Polymers and Supercritical CO2 - An invention to new polymer processing technologies - On-line Number 5017 Masahiro Ohshima Department of Chemical Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan E-mail:
[email protected] ABSTRACT Supercritical CO2 (sc-CO2) is being utilized for various polymers processing such as polymer blending, additive impregnation and plastic foaming. When CO2 dissolves into polymers, the polymer chain mobility is enhanced and rheological and thermal properties of the polymer are changed. In this talk, the solubility and the diffusivity of CO2 in the polymer as well as the CO2-induced polymer property (i.e., plasticization effects), such as reduction of glass transition temperature and viscosity, are shown with experimental data. Then, CO2 microcellular polymeric foaming, a CO2 aided additive infusion and polymer surface modification schemes are introduced to illustrate the potential of CO2 creating new polymer processing techniques. KEYWORDS Super critical fluid, carbon dioxide, plasticization effect, polymer, foams, and surface modification INTRODUCTION Carbon dioxide (CO2) becomes supercritical at pressures and temperatures above 7.38 MPa and o 31.1 C. At the supercritical condition, the CO2 has a higher diffusion coefficient and a lower viscosity than liquids and the surface tension becomes absent, which allows a rapid penetration of molecule into the pores of heterogeneous matrices. Taking advantage of these characteristics together with its nontoxicity, nonflammability and inexpensiveness, CO2 has been used in a variety of industries, i.e., food, pharmaceutical, fiber, chemical and plastic industries (Berens et al, 1992; Schnitzler et al, 1999). At the beginning of the research on the supercritical fluids, the focus was mainly on extraction and separation of small molecules by the fluids.