Studium Hvězd S Velkou Vlastní Rychlostí. Bakalářská Práce

Total Page:16

File Type:pdf, Size:1020Kb

Studium Hvězd S Velkou Vlastní Rychlostí. Bakalářská Práce MASARYKOVA UNIVERZITA Pøírodovìdecká fakulta Ústav Teoretické fyziky a Astrofyziky Bakalářská práce Brno 2020 Dominika Batková Pøírodovìdecká fakulta Ústav Teoretické fyziky a Astrofyziky Studium hvězd s velkou vlastní rychlostí Bakalářská práce Dominika Batková Vedoucí práce: Mgr. Filip Hroch Ph.D. Brno 2020 Bibliograficky´za´znam Autor: Dominika Batkova´ Prˇı´rodoveˇdecka´fakulta, Masarykova univerzita U´ stav Teoreticke´fyziky a Astrofyziky Na´zev pra´ce: Studium hveˇzd s velkou vlastnı´rychlostı´ Studijnı´program: Fyzika Studijnı´obor: Astrofyzika Vedoucı´pra´ce: Mgr. Filip Hroch Ph.D. Akademicky´rok: 2019/2020 Pocˇet stran: xvi + 74 Klı´cˇova´slova: hyper-rychla´hveˇzda; HVS; unikajı´cı´hveˇzda; Gaia DR2; masivnı´ cˇerna´dı´ra; galpy; gala; dynamika Galaxie Bibliographic Entry Author: Dominika Batkova´ Faculty of Science, Masaryk University Department of theoretical physics and astrophysics Title of Thesis: On galactic high-velocity stars Degree Programme: Physics Field of Study: Astrophysics Supervisor: Mgr. Filip Hroch Ph.D. Academic Year: 2019/2020 Number of Pages: xvi + 74 Keywords: hypervelocity star; HVS; runaway star; Gaia DR2; massive black hole; galpy; gala; Galactic dynamics Abstrakt V te´to bakala´rˇske´pra´ci studujeme hveˇzdy s vysokou galaktickou rychlostı´, ktere´jsou v poslednı´dobeˇdiskutova´ny v souvislosti se satelitem Gaia. Gaia poskytuje v soucˇasnosti nejprˇesneˇjsˇı´ astrometricka´ meˇrˇenı´ spolecˇneˇ v kombinaci se spektroskopiı´ a fotometriı´. Mu˚zˇeme proto analyzovat pozice a pohyby miliard hveˇzd v Galaxii. Rychle´hveˇzdy historicky deˇlı´me na skupiny ”runaway” a ”hypervelocity”. Existuje neˇkolik mechanismu˚jejich urychlenı´. Jejich pu˚vod hleda´me v objektech Galaxie. Zna´my´ sce´na´rˇvyuzˇı´va blı´zka´setka´nı´s cˇerny´mi dı´rami, ktere´mohou narusˇit dvojhveˇzdny´syste´m. Nejprve jsme vyhledali neva´zane´objekty z katalogu Gaia, zpeˇtnou integracı´v cˇase nasˇli pru˚secˇnı´ky s rovinou galakticke´ho disku a porovnali jsme je s pozicemi zna´my´ch cˇerny´ch deˇr. Vy´sledky ukazujı´jistou vza´jemnou korelaci. Abstract In this thesis we study high velocity stars which are lately very discussed in connection with Gaia satellite. Gaia has the most precise astrometric measurements in combination with spectroscopy and photometry. Therefore we may analyse positions and movements of billions of stars in the Galaxy. These stars are historically divided into runaway and hypervelocity stars. There is several proposals for their ejection and it is essential to look for their origin in the Galaxy and objects that caused their velocity kick. The most known scenario uses close encounters with black holes that can tidally disrupt binary systems. Firstly we found unbound objects from catalogue Gaia, found their intersections with the disk plane and compared to positions of possible stellar mass black holes in the Galaxy. Results show certain mutual correlation. MASARYKOVA UNIVERZITA Přírodovědecká fakulta MUNI Kotlářská 2, 611 37 Brno IČ: 00216224 SCI DIČ: CZ00216224 Zadání bakalářské práce Akademický rok: 2019/2020 Ústav: Ústav teoretické fyziky a astrofyziky Studentka: Dominika Batková Program: Fyzika Obor: Astrofyzika Ředitel Ústavu teoretické fyziky a astrofyziky PřF MU Vám ve smyslu Studijního a zkušebního řádu MU určuje baka- lářskou práci s názvem: Název práce: Studium hvězd s velkou vlastní rychlostí Název práce anglicky: On galactic high-velocity stars Jazyk závěrečné práce: angličtina Oficiální zadání: Poslední velmi přesná měření poloh a radiálních rychlostí, společně s nepřímými metodami jejich