Professor Comet Report Professor Comet Report June 2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
San Jose Astronomical Association Membership Form
A month of sun days — observing and sketching the Sun Jane Houston Jones SJAA Activities Calendar Jim Van Nuland I love observing the Sun and dobsonian solar scope on the back sketching sunspots but have never deck and had a 54 power look at the December really tracked the rotation over an Sun. I saw nine active regions — 5 ATM class. Houge Park, 7:30 extended period of time. I started regions with more than one sunspot p.m. Googling and soon I found several (there were actually 12 but I didn’t see 7 Deep sky weekend. Sunset 4:49 excellent resources on the web to help some of them) and I counted 26 spots p.m., 18% moon sets 8:20 p.m. me with my solar education. First, I (actually 51) for a Wolf sunspot number 13 Houge Park star party. Sunset ordered the Astronomical League’s of 171. My count using this method 4:51 p.m., 73% moon sets 2:20 booklet Observe and Understand the was 116. Wolf chose to compute his a.m. Sun by ALPO solar coordinator Richard sunspot number by adding 10 times the 14 General Meeting, Houge Park. E. Hill. I used the forms in the booklet number of groups to the total count of 8:00 p.m. Geoffrey Briggs, Plans for my sketches. These forms are also individual spots, because neither for Mars Exploration available free of charge on the Astro- quantity alone completely captured the 21 ATM class. Houge Park, 7:30 nomical League’s Sunspotter Club level of activity. -
Guide Du Ciel Profond
Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 . -
Stellar Population Templates in the Near-Infrared by Crystal Brasseur B
Stellar Population Templates in the Near-Infrared by Crystal Brasseur B.Sc., University of Victoria, 2007 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Physics and Astronomy c Crystal Brasseur, 2009 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Stellar Population Templates in the Near-Infrared by Crystal Brasseur B.Sc., University of Victoria, 2007 Supervisory Committee Dr. Peter B. Stetson, Supervisor (Herzberg Institute of Astrophysics) Dr. Don A. VandenBerg, Supervisor (Department of Physics and Astronomy) Dr. Kim Venn, Departmental Member (Department of Physics and Astronomy) Dr. Jon Willis, Departmental Member (Department of Physics and Astronomy) iii Supervisory Committee Dr. Peter B. Stetson, Supervisor (Herzberg Institute of Astrophysics) Dr. Don A. VandenBerg, Supervisor (Department of Physics and Astronomy) Dr. Kim Venn, Departmental Member (Department of Physics and Astronomy) Dr. Jon Willis, Departmental Member (Department of Physics and Astronomy) ABSTRACT We have obtained broad-band NIR-photometry for six Galactic star clusters, M92, M15, M13, NGC1851, M71 and NGC6791, as observed with the WIRCam wide-field imager on the Canada-France-Hawaii Telescope; supplemented by images taken with HAWK-I on VLT. From the resultant (V − J)-V and (V − K)-V colour-magnitude diagrams, fiducial sequences spanning the range in metallicity, −2.4 ≤ [Fe/H] ≤ +0.3, have been defined which extend from the tip of the red-giant branch to ∼ 2.5 magnitudes below the main-sequence turnoff. -
METEOR CSILLAGÁSZATI ÉVKÖNYV 2019 Meteor Csillagászati Évkönyv 2019
METEOR CSILLAGÁSZATI ÉVKÖNYV 2019 meteor csillagászati évkönyv 2019 Szerkesztette: Benkő József Mizser Attila Magyar Csillagászati Egyesület www.mcse.hu Budapest, 2018 Az évkönyv kalendárium részének összeállításában közreműködött: Tartalom Bagó Balázs Görgei Zoltán Kaposvári Zoltán Kiss Áron Keve Kovács József Bevezető ....................................................................................................... 7 Molnár Péter Sánta Gábor Kalendárium .............................................................................................. 13 Sárneczky Krisztián Szabadi Péter Cikkek Szabó Sándor Szőllősi Attila Zsoldos Endre: 100 éves a Nemzetközi Csillagászati Unió ........................191 Zsoldos Endre Maria Lugaro – Kereszturi Ákos: Elemkeletkezés a csillagokban.............. 