NEWBURYPORT, MASSACHUSETTS 01950 | PHONE 978 465 0492 | FAX 978 465 3116 E.F. “Terry” Stockwell III, Chairman | Thomas A. Nies, Executive Director OMNIBUS ESSENTIAL FISH HABITAT (EFH) AMENDMENT 2 DRAFT ENVIRONMENTAL IMPACT STATEMENT Appendix D: The Swept Area Seabed Impact (SASI) approach: a tool for analyzing the effects of fishing on Essential Fish Habitat Appendix D: The Swept Area Seabed Impact Approach This document was prepared by the following members of the NEFMC Habitat Plan Development team, with feedback from the NEFMC Habitat Oversight Committee, NEFMC Habitat Advisory Panel, and interested members of the public. Michelle Bachman, NEFMC staff Peter Auster, University of Connecticut Chad Demarest, NOAA/Northeast Fisheries Science Center Steve Eayrs, Gulf of Maine Research Institute Kathyrn Ford, Massachusetts Division of Marine Fisheries Jon Grabowski, Gulf of Maine Research Institute Brad Harris, University of Massachusetts School of Marine Science and Technology Tom Hoff, Mid-Atlantic Fishery Management Council Mark Lazzari, Maine Department of Marine Resources Vincent Malkoski, Massachusetts Division of Marine Fisheries Dave Packer, NOAA/ Northeast Fisheries Science Center David Stevenson, NOAA/Northeast Regional Office Page Valentine, U.S. Geological Survey January 2011 Page 2 of 257 Appendix D: The Swept Area Seabed Impact Approach Table of Contents 1.0 OVERVIEW OF THE SWEPT AREA SEABED IMPACT MODEL ........... 13 2.0 DEFINING HABITAT ......................................................................................
    [Show full text]
  • The Marine Fauna of New Zealand: Porifera, Demospongiae, Part 3 (Haplosclerida and Nepheliospongida)
    ISSN 0083-7903, 87 (Print) ISSN 2538-1016; 87 (Online) The Marine Fauna of New Zealand: Porifera, Demospongiae, Part 3 (Haplosclerida and Nepheliospongida) by P. R. BERGQUIST and K. P. WARNE . �· New Zealand Oceanographic Institute Memoir 87 1980 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH The Marine Fauna of New Zealand: Porifera, I;)emospongiae, Part 3 (Haplosclerida and Nepheliospongida) by P. R. BERGQUIST and K. P. WARNE Department of Zoology, University of Auckland, Private Bag, Auckland, New Zealand New Zealand Oceanographic Institute Memoir 87 1980 This workSig is licensed 1 under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ ISSN 0083-7903 Received for publication: May 1979 © Crown Copyright I 980 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page LIST OF FIGURES 4 LIST OF TABLES 4 ABSTRACT 5 INTRODUCTION 5 Acknowledgments 8 COLLECTIONS EXAMINED 8 LIST OF SPECIES DESCRIBED 11 SYSTEMATICS ... 12 Order Haplosclerida Topsent 12 Family Haliclonidae de Laubenfels 12 Haliclona Grant, 1835 12 Family Adociidae de Laubenfels 19 Adocia Gray, 1867 20 Orina Gray, 1867 21 Sigmadocia de Laubenfels, 1936 22 Toxadocia de Laubenfels, 1936 ... 24 Family Callyspongiidae de Laubenfels 24 Callyspongia Duchassaing & Michelotti, 1864 ... 24 Chalinopsil/a Lendenfeld, 1888 ... 33 Dactylia Carter, 1885 34 Order Nepheliospongida Bergquist 34 Family Nepheliospongiidae Clark ... 35 Petrosia Vosmaer, 1887 ... 35 Xestospongia de Laubenfels, 1932 36 Family Oceanapiidae Van Soest 37 Oceanapia Norman, 1869 37 Vagocia de Laubenfels, 1936 38 REFERENCES 39 INDEX 41 PLATES ..