určení, otevírají cestu k serioznímu studiu hvězd s velkou rychlostí vůči svému okolí. Hvězd, jež zaměstnávají astronomickou mysl už od dob svého objevu, poněvadž jde o poměrně nečekaný objev. Jde o hvězdy, které by se dle stávajících teorii hvězdného vzniku, neměly vůbec pozorovat, jakožto dynamický vázaný objekt v Mléčné dráze. Musíme konstatovat, že hypotézy jejich zrodu nejsou nikterak přesvědčivé. Cílem této práce je proniknout do podstaty problému prostřednictvím studia nejnovějších dat ze satelitů. Pro realizaci je nutná všeobecná znalost astronomického, statistického a počítačového zpracování dat. Vedoucí práce: Mgr. Filip Hroch, Ph.D. Konzultant: Mgr. Michal Prišegen Datum zadání práce: 23. 10. 2019 V Brně dne: 23. 1. 2020 Souhlasím se zadáním (podpis, datum): ................................... ................................... ................................... Dominika Batková Mgr. Filip Hroch, Ph.D. prof. Rikard von Unge, Ph.D. studentka vedoucí práce ředitel Ústavu teoretické fyziky a astrofyziky Podeˇkova´nı´ Na tomto mieste by som chcela pod’akovat’vedu´cemu pra´ce Mgr. Filipovi Hrochovi Ph.D. a konzultantovi pra´ce Mgr. Michalovi Prisˇegenovi za cenne´rady pri pı´sanı´pra´ce. Mojej rodine d’akujem za podporu pocˇas cele´ho sˇtu´dia a priatel’ovi Martinovi za motiva´ciu pokracˇovat’aj v zly´ch cˇasoch. Prohla´sˇenı´ Prohlasˇuji, zˇe jsem svoji bakala´rˇskou pra´ci vypracovala samostatneˇ pod vedenı´m vedoucı´ho pra´ce s vyuzˇitı´m informacˇnı´ch zdroju˚, ktere´jsou v pra´ci citova´ny. Brno 16. srpen 2020 . Dominika Batkova´ Acknowledgement: This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/ web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. Contents Introduction................................................................1 1. High Velocity Stars.......................................................3 1.1 History...............................................3 1.2 Runaway Stars.........................................4 1.3 Hypervelocity Stars......................................5 1.3.1 Intermediate or stellar mass black holes.....................8 1.4 Extreme findings........................................9 1.4.0.1 The fastest found hyper-runaway star..........9 1.4.0.2 The fastest found hypervelocity star...........9 2. The satellite Gaia......................................................... 11 2.0.1 Introduction....................................... 11 2.0.2 The aims and goals of the Gaia mission..................... 12 2.0.3 The spacecraft and payload............................. 12 2.1 Data from Gaia......................................... 13 2.1.1 The data releases.................................... 13 2.1.2 Problems and Access of Data............................ 14 2.1.2.0.1 Access of Data................. 14 2.1.2.0.2 Problems.................... 15 2.1.3 Chosen Dataset..................................... 16 3. Galactic Dynamics....................................................... 17 3.1 Morphology and dynamics of Galaxy.......................... 17 3.2 Python Packages for Galactic Dynamics........................ 18 3.2.1 Introduction....................................... 18 3.2.2 Definition of used Milky Way Potential from Gala............. 19 3.2.3 Functions used in script............................... 22 4. Orbits of hypervelocity stars.............................................. 25 4.1 Results of the integration................................... 25 4.1.1 Samples of Orbits................................... 26 4.1.1.1 Unboud Group...................... 26 4.1.1.2 Almost Unbound Group................. 27 4.1.1.3 Disk Group........................ 29 – xv – 4.1.1.4 Chaotic Group...................... 