Development of Innovative Gas- Assisted Foam Injection Molding

Total Page:16

File Type:pdf, Size:1020Kb

Development of Innovative Gas- Assisted Foam Injection Molding Development of Innovative Gas- Assisted Foam Injection Molding Technology By Peter Ungyeong Jung A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Mechanical and Industrial Engineering University of Toronto © Copyright by Peter Ungyeong Jung 2013 Development of Innovative Gas-Assisted Foam Injection Molding Technology Peter Ungyeong Jung Degree of Doctor of Philosophy, 2013 Department of Mechanical and Industrial Engineering University of Toronto ABSTRACT Injection molding technology is utilized for a wide range of applications from mobile phone covers to bumper fascia of automotive vehicles. Foam injection molding (FIM) is a branched manufacturing process of conventional injection molding, but it was designed to take advantage of existing foaming technology, including material cost saving and weight reduction, and to provide additional benefits such as improvement in dimensional stability, faster cycle time, and so on. Gas-assisted injection molding (GAIM) is another supplemental technology of injection molding and offers several advantages as well. This thesis study takes the next step and develops innovative gas-assisted foam injection molding (GAFIM) technology, which is the result of a synergistic combination of two existing manufacturing technologies, FIM and GAIM, in order to produce a unique thermoplastic foam structure with proficient acoustic properties. The foam structure manufactured by GAFIM consists of a solid skin layer, a foam layer, and a hollow core; and its 6.4-mm thick sample outperformed the conventional 22-mm thick polyurethane foam in terms of the acoustic absorption coefficient. With respect to ii foaming technology, GAFIM was able to achieve a highly uniform foam morphology by completely decoupling the filling and foaming phases. Moreover, the additional shear and extensional energies from GAFIM promoted a more cell nucleation-dominant foaming behavior, which resulted in higher cell density and smaller cell sizes with both CO2 and N2 as physical blowing agents. Lastly, it provided more direct control of the degree of foaming because the pressure drop and pressure drop rate was controlled by a single parameter, that being the gas injection pressure. In summary, innovative, gas-assisted foam injection molding technology offers not only a new strategy to produce acoustically functioning thermoplastic foam products, but also technological advantages over the conventional foam injection molding process. Gas-assisted foam injection molding can become the bedrock for more innovative future applications. iii ACKNOWLEDGEMENT First of all, I would like to thank God the Father for presenting this opportunity to me six years ago and giving me courage to accept this challenging task. I truly believe that He walked this long journey with me and I could not have finished it without His love, guidance, and blessings. I cannot say enough how grateful I am for my supervisor, Prof. Chul B. Park, for his excellent guidance and the valuable life lessons that I learned from him. He has been very supportive and patient throughout my program and presented numerous opportunities for me to mature as a researcher and a person. I also would like to thank Prof. Hani E. Naguib for being my Ph.D. thesis committee member and always encouraging me as one of his own students. I am also very appreciative to Prof. Chandra for his time and effort as my Ph.D. thesis committee member and his very valuable technical advice. I am grateful for Prof. Ashgriz and Prof. Turng for becoming my exam committee members in such a short notice and for their valuable feedback. I am indebted to my colleagues at the Microcellular Plastics Manufacturing Lab for sharing my ups and downs on daily basis, which is not an easy task. I sincerely thank my previous and current colleagues, Dr. Anson Wong, Reza Nofar, Kamlesh Majithiya, Nemat Hossieny, Hassan Mahmood, Dr. Amir Ameli, Davoud Jahani, Dr. Saleh Amani, Konstantin Kovalski, Medhi Saniei, Dr. Jing Wang, Dr. Sunny Leung, Dr. Mohamed Hassan, Dr. Yanting Guo, Lun Howe Mark, Mo Xu, Ali Rizvi, Alireza Naeini, Vahid Shaayegan, Weidan Ding, Anna Zhao, Sai Wang, Dr. Reza Bazegari, Dr. Adhikary Kamal. I am also grateful to the many undergraduate students who have assisted me in iv my research throughout the years, especially, Hyunwoo