203 Szabó Róbert: Az OGLE égboltfelmérés 25 éve ........................................218 A kalendárium csillagtérképei az Ursa Minor szoftverrel készültek. www.ursaminor.hu Beszámolók Mizser Attila: A Magyar Csillagászati Egyesület Szakmailag ellenőrizte: 2017. évi tevékenysége .........................................................................242 Szabados László Kiss László – Szabó Róbert: Az MTA CSFK Csillagászati Intézetének 2017. évi tevékenysége .........................................................................248 Petrovay Kristóf: Az ELTE Csillagászati Tanszékének működése 2017-ben ............................................................................ 262 Szabó M. Gyula: Az ELTE Gothard Asztrofi zikai Obszervatórium -
The Maunder Minimum and the Variable Sun-Earth Connection
The Maunder Minimum and the Variable Sun-Earth Connection (Front illustration: the Sun without spots, July 27, 1954) By Willie Wei-Hock Soon and Steven H. Yaskell To Soon Gim-Chuan, Chua Chiew-See, Pham Than (Lien+Van’s mother) and Ulla and Anna In Memory of Miriam Fuchs (baba Gil’s mother)---W.H.S. In Memory of Andrew Hoff---S.H.Y. To interrupt His Yellow Plan The Sun does not allow Caprices of the Atmosphere – And even when the Snow Heaves Balls of Specks, like Vicious Boy Directly in His Eye – Does not so much as turn His Head Busy with Majesty – ‘Tis His to stimulate the Earth And magnetize the Sea - And bind Astronomy, in place, Yet Any passing by Would deem Ourselves – the busier As the Minutest Bee That rides – emits a Thunder – A Bomb – to justify Emily Dickinson (poem 224. c. 1862) Since people are by nature poorly equipped to register any but short-term changes, it is not surprising that we fail to notice slower changes in either climate or the sun. John A. Eddy, The New Solar Physics (1977-78) Foreword By E. N. Parker In this time of global warming we are impelled by both the anticipated dire consequences and by scientific curiosity to investigate the factors that drive the climate. Climate has fluctuated strongly and abruptly in the past, with ice ages and interglacial warming as the long term extremes. Historical research in the last decades has shown short term climatic transients to be a frequent occurrence, often imposing disastrous hardship on the afflicted human populations. -
Chemical Composition of the RS Cvn-Type Star 33 Piscium
Baltic Astronomy, vol. 20, 53–63, 2011 CHEMICAL COMPOSITION OF THE RS CVn-TYPE STAR 33 PISCIUM G. Bariseviˇcius1, G. Tautvaiˇsien˙e1, S. Berdyugina2, Y. Chorniy1 and I. Ilyin3 1 Institute of Theoretical Physics and Astronomy, Vilnius University, Goˇstauto 12, Vilnius, LT-01108, Lithuania 2 Kiepenheuer Institut f¨ur Sonnenphysik, Sch¨oneckstr. 6, D-79104 Freiburg, Germany 3 Astrophysical Institute Potsdam, An der Sternwarte 16, Potsdam D-14482, Germany Received: 2011 March 7; accepted 2011 March 25 Abstract. Abundances of 22 chemical elements, including the key elements and isotopes such as 12C, 13C, N and O, are investigated in the spectrum of 33 Psc, a single-lined RS CVn-type binary of low magnetic activity. The high resolution spectra were observed on the Nordic Optical Telescope and analyzed with the MARCS model atmospheres. The following main parameters have been determined: Teff = 4750 K, log g = 2.8, [Fe/H] = –0.09, [C/Fe] = –0.04, [N/Fe] = 0.23, [O/Fe] = 0.05, C/N = 2.14, 12C/13C = 30, which show the first-dredge-up mixing signatures and no extra-mixing. Key words: stars: RS CVn binaries, abundances – stars: individual (33 Psc = HD 28)) 1. INTRODUCTION This is the third paper in a series dedicated to a detailed study of photospheric abundances in RS CVn stars (Tautvaiˇsien˙eet al. 2010; Bariseviˇcius et al. 2010, hereafter Papers I and II) with the main aim to get the carbon isotope 12C/13C and C/N ratios in these chromospherically active stars. We plan to investigate correlations between the abundance alterations of chemical elements in the atmo- spheres of these stars and their physical macro parameters, such as the speed of rotation and the magnetic field. -