31 4.1.2 Trials of orbits - runaway stars........................... 32 4.1.3 Tables........................................... 33 4.2 Unbound stars intersecting the galactic disk...................... 34 4.2.1 Negative radial velocity............................... 35 4.2.2 Positive radial velocity................................ 37 4.2.3 Looking for possible cause of ejection...................... 40 4.3 Script for a future release.................................. 43 Discussion and Future Insights.............................................. 45 Summary and Conclusion................................................... 47 A. Trials.................................................................... 49 A.1 Changes in vy .......................................... 49 A.2 Changes in vx .......................................... 50 A.3 Changes in vz .......................................... 51 B. Tables................................................................... 53 C. Script for rotation of positions of intersections and comparing them with positions of stellar-mass black holes....................................... 61 D. Python Script for the future.............................................. 63 Bibliography................................................................ 67 Introduction With more precise measurents of positions and motions of stars we have opportunity to search for more high velocity objects in our Galaxy. However not only precision is the most important. Due to increasing range of measurable magnitudes we reveal more distant parts of our Galaxy. Nowadays, the most precise measurents of this type are fairly attributed to Gaia satellite which created the greatest catalogue of positions and velocities of stars with magnitudes up to 20. Even we call it the greatest catalogue it only cover about 1 % of Milky Way stars. It is neccessary to constantly cross our current limits to obtain data of more objects for a better understanding of our Galaxy. The most important
Recommended publications
  • The Stellar Group NGC 1901 in Front of the Large Magellanic Cloud,
    A&A 466, 931–941 (2007) Astronomy DOI: 10.1051/0004-6361:20066687 & c ESO 2007 Astrophysics Observational templates of star cluster disruption The stellar group NGC 1901 in front of the Large Magellanic Cloud, G. Carraro1,2, R. de la Fuente Marcos3, S. Villanova1, C. Moni Bidin2, C. de la Fuente Marcos3,H.Baumgardt4, and G. Solivella5 1 Dipartimento di Astronomia, Università di Padova, Vicolo Osservatorio 2, 35122 Padova, Italy e-mail: [email protected] 2 Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile 3 Suffolk University Madrid Campus, C/ Viña 3, 28003 Madrid, Spain 4 AIfA, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany 5 Facultad de Ciencias Astronómicas y Geofísicas de la UNLP, IALP-CONICET, Paseo del Bosque s/n, La Plata, Argentina Received 3 November 2006 / Accepted 23 January 2007 ABSTRACT Context. Observations indicate that present-day star formation in the Milky Way disk takes place in stellar ensembles or clusters rather than in isolation. Bound, long-lived stellar groups are known as open clusters. They gradually lose stars and are severely disrupted in their final evolutionary stages, leaving an open cluster remnant made up of a few stars. Aims. In this paper, we study in detail the stellar content and kinematics of the poorly populated star cluster NGC 1901. This object appears projected against the Large Magellanic Cloud. The aim of the present work is to derive the current evolutionary status, binary fraction, age, and mass of this stellar group. These are fundamental quantities to compare with those from N-body models in order to study the most general topic of star cluster evolution and dissolution.