Lee, Taewon Park, and Chenkun Li. There are two of my colleagues with whom I have shared a lot of struggles and frustrations; together, we were able to overcome obstacles, and they have supported me incredibly throughout the years. Thus, my special thanks go to Raymond Chu and Dr. Changwei Zhu. I was very fortunate to get to know so many hyungs and establish valuable friendships with them throughout the years. They helped me to get through difficult times of my life, and shared their personal experiences and wisdoms with me. I would like to thank Dr. Kevin Y.H. Lee, Dr. Richard Eungkee Lee, Dr. Ryan S.G. Kim, Dr. Yongark Moon, Dr. Myungjae Lee, Dr. Kyungmin Lee, Dr. John W.S. Lee, Dr. Taekyun Lee, and Dr. Patrick Lee. I was also privileged to share special friendships with Esther Lee, Prof. Dongwoo Cho, Prof. Bosung Shin, Dr. Youngseok Kim, and Prof. Simon Park. Last, but definitely not the least, I would like to thank very special people in my life. I owe a big thank to Donna Lee for being a huge part of my life and inspiring me with her caring support, positive energy, and love. I cannot thank enough my beloved family, my dad, mom, and sister, Maria, for their unconditional love, endless support, having faith in me when I was doubting myself, encouraging me when I was struggling, and motivating me every day to try my best at everything I do to become a better person. I really am indebted to my mom, especially, for packing my lunch (and dinner sometimes) every weekday for the last six years, which have been fuel to my engine. I thank everyone else who helped me to get through this tall, challenging task. v TABLE OF CONTENTS ABSTRACT………………….. ........................................................................................ II ACKNOWLEDGEMENT .............................................................................................. IV TABLE OF CONTENTS ............................................................................................... VI LIST OF TABLES………….. ...................................................................................... XII LIST OF FIGURES………. ........................................................................................ XIII LIST OF SYMBOLS. .................................................................................................. XIX NOMENCLATURE………………………………………………………………….XXI CHAPTER 1 INTRODUCTION ................................................................................ 1 1.1 Thermoplastic Foams ............................................................................. 1 1.2 Open-Cell and Closed-Cell Foams ........................................................ 1 1.3 Thermoplastic Foam Processing ............................................................ 1 1.4 Injection Molding ................................................................................... 2 1.5 Foam Injection Molding ......................................................................... 4 1.6 Acoustic Thermoplastic Foams .............................................................. 5 vi 1.7 Research Motivation .............................................................................. 6 1.8 Thesis Objectives and Scope of Research .............................................. 7 1.9 Organization of Thesis ........................................................................... 8 CHAPTER 2 LITERATURE REVIEW AND THEORETICAL BACKGROUND …………………………..……………………………………….11 2.1 Thermoplastic Foam Processing ....................................................... 11 2.1.1 Fundamentals of Blowing Agents ........................................................ 11 2.1.2 Formation of Polymer/Gas Solution .................................................... 14 2.1.3 Theoretical Principles of Cell Nucleation and Growth Mechanisms ... 17 2.2 Manufacturing of Open-Celled Foam Structures ........................... 21 2.2.1 Open-Celled Structures with Foam Extrusion Technology ................. 21 2.2.2 Porous Structures by using Sacrificial Fillers ...................................... 22 2.3 Foam Injection Molding Technologies ............................................. 23 2.3.1 Conventional Foam Injection Molding and Microcellular Injection Molding Technologies ......................................................................... 