Mathematics and Her Sisters in Medieval Islam: a Selective Review of Work Done from 1985 to 1995
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hans-Ludwig Wußing
Wußing, Hans-Ludwig akademischer Titel: Prof. Dr. rer. nat. habil. Prof. in Leipzig: 1968-69 Professor mit LA für Geschichte der Mathematik und Naturwissenschaften. 1969-92 o. Professor für Geschichte der Naturwissenschaften. Fakultät: 1952-55 Mathematisch-Naturwissenschaftliche Fakultät – Mathematisches Institut. 1955-57 Arbeiter- und Bauern-Fakultät. 1957-69 Medizinische Fakultät - Karl-Sudhoff-Inst. für Geschichte der Medizin u. der Naturwissenschaften. 1969-92 Bereich Medizin - Karl-Sudhoff-Institut für Geschichte der Medizin u. der Naturwissenschaften. Lehr- und Geschichte der Naturwissenschaften. Geschichte der Mathematik. Forschungsgebiete: weitere Vornamen: Lebensdaten: geboren am 15.10.1927 in Waldheim/Sachsen. gestorben am 26.04.2011 in Leipzig Vater: Hans Wußing (Kfm. Angestellter) Mutter: Lucie Wußing geb. Altmann (Hausfrau) Konfession: ohne Lebenslauf: 1934-1937 Bürgerschule Waldheim. 1937-1943 Oberschule Waldheim. 9/43-11/43 Einberufung als Luftwaffenhelfer in Leipzig.. 11/43-4/45 Einberufung zur Wehrmacht als Kanonier und Kriegsteilnahme. 4/45-12/45 Britische Kriegsgefangenschaft in Belgien. 12/45-4/46 Landwirtschaftlicher Hilfsarbeiter in Mentrup Kr. Osnabrück. 4/46-07/47 Oberschule Waldheim mit Abschluss Abitur. 1947-1952 Studium der Mathematik und Physik an der Philosophischen Fakultät der Universität Leipzig. 1.09.1952 Staatsexamen für Lehrer an der Oberstufe der Deutschen Demokratischen Schule im Hauptfach Mathematik und Nebenfach Physik. 1.09.1952 Aufnahme in die planmäßige wiss. Aspirantur im Fach Mathematik an der Universität Leipzig. 1952-1955 plm. wiss. Aspirant am Mathematischen Institut der Karl-Marx-Universität Leipzig. 1955-1957 Lektor an der Arbeiter-und Bauern-Fakultät (ABF) der Karl-Marx-Universität Leipzig. 1957-1959 Wiss. Ass. am Karl-Sudhoff-Institut für Geschichte der Medizin und der Naturwissenschaften. -
The Sixth Award of the Kenneth O May Medal and Prize
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Historia Mathematica 37 (2010) 4–7 www.elsevier.com/locate/yhmat News and Notices The sixth award of the Kenneth O. May Medal and Prize Karen Hunger Parshall Department of History & Mathematics, University of Virginia, Kerchof Hall, Charlottesville, VA 22904-4137, USA On the 31 July, 2009, in Budapest, at the quadrennial International Congress for the History of Science and Technology, the sixth Kenneth O. May Prizes and Medals were awarded by the International Commission for the History of Mathematics to Ivor Grattan-Guinness and Radha Charan Gupta. In the absence of the ICHM Chair, Karen Parshall, Craig Fraser, the ICHM Vice Chair, read the following citation: In 1989, the International Commission for the History of Mathematics awarded, for the first time, the Kenneth O. May Prize in the History of Mathematics. This award honors the memory of Kenneth O. May, mathematician and historian of mathematics, who was instrumental in creating a unified international community of historians of mathematics through his tireless efforts in founding in 1971 the International Commission for the His- tory of Mathematics and in 1974 the ICHM’s journal, Historia Mathematica. The Kenneth O. May Prize has been awarded every four years since 1989 to the historian or historians of mathematics whose work best exemplifies the high scholarly standards and intellectual con- tributions to the field that May worked so hard to achieve. To date, the following distin- guished historians of mathematics have been recognized for their work through receipt of the Kenneth O. -
The History of Arabic Sciences: a Selected Bibliography
THE HISTORY OF ARABIC SCIENCES: A SELECTED BIBLIOGRAPHY Mohamed ABATTOUY Fez University Max Planck Institut für Wissenschaftsgeschichte, Berlin A first version of this bibliography was presented to the Group Frühe Neuzeit (Max Planck Institute for History of Science, Berlin) in April 1996. I revised and expanded it during a stay of research in MPIWG during the summer 1996 and in Fez (november 1996). During the Workshop Experience and Knowledge Structures in Arabic and Latin Sciences, held in the Max Planck Institute for the History of Science in Berlin on December 16-17, 1996, a limited number of copies of the present Bibliography was already distributed. Finally, I express my gratitude to Paul Weinig (Berlin) for valuable advice and for proofreading. PREFACE The principal sources for the history of Arabic and Islamic sciences are of course original works written mainly in Arabic between the VIIIth and the XVIth centuries, for the most part. A great part of this scientific material