    [Show full text]
  • Stellar Population Templates in the Near-Infrared by Crystal Brasseur B
    Stellar Population Templates in the Near-Infrared by Crystal Brasseur B.Sc., University of Victoria, 2007 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Physics and Astronomy c Crystal Brasseur, 2009 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Stellar Population Templates in the Near-Infrared by Crystal Brasseur B.Sc., University of Victoria, 2007 Supervisory Committee Dr. Peter B. Stetson, Supervisor (Herzberg Institute of Astrophysics) Dr. Don A. VandenBerg, Supervisor (Department of Physics and Astronomy) Dr. Kim Venn, Departmental Member (Department of Physics and Astronomy) Dr. Jon Willis, Departmental Member (Department of Physics and Astronomy) iii Supervisory Committee Dr. Peter B. Stetson, Supervisor (Herzberg Institute of Astrophysics) Dr. Don A. VandenBerg, Supervisor (Department of Physics and Astronomy) Dr. Kim Venn, Departmental Member (Department of Physics and Astronomy) Dr. Jon Willis, Departmental Member (Department of Physics and Astronomy) ABSTRACT We have obtained broad-band NIR-photometry for six Galactic star clusters, M92, M15, M13, NGC1851, M71 and NGC6791, as observed with the WIRCam wide-field imager on the Canada-France-Hawaii Telescope; supplemented by images taken with HAWK-I on VLT. From the resultant (V − J)-V and (V − K)-V colour-magnitude diagrams, fiducial sequences spanning the range in metallicity, −2.4 ≤ [Fe/H] ≤ +0.3, have been defined which extend from the tip of the red-giant branch to ∼ 2.5 magnitudes below the main-sequence turnoff.
    [Show full text]
  • Star Dust Newsletter of National Capital Astronomers, Inc
    Star Dust Newsletter of National Capital Astronomers, Inc. capitalastronomers.org March 2021 Volume 79, Issue 7 Celebrating 84 Years of Astronomy How Amateurs Can Measure the Spectra of Astronomical Objects Next Meeting Tom Field When: Sat. Mar. 13th, 2021 Field Tested Systems Time: 7:30 pm Where: Online (Zoom) See instructions for registering to participate in the meeting on Page 8. Speaker: Tom Field Table of Contents Preview of Mar. 2021 Talk 1 Recent Astronomy Highlights 2 Sighting by WISPR 2 Exploring the Sky 3 Sky Watchers 3 Perseverance Landing 3 Occultations 5 Calendar of Events 7 Image credit: Tom Field Abstract: Even if you wanted to touch a star, they’re all impossibly distant. Despite these great distances, astronomers have learned an enormous amount about stars. How? The most common method to study the stars is called spectroscopy, which is the science of analyzing the colorful rainbow spectrum produced by a prism-like device. Until recently, spectroscopy was too expensive and too complicated for all but a handful of amateurs. Today, though, new tools make spectroscopy accessible to almost all of us. You no longer need a PhD, dark skies, long Image Credit – NASA, JPL, University exposures, enormous aperture … or a big budget! With your current of Arizona telescope and FITS camera (or a simple web cam or even a DSLR Victoria Crater, near the equator of Mars, as imaged by the High without a telescope) you can now easily study the stars yourself. Wouldn’t Resolution Imaging Experiment you like to detect the atmosphere on Neptune or the red shift of a quasar (HiRISE) on the Mars right from your own backyard?! Reconnaissance Orbiter.