23 2.3.2 Low Pressure and High Pressure Foam Injection Molding Technologies ………………………………………………………………………...25 2.3.3 Investigation of Foaming Behaviors in Foam Injection Molding Using Mold Pressure Profile ........................................................................... 27 2.3.4 Effect of Gas Counter Pressure on Foam Injection Molding Behavior 29 vii 2.4 Gas-Assisted Injection Molding ........................................................ 30 2.4.1 Conventional Gas-Assisted Injection Molding Technology ................ 30 2.4.2 Effect of Gas Channel .......................................................................... 32 2.4.3 Computer Simulation Analysis ............................................................ 33 2.4.4 Effect of GAIM on Polymer Crystalline Morphology ......................... 35 2.5 Acoustic Absorption and Insulation
Recommended publications
  • Polymers and Supercritical
    Polymers and Supercritical CO2 - An invention to new polymer processing technologies - On-line Number 5017 Masahiro Ohshima Department of Chemical Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan E-mail: [email protected] ABSTRACT Supercritical CO2 (sc-CO2) is being utilized for various polymers processing such as polymer blending, additive impregnation and plastic foaming. When CO2 dissolves into polymers, the polymer chain mobility is enhanced and rheological and thermal properties of the polymer are changed. In this talk, the solubility and the diffusivity of CO2 in the polymer as well as the CO2-induced polymer property (i.e., plasticization effects), such as reduction of glass transition temperature and viscosity, are shown with experimental data. Then, CO2 microcellular polymeric foaming, a CO2 aided additive infusion and polymer surface modification schemes are introduced to illustrate the potential of CO2 creating new polymer processing techniques. KEYWORDS Super critical fluid, carbon dioxide, plasticization effect, polymer, foams, and surface modification INTRODUCTION Carbon dioxide (CO2) becomes supercritical at pressures and temperatures above 7.38 MPa and o 31.1 C. At the supercritical condition, the CO2 has a higher diffusion coefficient and a lower viscosity than liquids and the surface tension becomes absent, which allows a rapid penetration of molecule into the pores of heterogeneous matrices. Taking advantage of these characteristics together with its nontoxicity, nonflammability and inexpensiveness, CO2 has been used in a variety of industries, i.e., food, pharmaceutical, fiber, chemical and plastic industries (Berens et al, 1992; Schnitzler et al, 1999). At the beginning of the research on the supercritical fluids, the focus was mainly on extraction and separation of small molecules by the fluids.
    [Show full text]
  • Processing and Characterization of Polycarbonate Foams with Supercritical
    PROCESSING AND CHARACTERIZATION OF POLYCARBONATE FOAMS WITH SUPERCRITICAL CO2 AND 5-PHENYL-1H-TETRAZOLE Thomas Cloarec, B.S. Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS May 2015 APPROVED: Witold Brostow, Major Professor Samir Aouadi, Committee Member Nandika A. D’Souza, Committee Member Richard F. Reidy, Committee Member Cloarec, Thomas. Processing and Characterization of Polycarbonate Foams with Supercritical Co2 and 5-Phenyl-1h-Tetrazole. Master of Science (Materials Science and Engineering), May 2015, 100 pp., 11 tables, 59 figures, references, 5 titles. Since their discovery in the 1930s, polymeric foams have been widely used in the industry for a variety of applications such as acoustical and thermal insulation, filters, absorbents etc. The reason for this ascending trend can be attributed to factors such as cost, ease of processing and a high strength to weight ratio compared to non-foamed polymers. The purpose of this project was to develop an “indestructible” material made of polycarbonate (PC) for industrial applications. Due to the high price of polycarbonate, two foaming methods were investigated to reduce the amount of material used. Samples were foamed physically in supercritical CO2 or chemically with 5-phenyl-1H-tetrazole. After thermal characterization of the foams in differential scanning calorimetry (DSC), we saw that none of the foaming methods had an influence on the glass transition of polycarbonate. Micrographs taken in scanning electron microscopy (SEM) showed that foams obtained in physical and chemical foaming had different structures. Indeed, samples foamed in supercritical CO2 exhibited a microcellular opened-cell structure with a high cell density and a homogeneous cell distribution.