is still in original manuscripts, but many texts had been edited since the XIXth century, and in many cases translated to European languages. In the case of sciences as astronomy and mechanics, instruments and mechanical devices still extant and preserved in museums throughout the world bring important informations. A total of several thousands of mathematical, astronomical, physical, alchemical, biologico-medical manuscripts survived. They are written mainly in Arabic, but some are in Persian and Turkish. The main libraries in which they are preserved are those in the Arabic World: Cairo, Damascus, Tunis, Algiers, Rabat ... as well as in private collections. Beside this material in the Arabic countries, the Deutsche Staatsbibliothek in Berlin, the Biblioteca del Escorial near Madrid, the British Museum and the Bodleian Library in England, the Bibliothèque Nationale in Paris, the Süleymaniye and Topkapi Libraries in Istanbul, the National Libraries in Iran, India, Pakistan.. -
Lecture 2: Arithmetic
E-320: Teaching Math with a Historical Perspective Oliver Knill, 2010-2017 Lecture 2: Arithmetic The oldest mathematical discipline is arithmetic. It is the theory of the construction and manip- ulation of numbers. The earliest steps were done by Babylonian, Egyptian, Chinese, Indian and Greek thinkers. Building up the number system starts with the natural numbers 1; 2; 3; 4::: which can be added and multiplied. Addition is natural: join 3 sticks to 5 sticks to get 8 sticks. Multiplication ∗ is more subtle: 3 ∗ 4 means to take 3 copies of 4 and get 4 + 4 + 4 = 12 while 4 ∗ 3 means to take 4 copies of 3 to get 3 + 3 + 3 + 3 = 12. The first factor counts the number of operations while the second factor counts the objects. To motivate 3 ∗ 4 = 4 ∗ 3, spacial insight motivates to arrange the 12 objects in a rectangle. This commutativity axiom will be carried over to larger number systems. Realizing an addition and multiplicative structure on the natural numbers requires to define 0 and 1. It leads naturally to more general numbers. There are two major motivations to to build new numbers: we want to 1. invert operations and still get results. 2. solve equations. To find an additive inverse of 3 means solving x + 3 = 0. The answer is a negative number. To solve x ∗ 3 = 1, we get to a rational number x = 1=3. To solve x2 = 2 one need to escape to real numbers. To solve x2 = −2 requires complex numbers. Numbers Operation to complete Examples of equations to solve Natural numbers addition and multiplication 5 + x = 9 Positive fractions addition and -
Em Caixa Alta
Revista Brasileira de História da Matemática - Vol. 4 no 7 (abril/2004 - setembro/2004 ) - pág. 79 - 87 Ensaio/Resenha Publicação Oficial da Sociedade Brasileira de História da Matemática ISSN 1519-955X ENSAIO/RESENHA ESCREVENDO A HISTÓRIA DA MATEMÁTICA: SEU DESENVOLVIMENTO HISTÓRICO Sergio Nobre Unesp - Brasil (aceito para publicação em janeiro de 2004) Dauben, Joseph W. & Scriba, Christoph J. (ed.). Writing the History of Mathematics: Its Historical Development. Basel, Boston, Berlin: Birkhäuser Verlag. 2002. Science Networks – Historical Studies Volume 27. Pp. xxxvii + 689, ISBN 3-7643-6166-2 (Hardcover) ISBN 3-7643-6167-0 (Softcover). O tema abordado neste livro merece mais do que uma simples resenha, é uma excelente oportunidade para divulgar aos leitores em língua portuguesa um pouco sobre a história do movimento internacional de institucionalização da área de investigação científica em História da Matemática. Para iniciar, vale ressaltar três nomes que aparecem em destaque nas primeiras páginas do livro, e que possuem extrema relevância para o movimento internacional da escrita da História da Matemática: International Commission on the History of Mathematics, a Comissão International de História da Matemática, que deu o suporte científico para a edição do livro; Mathematisches Forschungsinstitut Oberwolfach, o Instituto de Pesquisa em Matemática de Oberwolfach, ao qual o livro é dedicado. O terceiro nome é de uma pessoa, Kenneth O. May, em cuja memória o livro também é dedicado. Um pouco da história sobre estas três autoridades da movimento internacional de pesquisa em História da Matemática representa um importante subsídio para a apresentação do livro Writing the History of Mathematics: Ist Historical Development. RBHM, Vol. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
Elizabeth F. Lewis Phd Thesis
