IOP PUBLISHING JOURNAL OF MICROMECHANICS AND MICROENGINEERING J. Micromech. Microeng. 23 (2013) 093001 (21pp) doi:10.1088/0960-1317/23/9/093001 TOPICAL REVIEW Microinjection molding of microsystem components: new aspects in improving performance Can Yang1, Xiao-Hong Yin and Guang-Ming Cheng Laboratory for Advanced Material Processing, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People’s Republic of China E-mail:
[email protected] Received 17 March 2013, in final form 17 May 2013 Published 1 August 2013 Online at stacks.iop.org/JMM/23/093001 Abstract Microinjection molding (μIM) is considered to be one of the most flexible, reliable and cost effective manufacturing routes to form plastic micro-components for microsystems. The molding machine, mold tool fabrication, material selection and process controlling in this specific field have been greatly developed over the past decades. This review aims to present the new trends towards improving micro-component performance by reviewing the latest developments in this area and by considering potential directions. The key concerns in product and mold designing, essential factors in simulation, and micro-morphology and resultant properties are evaluated and discussed. In addition, the applications, variant processes and outlook for μIM are presented. Throughout this review, decisive considerations in seeking improved performance for microsystem components are highlighted. (Some figures may appear in colour only in the online journal) 1. Introduction required in certain applications. Since the 1990s, polymer materials have been increasingly incorporated into MEMS Micro-electromechanical-systems (MEMS) or microsystem industries. An important reason is that they provide not only technology (MST) has already become a familiar part of controllable thermal, mechanical and electrical properties, but our daily life in that various micro-components can be also unique chemical, structural and biological functionalities found in a number of devices such as laptops, microphones, not available in any other material.