    [Show full text]
  • Type of the Paper
    polymers Review Tuning Power Ultrasound for Enhanced Performance of Thermoplastic Micro-Injection Molding: Principles, Methods, and Performances Baishun Zhao 1,2 , Yuanbao Qiang 1,2, Wangqing Wu 1,2,* and Bingyan Jiang 1,2 1 State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Lushan South Road 932, Changsha 410083, China; [email protected] (B.Z.); [email protected] (Y.Q.); [email protected] (B.J.) 2 School of Mechanical and Electrical Engineering, Central South University, Lushan South Road 932, Changsha 410083, China * Correspondence: [email protected]; Tel.: +86-158-7429-5500 Abstract: With the wide application of Micro-Electro-Mechanical Systems (MEMSs), especially the rapid development of wearable flexible electronics technology, the efficient production of micro-parts with thermoplastic polymers will be the core technology of the harvesting market. However, it is significantly restrained by the limitations of the traditional micro-injection-molding (MIM) process, such as replication fidelity, material utilization, and energy consumption. Currently, the increas- ing investigation has been focused on the ultrasonic-assisted micro-injection molding (UAMIM) and ultrasonic plasticization micro-injection molding (UPMIM), which has the advantages of new Citation: Zhao, B.; Qiang, Y.; Wu, W.; plasticization principle, high replication fidelity, and cost-effectiveness. The aim of this review is Jiang, B. Tuning Power Ultrasound to present the latest research activities on the action mechanism of power ultrasound in various for Enhanced Performance of polymer micro-molding processes. At the beginning of this review, the physical changes, chemical Thermoplastic Micro-Injection changes, and morphological evolution mechanism of various thermoplastic polymers under different Molding: Principles, Methods, and application modes of ultrasonic energy field are introduced.
    [Show full text]
  • FY 1992 Budget Summary Table for DOE Materials Activities
    Is a.:. S A * A A 0 0 - 0@ E a a A - a 5 0O I.. - 0 - 0 S -. -. C S -. :. -. B S S --. - This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Informa- tion, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. 0 Printed with soy ink on recycled paper DOE/ER-0589 ENERGY MATERIALS COORDINATING COMMITTEE (EMaCC) Fiscal Year 1992 May 1993 Annual Technical Report U.S. Department of Energy Office of Energy Research Office of Basic Energy Sciences Division of Materials Sciences Washington, D.C. 20585 Table of Contents TABLE OF CONTENTS Page Introduction ........................................................ 1 Membership List .................................................... 2 FY 1992 Budget Summary Table for DOE Materials Activities .................. 6 Program Descriptions OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY ......... 9 Office of Building Technologies ................................... 13 Office of Building Energy Research .............................. 14 Buildings Systems and Materials Division ........................ 15 Office of Industrial Technologies .................................. 17 Office of Waste Reduction Technologies ........................... 21 Industrial Energy Efficiency Division ............................ 21 Waste Material Management Division
    [Show full text]
  • Micro-Nanostructured Polymer Surfaces Using Injection Molding: a Review K
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Constellation Micro-Nanostructured Polymer Surfaces Using Injection Molding: A Review K. Maghsoudi*, R. Jafari, G. Momen, M. Farzaneh Department of Applied Sciences, University of Quebec in Chicoutimi (UQAC) 555, boul. de l'Université, Chicoutimi, Quebec, G7H 2B1, Canada * E-mail: [email protected] Abstract Micro injection molding is in great demand due to its efficiency and applicability for industry. Polymer surfaces having micro-nanostructures can be produced using injection molding. However, it is not as straightforward as scaling-up of conventional injection molding. The paper is organized based on three main technical areas: mold inserts, processing parameters, and demolding. An accurate set of processing parameters is required to achieve precise micro injection molding. This review provides a comparative description of the influence of processing parameters on the quality