PETER GUTHRIE TAIT NEW INSIGHTS INTO ASPECTS OF HIS LIFE AND WORK; AND ASSOCIATED TOPICS IN THE HISTORY OF MATHEMATICS Elizabeth Faith Lewis A Thesis Submitted for the Degree of PhD at the University of St Andrews 2015 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/6330 This item is protected by original copyright PETER GUTHRIE TAIT NEW INSIGHTS INTO ASPECTS OF HIS LIFE AND WORK; AND ASSOCIATED TOPICS IN THE HISTORY OF MATHEMATICS ELIZABETH FAITH LEWIS This thesis is submitted in partial fulfilment for the degree of Ph.D. at the University of St Andrews. 2014 1. Candidate's declarations: I, Elizabeth Faith Lewis, hereby certify that this thesis, which is approximately 59,000 words in length, has been written by me, and that it is the record of work carried out by me, or principally by myself in collaboration with others as acknowledged, and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September 2010 and as a candidate for the degree of Ph.D. in September 2010; the higher study for which this is a record was carried out in the University of St Andrews between 2010 and 2014. Signature of candidate ...................................... Date .................... 2. Supervisor's declaration: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Ph.D. -
Archives De L'académie Internationale D'histoire Des Sciences
Fonds de l’Académie internationale d’histoire des sciences Inventaire des archives de l'Académie internationale d'histoire des sciences Producteur : Académie internationale d'histoire des sciences Historique / Présentation de l’Académie : L'Académie internationale d'histoire des sciences est une association régie par la loi de 1901. L’Académie internationale d’histoire des sciences est une institution qui a pris en 1932 la succession du Comité international d’histoire des sciences fondé à Oslo le 17 août 1928. Elle est associée à la Division d’histoire des sciences et des techniques de l’Union internationale d’histoire et de philosophie des sciences pour la représentation et l’organisation de l’histoire des sciences sur le plan international. CAPHÉS - 2017 Page 1 Fonds de l’Académie internationale d’histoire des sciences Les membres effectifs et correspondants sont choisis sur base de leur œuvre scientifique. L’Académie comprend aussi des membres d'honneur élus parmi les personnalités qui ont contribué au progrès de l’histoire des sciences. L’Académie est dirigée par un Conseil d’administration ainsi constitué : un président, trois vice-présidents, un trésorier, un archiviste, et un secrétaire aux réseaux élus par l’Assemblée générale pour une durée de quatre ans, un secrétaire perpétuel élu pour une durée de sept ans, ainsi que par les anciens présidents et anciens secrétaires perpétuels, siégeant ex officio. L’Assemblée générale ordinaire, composée de tous les membres actifs, se réunit tous les quatre ans lors de la tenue des Congrès internationaux d’histoire des sciences organisés par la Division d’histoire des sciences et des techniques de l’Union internationale d’histoire et de philosophie des sciences. -
A Short History of Greek Mathematics
Cambridge Library Co ll e C t i o n Books of enduring scholarly value Classics From the Renaissance to the nineteenth century, Latin and Greek were compulsory subjects in almost all European universities, and most early modern scholars published their research and conducted international correspondence in Latin. Latin had continued in use in Western Europe long after the fall of the Roman empire as the lingua franca of the educated classes and of law, diplomacy, religion and university teaching. The flight of Greek scholars to the West after the fall of Constantinople in 1453 gave impetus to the study of ancient Greek literature and the Greek New Testament. Eventually, just as nineteenth-century reforms of university curricula were beginning to erode this ascendancy, developments in textual criticism and linguistic analysis, and new ways of studying ancient societies, especially archaeology, led to renewed enthusiasm for the Classics. This collection offers works of criticism, interpretation and synthesis by the outstanding scholars of the nineteenth century. A Short History of Greek Mathematics James Gow’s Short History of Greek Mathematics (1884) provided the first full account of the subject available in English, and it today remains a clear and thorough guide to early arithmetic and geometry. Beginning with the origins of the numerical system and proceeding through the theorems of Pythagoras, Euclid, Archimedes and many others, the Short History offers in-depth analysis and useful translations of individual texts as well as a broad historical overview of the development of mathematics. Parts I and II concern Greek arithmetic, including the origin of alphabetic numerals and the nomenclature for operations; Part III constitutes a complete history of Greek geometry, from its earliest precursors in Egypt and Babylon through to the innovations of the Ionic, Sophistic, and Academic schools and their followers. -
Mathematics People, Volume 52, Number 11