    [Show full text]
  • Two New Haplosclerid Sponges from Caribbean Panama with Symbiotic Filamentous Cyanobacteria, and an Overview of Sponge-Cyanobacteria Associations
    PORIFERA RESEARCH: BIODIVERSITY, INNOVATION AND SUSTAINABILITY - 2007 31 Two new haplosclerid sponges from Caribbean Panama with symbiotic filamentous cyanobacteria, and an overview of sponge-cyanobacteria associations Maria Cristina Diaz'12*>, Robert W. Thacker<3), Klaus Rutzler(1), Carla Piantoni(1) (1) Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0163, USA. [email protected] (2) Museo Marino de Margarita, Blvd. El Paseo, Boca del Rio, Margarita, Edo. Nueva Esparta, Venezuela. [email protected] <3) Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA. [email protected] Abstract: Two new species of the order Haplosclerida from open reef and mangrove habitats in the Bocas del Toro region (Panama) have an encrusting growth form (a few mm thick), grow copiously on shallow reef environments, and are of dark purple color from dense populations of the cyanobacterial symbiont Oscillatoria spongeliae. Haliclona (Soestella) walentinae sp. nov. (Chalinidae) is dark purple outside and tan inside, and can be distinguished by its small oscules with radial, transparent canals. The interior is tan, while the consistency is soft and elastic. The species thrives on some shallow reefs, profusely overgrowing fire corals (Millepora spp.), soft corals, scleractinians, and coral rubble. Xestospongia bocatorensis sp. nov. (Petrosiidae) is dark purple, inside and outside, and its oscules are on top of small, volcano-shaped mounds and lack radial canals. The sponge is crumbly and brittle. It is found on live coral and coral rubble on reefs, and occasionally on mangrove roots. The two species have three characteristics that make them unique among the families Chalinidae and Petrosiidae: filamentous, multicellular cyanobacterial symbionts rather than unicellular species; high propensity to overgrow other reef organisms and, because of their symbionts, high rate of photosynthetic production.
    [Show full text]
  • Sponges on Coral Reefs: a Community Shaped by Competitive Cooperation
    Boll. Mus. Ist. Biol. Univ. Genova, 68: 85-148, 2003 (2004) 85 SPONGES ON CORAL REEFS: A COMMUNITY SHAPED BY COMPETITIVE COOPERATION KLAUS RÜTZLER Department of Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0163, USA E-mail: [email protected] ABSTRACT Conservationists and resource managers throughout the world continue to overlook the important role of sponges in reef ecology. This neglect persists for three primary reasons: sponges remain an enigmatic group, because they are difficult to identify and to maintain under laboratory conditions; the few scientists working with the group are highly specialized and have not yet produced authoritative, well-illustrated field manuals for large geographic areas; even studies at particular sites have yet to reach comprehensive levels. Sponges are complex benthic sessile invertebrates that are intimately associated with other animals and numerous plants and microbes. They are specialized filter feeders, require solid substrate to flourish, and have varying growth forms (encrusting to branching erect), which allow single specimens to make multiple contacts with their substrate. Coral reefs and associated communities offer an abundance of suitable substrates, ranging from coral rock to mangrove stilt roots. Owing to their high diversity, large biomass, complex physiology and chemistry, and long evolutionary history, sponges (and their endo-symbionts) play a key role in a host of ecological processes: space competition, habitat provision, predation, chemical defense, primary production, nutrient cycling, nitrification, food chains, bioerosion, mineralization, and cementation. Although certain sponges appear to benefit from the rapid deterioration of coral reefs currently under way in numerous locations as a result of habitat destruction, pollution, water warming, and overexploitation, sponge communities too will die off as soon as their substrates disappear under the forces of bioerosion and water dynamics.