of final parts and the precision of final product dimensions in both thermoplastic polymers and rubber materials. It also highlights the key parameters to attain a high quality micro-nanostructured polymer and addresses the contradictory effects of these parameters on the final result. Moreover, since the produced part should be properly demolded to possess a high quality textured polymer, various demolding techniques are assessed in this review as well. Keywords: injection molding; micro-nanostructure; processing parameters; demolding; replication 1. Introduction Among the different polymer processing techniques used to produce materials having a specifically desired size and shape, injection molding is highly preferred for mass production systems, and has been used for many years in the polymer industry 1-2.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,827,197 B2 Powers (45) Date of Patent: Sep
    USOO8827 197B2 (12) United States Patent (10) Patent No.: US 8,827,197 B2 POWers (45) Date of Patent: Sep. 9, 2014 (54) APPARATUS AND METHOD FOR (56) References Cited INTERLEAVING POLYMERIC ROLL FOR GAS IMPREGNATION AND SOLD-STATE U.S. PATENT DOCUMENTS FOAMI PROCESSING 1948,568 A 2f1934 Faber 2,224,997 A * 12/1940 Weisse ....................... 242/.530.2 (75) Inventor: Steven Ray Powers, Everett, WA (US) (Continued) (73) Assignee: MicroGREEN Polymers Inc, Arlington, WA (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this E. 36 A1 8.8 patent is extended or adjusted under 35 U.S.C. 154(b) by 1305 days. (Continued) OTHER PUBLICATIONS (21) Appl. No.: 12/612,652 Wang, "Solvent-free Fabrication of Porous Polymer for Tissue Engi (22) Filed: Nov. 4, 2009 neering Applications.” University of Washington, Dept. of Mechani cal Engineering (dissertation), 2007. (65) Prior Publication Data US 2010/01 12301A1 May 6, 2010 (Continued) Related U.S. Application Data Primary Examiner — William A Rivera (60) Provisional application No. 61/111.298, filed on Nov. R Attorney, Agent, or Firm — John M Janeway; Janeway atent Law PLLC 4, 2008. (51) Int. Cl. (57) ABSTRACT B65H (8/08 (2006.01) The present invention relates to apparatuses and methods for B32B 37/00 (2006.01) making interleaved cylindrical rolls from a polymer roll and a B65H 39/6 (2006.01) porous roll. The interleaved rolls disclosed herein are useful B32B I/08 (2006.01) for Subsequent high pressure gas impregnation and solid-state B32B 27/2 (2006.01) foam processing.
    [Show full text]
  • Development of High Strength Microcellular
    DEVELOPMENT OF HIGH STRENGTH MICROCELLULAR FOAMS USING POLYETHER BLOCK AMIDE ………………….. KUN LIN ………………….. M.Eng. PROJECT REPORT DEPARTMENT OF MECHANICAL AND INDUSTRIAL ENGINEERING UNIVERSITY OF TORONTO 2010 DEVELOPMENT OF HIGH STRENGTH MICROCELLULAR FOAMS USING POLYETHER BLOCK AMIDE by KUN LIN A thesis submitted in conformity with the requirements for the degree of Masters of Engineering Graduate Department of Mechanical and Industrial Engineering University of Toronto © Copyright by Kun Lin (2010) Development of High Strength Microcellular Foams Using Polyether Block Amide M.Eng. 2010-09-15 Kun Lin Department of Mechanical & Industrial Engineering University of Toronto Abstract This report presents a successful development of batch foaming techniques of the engineering elastomer. The polyether block amide (PEBAX) was investigated as an engineering elastomer by using batch foaming techniques. The Pebax provide a unique combination of mechanical and chemical properties. Understanding the effect of the different parameter in batch foaming process allows obtaining the high quality foamed product of the engineering elastomer. Temperature has been considered as an important parameter in the batch foaming process. It was shown that the density of foamed product was decreasing by the temperature increasing under its melting temperature. Both temperature and pressure have to reach the minimum requirement to obtain the fine foamed product. As an experiment result, it indicates that there is an optimal portfolio of foaming parameter for the different Pebax resin. Acknowledgements I would like to thank my supervisor Professor Chul B. Park, who provided me this opportunity and resources to complete this research project. I would like to thank my co- supervisor Nan Chen for his guidance, supports and encouragements during my research.