Mathematics People Bos Awarded 2005 May Prize Heinrich and Liu Receive 2005 The International Commission for the History of Mathe- CMS Awards matics (ICHM) has awarded the 2005 Kenneth O. May Prize and Medal to HENK BOS of the University of Utrecht. The The Canadian Mathematical Society (CMS) has awarded the May Prize honors outstanding contributions to the history 2005 Adrien Pouliot Award to KATHERINE HEINRICH of the Uni- of mathematics. According to the prize citation, Bos’s versity of Regina, Saskatchewan, and the 2005 G. de B. studies of the work of Descartes and his contemporaries Robinson Prize to YU-RU LIU of the University of Waterloo. and predecessors are “an exploration of what counted as The Adrien Pouliot Award is given to individuals or good mathematics in a particular period…Henk Bos has, teams of individuals who have made significant and sus- through his deep and insightful research, fundamentally tained contributions to mathematics education in Canada. shaped present-day understanding of the mathematics of Heinrich originated the Canadian Mathematics Education the seventeenth century…Bos gives to this seventeenth- Forum in 1995 as a venue for people interested in math- century material the kind of careful attention it was given ematics education at all levels to meet and discuss issues by the experts when it was new.” His other writings, in- of common interest and has been involved in the promo- cluding a collection of essays on the history of mathematics, tion of mathematics and mathematics education through- have “effectively extended Bos’s audience beyond the com- out her career. -
View This Volume's Front and Back Matter
Titles in This Series Volume 8 Kare n Hunger Parshall and David £. Rowe The emergenc e o f th e America n mathematica l researc h community , 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moore 1994 7 Hen k J. M. Bos Lectures in the history of mathematic s 1993 6 Smilk a Zdravkovska and Peter L. Duren, Editors Golden years of Moscow mathematic s 1993 5 Georg e W. Mackey The scop e an d histor y o f commutativ e an d noncommutativ e harmoni c analysis 1992 4 Charle s W. McArthur Operations analysis in the U.S. Army Eighth Air Force in World War II 1990 3 Pete r L. Duren, editor, et al. A century of mathematics in America, part III 1989 2 Pete r L. Duren, editor, et al. A century of mathematics in America, part II 1989 1 Pete r L. Duren, editor, et al. A century of mathematics in America, part I 1988 This page intentionally left blank https://doi.org/10.1090/hmath/008 History of Mathematics Volume 8 The Emergence o f the American Mathematical Research Community, 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moor e Karen Hunger Parshall David E. Rowe American Mathematical Societ y London Mathematical Societ y 1991 Mathematics Subject Classification. Primary 01A55 , 01A72, 01A73; Secondary 01A60 , 01A74, 01A80. Photographs o n th e cove r ar e (clockwis e fro m right ) th e Gottinge n Mathematisch e Ges - selschafft, Feli x Klein, J. J. Sylvester, and E. H. Moore. -
Bibliography
Bibliography A. Aaboe, Episodes from the Early History of Mathematics (Random House, New York, 1964) A.D. Aczel, Fermat’s Last Theorem: Unlocking the Secret of an Ancient Mathematical Problem (Four Walls Eight Windows, New York, 1996) D. Adamson, Blaise Pascal: Mathematician, Physicist, and Thinker About God (St. Martin’s Press, New York, 1995) R.P. Agarwal, H. Agarwal, S.K. Sen, Birth, Growth and Computation of Pi to ten trillion digits. Adv. Differ. Equat. 2013, 100 (2013) A.A. Al-Daffa’, The Muslim Contribution to Mathematics (Humanities Press, Atlantic Highlands, 1977) A.A. Al-Daffa’, J.J. Stroyls, Studies in the Exact Sciences in Medieval Islam (Wiley, New York, 1984) E.J. Aiton, Leibniz: A Biography (A. Hilger, Bristol, Boston, 1984) R.E. Allen, Greek Philosophy: Thales to Aristotle (The Free Press, New York, 1966) G.J. Allman, Greek Geometry from Thales to Euclid (Arno Press, New York, 1976) E.N. da C. Andrade, Sir Issac Newton, His Life and Work (Doubleday & Co., New York, 1954) W.S. Anglin, Mathematics: A Concise History and Philosophy (Springer, New York, 1994) W.S. Anglin, The Queen of Mathematics (Kluwer, Dordrecht, 1995) H.D. Anthony, Sir Isaac Newton (Abelard-Schuman, New York, 1960) H.G. Apostle, Aristotle’s Philosophy of Mathematics (The University of Chicago Press, Chicago, 1952) R.C. Archibald, Outline of the history of mathematics.Am. Math. Monthly 56 (1949) B. Artmann, Euclid: The Creation of Mathematics (Springer, New York, 1999) C.N. Srinivasa Ayyangar, The History of Ancient Indian Mathematics (World Press Private Ltd., Calcutta, 1967) A.K. Bag, Mathematics in Ancient and Medieval India (Chaukhambha Orientalia, Varanasi, 1979) W.W.R.