    [Show full text]
  • Solar Writer Report for Abraham Lincoln
    FIXED STARS A Solar Writer Report for Abraham Lincoln Written by Diana K Rosenberg Compliments of:- Stephanie Johnson Seeing With Stars Astrology PO Box 159 Stepney SA 5069 Australia Tel/Fax: +61 (08) 8331 3057 Email: [email protected] Web: www.esotech.com.au Page 2 Abraham Lincoln Natal Chart 12 Feb 1809 12:40:56 PM UT +0:00 near Hodgenville 37°N35' 085°W45' Tropical Placidus 22' 13° 08°ˆ ‡ 17' ¾ 06' À ¿É ‰ 03° ¼ 09° 00° 06° 09°06° ˆ ˆ ‡ † ‡ 25° 16' 41'08' 40' † 01' 09' Œ 29' ‰ 9 10 23° ¶ 8 27°‰ 11 Ï 27° 01' ‘ ‰02' á 7 12 ‘ áá 23° á 23° ¸ 23°Š27' á Š à „ 28' 28' 6 18' 1 10°‹ º ‹37' 13° 05' ‹ 5 Á 22° ½ 27' 2 4 01' Ü 3 07° Œ ƒ » 09' 23° 09° Ý Ü 06° 16' 06' Ê 00°ƒ 13° 22' Ý 17' 08°‚ Page 23 Astrological Summary Chart Point Positions: Abraham Lincoln Planet Sign Position House Comment The Moon Capricorn 27°Cp01' 12th The Sun Aquarius 23°Aq27' 12th read into 1st House Mercury Pisces 10°Pi18' 1st Venus Aries 7°Ar27' 1st read into 2nd House Mars Libra 25°Li29' 8th Jupiter Pisces 22°Pi05' 1st Saturn Sagittarius 3°Sg08' 9th read into 10th House Uranus Scorpio 9°Sc40' 8th Neptune Sagittarius 6°Sg41' 9th read into 10th House Pluto Pisces 13°Pi37' 1st The North Node Scorpio 6°Sc09' 8th The South Node Taurus 6°Ta09' 2nd The Ascendant Aquarius 23°Aq28' 1st The Midheaven Sagittarius 8°Sg22' 10th The Part of Fortune Capricorn 27°Cp02' 12th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Square Mars 1°32' Separating The Moon Conjunction The Part of Fortune 0°00' Applying The Sun Trine Mars 2°02' Applying The Sun Conjunction The Ascendant
    [Show full text]
  • Libra (Astrology) - Wikipedia, the Free Encyclopedia
    מַ זַל מֹאזְ נַיִם http://www.morfix.co.il/en/Libra بُ ْر ُج ال ِميزان http://www.arabdict.com/en/english-arabic/Libra برج ِمي َزان https://translate.google.com/#en/fa/Libra Ζυγός Libra - Wiktionary http://en.wiktionary.org/wiki/Libra Libra Definition from Wiktionary, the free dictionary See also: libra Contents 1 English 1.1 Etymology 1.2 Pronunciation 1.3 Proper noun 1.3.1 Synonyms 1.3.2 Derived terms 1.3.3 Translations 1.3.4 See also 1.4 Noun 1.4.1 Antonyms 1.4.2 Translations 1.5 See also 1.6 Anagrams 2 Portuguese 2.1 Noun 3 Spanish 3.1 Proper noun English Signs of the Zodiac Virgo Scorpio English Wikipedia has an article about Libra. Etymology From Latin lībra (“scales, balance”). Pronunciation IPA (key): /ˈliːbrə/ Homophone: libre 1 of 3 6/9/2015 7:13 PM Libra - Wiktionary http://en.wiktionary.org/wiki/Libra Audio (US) 0:00 MENU Proper noun Libra 1. (astronomy ): A constellation of the zodiac, supposedly shaped like a set of scales. 2. (astrology ): The astrological sign for the scales, ruled by Venus and covering September 24 - October 23 (tropical astrology) or October 16 - November 16 (sidereal astrology). Synonyms ♎ Derived terms Libran Librae Translations constellation [show ▼] astrological sign [show ▼] See also Zubenelgenubi Zubeneschamali Noun Libra ( plural Libras ) 1. Someone with a Libra star sign Antonyms Aries Translations Someone with a Libra star sign [show ▼] See also 2 of 3 6/9/2015 7:13 PM Libra - Wiktionary http://en.wiktionary.org/wiki/Libra (Western astrology signs ) Western astrology sign ; Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra , Scorpio, Sagittarius, Capricorn, Aquarius, Pisces (Category: en:Astrology) Anagrams Arbil brail Portuguese Noun Libra f 1.