    [Show full text]
  • The Micro Injection Moulding Process for Polymeric Components Manufacturing
    4 The Micro Injection Moulding Process for Polymeric Components Manufacturing R. Surace, G. Trotta, V. Bellantone and I. Fassi ITIA-CNR, Institute of Industrial Technology and Automation, National Research Council, Italy 1. Introduction In recent years, there is an increasing demand for small and even micro scale parts and this trend towards miniaturization makes the micro system technologies of growing importance. Microfabrication process capabilities should expand to encompass a wider range of materials and geometric forms, by defining processes and related process chains that can satisfy the specific functional and technical requirements of new emerging multi-material products, and ensure the compatibility of materials and processing technologies throughout these manufacturing chains. Example technologies to be investigated either individually or in combination are technologies for direct- or rapid manufacturing, energy assisted technologies, microreplication technologies, qualification and inspection methods, functional characterisation methods and integration of "easy and fast" on-line control systems. The processes should demonstrate significantly high production rates, accuracy and enhanced performance or quality, creating capabilities for mass manufacture of microcomponents and miniaturised parts incorporating micro- or nanofeatures in different materials. Processes should also provide high flexibility and seamless integration into new micro- and nanomanufacture scenario. Micro- and nano-manufacturing technologies can provide the basis of the next industrial revolution that could dramatically modify the way in which businesses are setup, run and marketed. Micro injection moulding can be defined as one of the key technologies for micro manufacturing because of its mass production capability and relatively low production cost. It is the process of transferring the micron or even submicron features of metallic moulds to a polymeric product.
    [Show full text]
  • Injection and Micro Injection of Polymeric Plastics Materials: a Review
    International Journal of Modern Manufacturing Technologies ISSN 2067–3604, Vol. V, No. 1 / 2013 INJECTION AND MICRO INJECTION OF POLYMERIC PLASTICS MATERIALS: A REVIEW Ciprian Ciofu, Daniel Teodor Mindru “Gheorghe Asachi” Technical University of Iasi-Romania, Department of Machine Manufacturing Technology Blvd. D. Mangeron No. 59A, 700050 Iasi, Romania Corresponding author: Ciprian Ciofu, [email protected] Abstract: The explosive development of plastics warpage and comparison of fibre orientation industry due, on one hand the emergence of many distribution. Specific properties of plastics products new polymers with very different characteristics, on allow a high quality and high reliability to use in the other hand improves their processing various industrial fields such as electronic technologies. Injection and micro-injection with engineering, aerospace and automotive industry, extruder, calendaring, are the main training electrical industry, food industry, industry objects techniques for plastics.Injection molding is the most household etc. popular method for producing plastic products Key words: injection, micro-injection, polymeric- because of its high productivity and the plastics materials, finite element analise manufacturability for making various complex shapes also is a widely used, complex but highly efficient 1. INTRODUCTION technique for producing a large variety of plastic products, particularly those with high production Plastics are made from polymers and are produced in requirement, tight tolerance and complex shapes. the temperature at which they become plastic in order The paper begins with an introduction on the to obtain the finished product. Polymer evolution of obtaining and processing of plastics by macromolecules are composed of groups of atoms injection and follow with injection and micro- that are repeated more or less ordered along the injection process presentation with issues such as: chain.
    [Show full text]
  • Flame Retardants for ABS and ABS-Matrix Wood-Plastic Composites
    Graduate Theses, Dissertations, and Problem Reports 2008 Flame Retardants for ABS and ABS-matrix Wood-Plastic Composites Tze-Wei Liu West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Liu, Tze-Wei, "Flame Retardants for ABS and ABS-matrix Wood-Plastic Composites" (2008). Graduate Theses, Dissertations, and Problem Reports. 4397. https://researchrepository.wvu.edu/etd/4397 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Flame Retardants for ABS and ABS-matrix Wood-Plastic Composites Tze-Wei Liu Dissertation submitted to the College of Engineering and Mineral Resources At West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering Rakesh K. Gupta, Ph.D. Eung H. Cho, Ph.D. Caulton Irwin, Ph.D. Edwin L. Kugler, Ph.D. John Zondlo, Ph.D. Department of Chemical Engineering West Virginia University Morgantown, West Virginia 2008 Keywords: flame retardants, non-halogenated flame retardants, polymer recycling, acrylonitrile-butadiene-styrene, wood plastic composites, char formation, FTIR, flammability, thermal degradation.