    [Show full text]
  • Marine Ecology Progress Series 481:105
    Vol. 481: 105–120, 2013 MARINE ECOLOGY PROGRESS SERIES Published May 7 doi: 10.3354/meps10155 Mar Ecol Prog Ser FREEREE ACCESSCCESS Sponge species composition, abundance, and cover in marine lakes and coastal mangroves in Berau, Indonesia Leontine E. Becking1,2,*, Daniel F. R. Cleary3, Nicole J. de Voogd1 1Naturalis Biodiversity Center, Department Marine Zoology, PO Box 9517, 2300 RA Leiden, The Netherlands 2Institute for Marine Resources and Ecosystem Studies, PO Box 57, 1780 AB Den Helder, The Netherlands 3Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal ABSTRACT: We compared the species composition, abundance, and cover of sponges in 2 marine lakes (Kakaban Lake and Haji Buang Lake) and adjacent coastal mangroves on the islands of Kakaban and Maratua in the Berau region of Indonesia. We recorded a total of 115 sponge spe- cies, 33 of which were restricted to Kakaban Lake, 18 to Haji Buang Lake, and 30 to coastal man- groves on Maratua Island. Only 13 species were shared among all habitats. The 2 marine lakes are located 10 km apart, but their assemblages were more similar to each other than to the bay man- grove systems just 200 to 500 m away. Our results show that marine lakes represent a distinct habitat with significantly higher sponge cover and abundance as well as a markedly different spe- cies composition when compared with coastal mangroves. In both lake and coastal mangrove habitats there was a pronounced gradient in composition away from the shore with the primary difference between solid (root or rock) and soft substrate (mud or sand).
    [Show full text]
  • Phylogenetic Relationships of the Marine Haplosclerida (Phylum Porifera) Employing Ribosomal (28S Rrna) and Mitochondrial (Cox1, Nad1) Gene Sequence Data
    Phylogenetic Relationships of the Marine Haplosclerida (Phylum Porifera) Employing Ribosomal (28S rRNA) and Mitochondrial (cox1, nad1) Gene Sequence Data Niamh E. Redmond1,2, Jean Raleigh2, Rob W. M. van Soest3, Michelle Kelly4, Simon A. A. Travers5, Brian Bradshaw2, Salla Vartia2, Kelly M. Stephens2, Grace P. McCormack2* 1 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington D. C., United States of America, 2 Zoology, National University of Ireland, Galway, Ireland, 3 Zoological Museum, University of Amsterdam, Amsterdam, The Netherlands, 4 National Centre for Aquatic Biodiversity and Biosecurity, National Institute of Water and Atmospheric Research, Auckland, New Zealand, 5 South African National Bioinformatics Institute, University of Western Cape, Bellville, South Africa Abstract The systematics of the poriferan Order Haplosclerida (Class Demospongiae) has been under scrutiny for a number of years without resolution. Molecular data suggests that the order needs revision at all taxonomic levels. Here, we provide a comprehensive view of the phylogenetic relationships of the marine Haplosclerida using many species from across the order, and three gene regions. Gene trees generated using 28S rRNA, nad1 and cox1 gene data, under maximum likelihood and Bayesian approaches, are highly congruent and suggest the presence of four clades. Clade A is comprised primarily of species of Haliclona and Callyspongia, and clade B is comprised of H. simulans and H. vansoesti (Family Chalinidae), Amphimedon queenslandica (Family Niphatidae) and Tabulocalyx (Family Phloeodictyidae), Clade C is comprised primarily of members of the Families Petrosiidae and Niphatidae, while Clade D is comprised of Aka species. The polyphletic nature of the suborders, families and genera described in other studies is also found here.
    [Show full text]
  • Spongivory by Nudibranchs on the Coast of Rio De Janeiro State, Southeastern Brazil
    ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 38 2 187-195 München, Dezember 2015 ISSN 0341-8391 Spongivory by nudibranchs on the coast of Rio de Janeiro state, southeastern Brazil (Mollusca, Gastropoda) Thalita Belmonte, Juliana Alvim, Vinicius Padula & Guilherme Muricy Belmonte, T., Alvim, J., Padula, V. & Muricy, G. 2015. Spongivory by nudibranchs on the coast of Rio de Janeiro state, southeastern Brazil (Mollusca, Gastropoda). Spixiana 38 (2): 187-195. Nudibranch gastropods are carnivores and most dorid nudibranchs are spongi- vores, preying on a single or a few species of sponges. The feeding biology has important biological, ecological and evolutionary implications, and many charac- teristics of nudibranchs likely arose from co-evolution with diet organisms. Data on spongivory by dorid nudibranchs are available for many species from the Indo- Pacific, eastern Pacific and the Mediterranean Sea, but such information is scarce for the southwestern Atlantic. In this study we provide qualitative data on spongi- vory by dorid nudibranchs along the coast of Rio de Janeiro State, southeastern Brazil, including the identification of the species involved. A total of 94 spongi- vory events were observed between 12 nudibranch and 13 sponge species, greatly expanding our knowledge of predator-prey interactions. Among the sponges preyed upon, one species belongs to the class Homoscleromorpha (Plakina sp.) and 12 species to the class Demospongiae. Our observations show that spongivorous nudibranchs have a more diverse diet than previously thought. Additional observa- tions on a higher number of species from different biogeographic regions are needed for a better understanding of the feeding preferences of the diverse and ecologically important spongivorous dorid nudibranchs.