    [Show full text]
  • LCSH Section H
    H (The sound) H.P. 15 (Bomber) Giha (African people) [P235.5] USE Handley Page V/1500 (Bomber) Ikiha (African people) BT Consonants H.P. 42 (Transport plane) Kiha (African people) Phonetics USE Handley Page H.P. 42 (Transport plane) Waha (African people) H-2 locus H.P. 80 (Jet bomber) BT Ethnology—Tanzania UF H-2 system USE Victor (Jet bomber) Hāʾ (The Arabic letter) BT Immunogenetics H.P. 115 (Supersonic plane) BT Arabic alphabet H 2 regions (Astrophysics) USE Handley Page 115 (Supersonic plane) HA 132 Site (Niederzier, Germany) USE H II regions (Astrophysics) H.P.11 (Bomber) USE Hambach 132 Site (Niederzier, Germany) H-2 system USE Handley Page Type O (Bomber) HA 500 Site (Niederzier, Germany) USE H-2 locus H.P.12 (Bomber) USE Hambach 500 Site (Niederzier, Germany) H-8 (Computer) USE Handley Page Type O (Bomber) HA 512 Site (Niederzier, Germany) USE Heathkit H-8 (Computer) H.P.50 (Bomber) USE Hambach 512 Site (Niederzier, Germany) H-19 (Military transport helicopter) USE Handley Page Heyford (Bomber) HA 516 Site (Niederzier, Germany) USE Chickasaw (Military transport helicopter) H.P. Sutton House (McCook, Neb.) USE Hambach 516 Site (Niederzier, Germany) H-34 Choctaw (Military transport helicopter) USE Sutton House (McCook, Neb.) Ha-erh-pin chih Tʻung-chiang kung lu (China) USE Choctaw (Military transport helicopter) H.R. 10 plans USE Ha Tʻung kung lu (China) H-43 (Military transport helicopter) (Not Subd Geog) USE Keogh plans Ha family (Not Subd Geog) UF Huskie (Military transport helicopter) H.R.D. motorcycle Here are entered works on families with the Kaman H-43 Huskie (Military transport USE Vincent H.R.D.
    [Show full text]
  • Arxiv:1802.01597V1 [Astro-Ph.GA] 5 Feb 2018 Born 1991)
    Astronomy & Astrophysics manuscript no. AA_2017_32084 c ESO 2018 February 7, 2018 Mapping the core of the Tarantula Nebula with VLT-MUSE? I. Spectral and nebular content around R136 N. Castro1, P. A. Crowther2, C. J. Evans3, J. Mackey4, N. Castro-Rodriguez5; 6; 7, J. S. Vink8, J. Melnick9 and F. Selman9 1 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA e-mail: [email protected] 2 Department of Physics & Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK 3 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK 4 Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin, Ireland 5 GRANTECAN S. A., E-38712, Breña Baja, La Palma, Spain 6 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Spain 7 Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Spain 8 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, Northern Ireland, UK 9 European Southern Observatory, Alonso de Cordova 3107, Santiago, Chile February 7, 2018 ABSTRACT We introduce VLT-MUSE observations of the central 20 × 20 (30 × 30 pc) of the Tarantula Nebula in the Large Magellanic Cloud. The observations provide an unprecedented spectroscopic census of the massive stars and ionised gas in the vicinity of R136, the young, dense star cluster located in NGC 2070, at the heart of the richest star-forming region in the Local Group. Spectrophotometry and radial-velocity estimates of the nebular gas (superimposed on the stellar spectra) are provided for 2255 point sources extracted from the MUSE datacubes, and we present estimates of stellar radial velocities for 270 early-type stars (finding an average systemic velocity of 271 ± 41 km s−1).