    [Show full text]
  • Effective Use of Filling Simulations to Balance Hot
    Society of Plastics Engineers 6666tthh AAnnnnuuaall TTeecchhnniiccaall CCoonnffeerreennccee ooff tthhee SSoocciieettyy ooff PPllaassttiiccss EEnnggiinneeeerrss Plastics Encounter at ANTEC 2008 May 4 – 8, 2008 Milwaukee, Wisconsin, USA Volume 1 of 4 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 www.proceedings.com ISBN: 978-1-60560-320-9 Some format issues inherent in the e-media version may also appear in this print version. COPYRIGHTED © 2008 BY THE SOCIETY OF PLASTICS ENGINEERS. PO BOX 403, BROOKFIELD, CONNECTICUT 06804-0403 REPRODUCTION IN WHOLE OR IN PART WITH OUT WRITTEN PERMISSION IS PROHIBITED. Society of Plastics Engineers 66th Annual Technical Conference of the Society of Plastics Engineers 2008 TABLE OF CONTENTS VOLUME 1 AUTOMOTIVE – D31 AUTOMOTIVE DIVISION INTERACTIVE SESSION POLYMER FLOW ANALYSIS ON AN AUTOMOTIVE INSTRUMENT PANEL.................................. 1 Bhagat, Harsh COMPOSITES – D39 COMPOSITE PROCESSING AND APPLICATION SELF-REINFORCING THERMOPLASTIC COMPOSITES ................................................................. 6 Lesser, Alan; McCarthy, Thomas; Yoon, Joonsung HYDROXYAPATITE- POLYLACTIDE COMPOSITE FOR BONE REPAIR...................................... 11 Olson, James; Shaw, Montgomery; Sun, Shih-Po; Wei, Mei STRUCTURAL REINFORCED INJECTION MOLDING OF FIBERGLASS AND POLYDICYCLOPENTADIENE........................................................................................................... 14 Hoekstra, Nicole; Lao, Edward IMPROVING WATER RESISTANCE
    [Show full text]
  • Microinjection Molding of Microsystem Components: New Aspects in Improving Performance
    IOP PUBLISHING JOURNAL OF MICROMECHANICS AND MICROENGINEERING J. Micromech. Microeng. 23 (2013) 093001 (21pp) doi:10.1088/0960-1317/23/9/093001 TOPICAL REVIEW Microinjection molding of microsystem components: new aspects in improving performance Can Yang1, Xiao-Hong Yin and Guang-Ming Cheng Laboratory for Advanced Material Processing, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People’s Republic of China E-mail: [email protected] Received 17 March 2013, in final form 17 May 2013 Published 1 August 2013 Online at stacks.iop.org/JMM/23/093001 Abstract Microinjection molding (μIM) is considered to be one of the most flexible, reliable and cost effective manufacturing routes to form plastic micro-components for microsystems. The molding machine, mold tool fabrication, material selection and process controlling in this specific field have been greatly developed over the past decades. This review aims to present the new trends towards improving micro-component performance by reviewing the latest developments in this area and by considering potential directions. The key concerns in product and mold designing, essential factors in simulation, and micro-morphology and resultant properties are evaluated and discussed. In addition, the applications, variant processes and outlook for μIM are presented. Throughout this review, decisive considerations in seeking improved performance for microsystem components are highlighted. (Some figures may appear in colour only in the online journal) 1. Introduction required in certain applications. Since the 1990s, polymer materials have been increasingly incorporated into MEMS Micro-electromechanical-systems (MEMS) or microsystem industries. An important reason is that they provide not only technology (MST) has already become a familiar part of controllable thermal, mechanical and electrical properties, but our daily life in that various micro-components can be also unique chemical, structural and biological functionalities found in a number of devices such as laptops, microphones, not available in any other material.
    [Show full text]