    [Show full text]
  • Introduced Marine Species in Pago Pago Harbor, Fagatele Bay and the National Park Coast, American Samoa
    INTRODUCED MARINE SPECIES IN PAGO PAGO HARBOR, FAGATELE BAY AND THE NATIONAL PARK COAST, AMERICAN SAMOA December 2003 COVER Typical views of benthic organisms from sampling areas (clockwise from upper left): Fouling organisms on debris at Pago Pago Harbor Dry Dock; Acropora hyacinthus tables in Fagetele Bay; Porites rus colonies in Fagasa Bay; Mixed branching and tabular Acropora in Vatia Bay INTRODUCED MARINE SPECIES IN PAGO PAGO HARBOR, FAGATELE BAY AND THE NATIONAL PARK COAST, AMERICAN SAMOA Final report prepared for the U.S. Fish and Wildlife Service, Fagetele Bay Marine Sanctuary, National Park of American Samoa and American Samoa Department of Marine and Natural Resources. S. L. Coles P. R. Reath P. A. Skelton V. Bonito R. C. DeFelice L. Basch Bishop Museum Pacific Biological Survey Bishop Museum Technical Report No 26 Honolulu Hawai‘i December 2003 Published by Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright © 2003 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2003-007 to the Pacific Biological Survey EXECUTIVE SUMMARY The biological communities at ten sites around the Island of Tutuila, American Samoa were surveyed in October 2002 by a team of four investigators. Diving observations and collections of benthic observations using scuba and snorkel were made at six stations in Pago Pago Harbor, two stations in Fagatele Bay, and one station each in Vatia Bay and Fagasa Bay. The purpose of this survey was to determine the full complement of organisms greater than 0.5 mm in size, including benthic algae, macroinvertebrates and fishes, occurring at each site, and to evaluate the presence and potential impact of nonindigenous (introduced) marine species.
    [Show full text]
  • OEB51: the Biology and Evolu on of Invertebrate Animals
    OEB51: The Biology and Evoluon of Invertebrate Animals Lectures: BioLabs 2062 Labs: BioLabs 5088 Instructor: Cassandra Extavour BioLabs 4103 (un:l Feb. 11) BioLabs2087 (aer Feb. 11) 617 496 1935 [email protected] Teaching Assistant: Tauana Cunha MCZ Labs 5th Floor [email protected] Basic Info about OEB 51 • Lecture Structure: • Tuesdays 1-2:30 Pm: • ≈ 1 hour lecture • ≈ 30 minutes “Tech Talk” • the lecturer will explain some of the key techniques used in the primary literature paper we will be discussing that week • Wednesdays: • By the end of lab (6pm), submit at least one quesBon(s) for discussion of the primary literature paper for that week • Thursdays 1-2:30 Pm: • ≈ 1 hour lecture • ≈ 30 minutes Paper discussion • Either the lecturer or teams of 2 students will lead the class in a discussion of the primary literature paper for that week • There Will be a total of 7 Paper discussions led by students • On Thursday January 28, We Will have the list of Papers to be discussed, and teams can sign uP to Present Basic Info about OEB 51 • Bocas del Toro, Panama Field Trip: • Saturday March 12 to Sunday March 20, 2016: • This field triP takes Place during sPring break! • It is mandatory to aend the field triP but… • …OEB51 Will not meet during the Week folloWing the field triP • Saturday March 12: • fly to Panama City, stay there overnight • Sunday March 13: • fly to Bocas del Toro, head out for our first collec:on! • Monday March 14 – Saturday March 19: • breakfast, field collec:ng (lunch on the boat), animal care at sea tables,
    [Show full text]
  • SUMMARY and FUTURE WORK Not Constitute Type Material Because Gill’S (1863) Descrip- Tion Was Clearly Based on a Single Specimen