    [Show full text]
  • Professor Comet Report Professor Comet Report June 2010
    Professor Comet Report June 2010 Current status of the predominant comets for 2010 Comets Designation Orbital Magnitude Trend Observation Visibility (IAU(IAU(IAU-(IAU --- Status (Visual) (Lat.) Period MPC) McNaught 2009 R1 C 5 Bright 50° N - 5°N All Night McNaught 2009 K5 C 9 Fading 50°N - 20°N All night Tempel 2 10P PPP 10 Bright 50°N - 75°S Early Morning Wolf ––– 43P43P43P PPP ~111111 Bright Conjunction N/AN/AN/A Harrington Wild 2 81P PPP 11.5 Fading 50°N – 75°S Evening Christensen 2006 W3 C 12 Fading 20°N – 90°S All Night Gunn 65P PPP 12.5 Steady 40°N – 90°S Best Morning Schwassman 29P PPP ~13 Varies 25°N – 40°S Early –Wachmann Evening Vales 2010 H2 PPP 13 Possibly 50°N – 60°S Early Fading Evening Siding Spring 2007 Q3 C 13.5 Fading 50°N - 0°S All Night Machholz 2 141P PPP ~14 Fading Conjunction N/A The red designation is assigned to all comets that are of 12 th visual magnitude or brighter and are classified as the major comets . All remaining comets that are possibility at 12 th visual magnitude or fainter are given the blue designation and are classified as the minor comets! The green designation is assigned to comets to far south to be seen in the continental United States. The orange designation is for comets 12 th visual magnitude or brighter lost in the daytime glare! 1 C/2009 R1 (McN(McNaught)aught) This comet is now becoming very bright and visible in the early morning hours before sunrise with visual magnitude reports indicating that this comet is now at 5 th magnitude.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Observing List
    day month year Epoch 2000 local clock time: 22.00 Observing List for 20 4 2019 RA DEC alt az Constellation object mag A mag B Separation description hr min deg min 27 293 Auriga M36 Pinwheel Cluster open cluster of a dozen or so young stars (30million years old) 5 36.1 34 8 29 289 Auriga M37 January Salt and Pepper Cluster rich, open cluster of 150 stars, very fine 5 52.4 32 33 27 295 Auriga M38 Starfish Cluster large open cluster 220 million years old 5 28.7 35 50 36 303 Auriga IC2149 planetary nebula, stellar to small disk, slightly elongated 5 56.5 46 6.3 30 307 Auriga Capella 0.1 alignment star 5 16.6 46 0 40 290 Auriga UU Aurigae Magnitude 5.1-7.0 carbon star (AL# 36) 6 36.5 38 27 33 293 Auriga 37 Theta Aurigae 2.6 7.1 3.6 white & bluish stars 5 59.7 37 13 23 294 Auriga 14 Aurigae 5.1 7.4 14.6 pale yellow and blue 5 15.4 32 31 57 56 Bootes 17, Kappa Bootis 4.6 6.6 13.4 bright white primary & bluish secondary 14 13.5 51 47 56 57 Bootes 21, Iota Bootis 4.9 7.5 38.5 wide yellow & blue pair 14 16.2 51 22 38 102 Bootes 29, Pi Bootis 4.9 5.8 5.6 fine bright white pair 14 40.7 16 25 43 90 Bootes 36, Epsilon Bootis (Izar) (*311) (HIP72105) 2.9 4.9 2.8 golden & greenish-blue 14 45 27 4 37 97 Bootes 37, Xi Bootis 4.7 7 6.6 beautiful yellow & reddish orange pair 14 51.4 19 6 41 72 Bootes 51, Mu Bootis 4.3 7 108.3 primary of yellow & close orange BC pair 15 24.5 37 23 41 78 Bootes Delta Bootis 3.5 8.7 105 wide yellow & blue pair 15 15.5 33 19 44 104 Bootes Arcturus -0.11 alignment star 14 15.6 19 10.4 43 124 Bootes NGC5248 galaxy with bright
    [Show full text]
  • Radio Emission of the Nuclei of Barred Spiral Galaxies