    132 • SMITHSONIAN CONTRIBUTIONS TO THE MARINE SCIENCES FIGURE 11. Coryphopterus glaucofraenum, neotype, USNM 393907, Belize, 44 mm SL, DNA 6367: A, fresh; B, preserved. Designation of Neotype for Neotype Coryphopterus glaucofraenum Coryphopterus glaucofraenum Gill, USNM 393907, FIGURE 11 44 mm SL, DNA 6367, Twin Cays, Belize, mangrove edge on interior channel, 0– 6 ft. (GenBank accession no. Eschmeyer (2008) noted the need for designating a GQ367355.) neotype for Coryphopterus glaucofraenum Gill, because the whereabouts of the holotype are unknown. He also noted that four MCZ specimens assumed to be syntypes do SUMMARY AND FUTURE WORK not constitute type material because Gill’s (1863) descrip- tion was clearly based on a single specimen. Because of the Cytochrome c oxidase I sequences (DNA barcoding) historical confusion regarding the validity of C. tortugae were useful in determining the number of distinct genetic and C. venezuelae as distinct from C. glaucofraenum, and lineages within Caribbean Coryphopterus. We used the because the three species can be diffi cult to separate, we neighbor-joining tree (see Figure 1) derived from those se- have elected to designate a neotype for C. glaucofraenum quences to assemble voucher specimens (and color photo- from which we have successfully obtained a COI sequence graphs of them taken before preservation) into clades and that places the specimen in the C. glaucofraenum clade. then compared the morphology of specimens among those We hereby make the following type designation: clades. Assigning clades to species was relatively easy based 007_Baldwin_111-138_Lang.indd7_Baldwin_111-138_Lang.indd 113232 99/24/09/24/09 99:38:53:38:53 AAMM NUMBER 38 • 133 on review of original literature and examination of some CARMABI laboratory in Curacao.
    [Show full text]
  • Bioactive Nitrogenous Secondary Metabolites from the Marine Sponge Genus Haliclona
    marine drugs Review Bioactive Nitrogenous Secondary Metabolites from the Marine Sponge Genus Haliclona Jiaying Zhu, Yang Liu, Zijun Liu, Hao Wang and Huawei Zhang * School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; [email protected] (J.Z.); [email protected] (Y.L.); [email protected] (Z.L.); [email protected] (H.W.) * Correspondence: [email protected]; Tel.: +86-571-8832-0613 Received: 12 November 2019; Accepted: 2 December 2019; Published: 3 December 2019 Abstract: Marine sponge genus Haliclona, one of the most prolific sources of natural products, contains over 600 species but only a small part of them had been classified and chemically investigated. On the basis of extensive literature search, this review firstly summarizes 112 nitrogenous secondary metabolites from classified and unclassified Haliclona sponges as well as from their symbiotic microorganisms. Most of these substances have only been found in Haliclona sponges, and display diverse bioactive properties with potential applications in new drug discovery. Keywords: marine sponge; Haliclona; symbiotic microbe; secondary metabolite; alkaloid; bioactivity 1. Introduction The marine environment is the largest treasure trove of creatures, including plants, animals and microorganisms. People never stop conducting chemical studies of marine organisms owing to their potential capability to produce bioactive secondary metabolites that are potential sources of leads for new drug development. So far over 34,000 articles about marine-derived natural products research have been published [1]. Marine sponges, which are immemorial organisms, are widely distributed around the world and comprise over ten thousand species, most of which them live in the sea, while only one percent are freshwater sponges [2].
    [Show full text]