    RADIO EMISSION OF THE NUCLEI OF BARRED SPIRAL GALAXIES By H. M. TOVMASSIAN* [Manuscript received May 27, 1966] Summary The results of radio observations of 98 barred galaxies at 11, 21, and 75 cm are presented. The observations were carried out with the 210 ft radio telescope of the Australian National Radio Astronomy Observatory and with the Mills Oross of the Sydney University Molonglo Radio Observatory. Radio emission originating within 1· 5 minutes of arc of the centre of corresponding galaxies was detected in 21 cases. It is concluded that the central parts of galaxies (possibly their nuclei) are responsible for the radio emission. Spectral indices of detected sources were determined. Radio indices show that radio emissivity of the majority of the investi­ gated galaxies is higher than that of normal galaxies. I. INTRODUCTION For some years after the discovery of radio galaxies, collisions between galaxies were accepted by many as the cause of the intense radio emission (Baade and Minkowski 1954; Shklowski 1954; and others). Ambartsumian (1956a) was the first to reject the idea of random collisions as an explanation of the observed phenomena. He came to this conclusion by considering certain observational data, particularly that a collision is an extremely rare event among the superluminous galaxies to which the radio galaxies belong. Subsequently he proposed and developed (Ambartsumian 1956b, 1958, 1962) a theory stressing the importance of the activity of the nuclei in the formation and evolution of galaxies. Some forms of nuclear activ­ ity result in powerful radio emission. Nowadays the hypothesis of nuclear activity is widely accepted and there is much observational evidence in favour of it.
    [Show full text]
  • Observing List
    day month year Epoch 2000 local clock time: 22.00 Observing List for 18 5 2019 RA DEC alt az Constellation object mag A mag B Separation description hr min deg min 10 305 Auriga M37 January Salt and Pepper Cluster rich, open cluster of 150 stars, very fine 5 52.4 32 33 20 315 Auriga IC2149 planetary nebula, stellar to small disk, slightly elongated 5 56.5 46 6.3 15 319 Auriga Capella 0.1 alignment star 5 16.6 46 0 21 303 Auriga UU Aurigae Magnitude 5.1-7.0 carbon star (AL# 36) 6 36.5 38 27 15 307 Auriga 37 Theta Aurigae 2.6 7.1 3.6 white & bluish stars 5 59.7 37 13 74 45 Bootes 17, Kappa Bootis 4.6 6.6 13.4 bright white primary & bluish secondary 14 13.5 51 47 73 47 Bootes 21, Iota Bootis 4.9 7.5 38.5 wide yellow & blue pair 14 16.2 51 22 57 131 Bootes 29, Pi Bootis 4.9 5.8 5.6 fine bright white pair 14 40.7 16 25 64 115 Bootes 36, Epsilon Bootis (Izar) (*311) (HIP72105) 2.9 4.9 2.8 golden & greenish-blue 14 45 27 4 57 124 Bootes 37, Xi Bootis 4.7 7 6.6 beautiful yellow & reddish orange pair 14 51.4 19 6 62 86 Bootes 51, Mu Bootis 4.3 7 108.3 primary of yellow & close orange BC pair 15 24.5 37 23 62 96 Bootes Delta Bootis 3.5 8.7 105 wide yellow & blue pair 15 15.5 33 19 62 138 Bootes Arcturus -0.11 alignment star 14 15.6 19 10.4 56 162 Bootes NGC5248 galaxy with bright stellar nucleus and oval halo 13 37.5 8 53 72 56 Bootes NGC5676 elongated galaxy with slightly brighter center 14 32.8 49 28 72 59 Bootes NGC5689 galaxy, elongated streak with prominent oval core 14 35.5 48 45 16 330 Camelopardalis 1 Camelopardalis 5.7 6.8 10.3 white &
    [Show full text]