Star Dust Newsletter of National Capital Astronomers, Inc
Star Dust Newsletter of National Capital Astronomers, Inc. capitalastronomers.org March 2021 Volume 79, Issue 7 Celebrating 84 Years of Astronomy How Amateurs Can Measure the Spectra of Astronomical Objects Next Meeting Tom Field When: Sat. Mar. 13th, 2021 Field Tested Systems Time: 7:30 pm Where: Online (Zoom) See instructions for registering to participate in the meeting on Page 8. Speaker: Tom Field Table of Contents Preview of Mar. 2021 Talk 1 Recent Astronomy Highlights 2 Sighting by WISPR 2 Exploring the Sky 3 Sky Watchers 3 Perseverance Landing 3 Occultations 5 Calendar of Events 7 Image credit: Tom Field Abstract: Even if you wanted to touch a star, they’re all impossibly distant. Despite these great distances, astronomers have learned an enormous amount about stars. How? The most common method to study the stars is called spectroscopy, which is the science of analyzing the colorful rainbow spectrum produced by a prism-like device. Until recently, spectroscopy was too expensive and too complicated for all but a handful of amateurs. Today, though, new tools make spectroscopy accessible to almost all of us. You no longer need a PhD, dark skies, long Image Credit – NASA, JPL, University exposures, enormous aperture … or a big budget! With your current of Arizona telescope and FITS camera (or a simple web cam or even a DSLR Victoria Crater, near the equator of Mars, as imaged by the High without a telescope) you can now easily study the stars yourself. Wouldn’t Resolution Imaging Experiment you like to detect the atmosphere on Neptune or the red shift of a quasar (HiRISE) on the Mars right from your own backyard?! Reconnaissance Orbiter. -
Solar Writer Report for Abraham Lincoln
FIXED STARS A Solar Writer Report for Abraham Lincoln Written by Diana K Rosenberg Compliments of:- Stephanie Johnson Seeing With Stars Astrology PO Box 159 Stepney SA 5069 Australia Tel/Fax: +61 (08) 8331 3057 Email: [email protected] Web: www.esotech.com.au Page 2 Abraham Lincoln Natal Chart 12 Feb 1809 12:40:56 PM UT +0:00 near Hodgenville 37°N35' 085°W45' Tropical Placidus 22' 13° 08°ˆ ‡ 17' ¾ 06' À ¿É ‰ 03° ¼ 09° 00° 06° 09°06° ˆ ˆ ‡ † ‡ 25° 16' 41'08' 40' † 01' 09' Œ 29' ‰ 9 10 23° ¶ 8 27°‰ 11 Ï 27° 01' ‘ ‰02' á 7 12 ‘ áá 23° á 23° ¸ 23°Š27' á Š à „ 28' 28' 6 18' 1 10°‹ º ‹37' 13° 05' ‹ 5 Á 22° ½ 27' 2 4 01' Ü 3 07° Œ ƒ » 09' 23° 09° Ý Ü 06° 16' 06' Ê 00°ƒ 13° 22' Ý 17' 08°‚ Page 23 Astrological Summary Chart Point Positions: Abraham Lincoln Planet Sign Position House Comment The Moon Capricorn 27°Cp01' 12th The Sun Aquarius 23°Aq27' 12th read into 1st House Mercury Pisces 10°Pi18' 1st Venus Aries 7°Ar27' 1st read into 2nd House Mars Libra 25°Li29' 8th Jupiter Pisces 22°Pi05' 1st Saturn Sagittarius 3°Sg08' 9th read into 10th House Uranus Scorpio 9°Sc40' 8th Neptune Sagittarius 6°Sg41' 9th read into 10th House Pluto Pisces 13°Pi37' 1st The North Node Scorpio 6°Sc09' 8th The South Node Taurus 6°Ta09' 2nd The Ascendant Aquarius 23°Aq28' 1st The Midheaven Sagittarius 8°Sg22' 10th The Part of Fortune Capricorn 27°Cp02' 12th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Square Mars 1°32' Separating The Moon Conjunction The Part of Fortune 0°00' Applying The Sun Trine Mars 2°02' Applying The Sun Conjunction The Ascendant -
Arxiv:0908.2624V1 [Astro-Ph.SR] 18 Aug 2009
Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Accurate masses and radii of normal stars: Modern results and applications G. Torres · J. Andersen · A. Gim´enez Received: date / Accepted: date Abstract This paper presents and discusses a critical compilation of accurate, fun- damental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri) that satisfy our criterion that the mass and radius of both stars be known to ±3% or better. All are non-interacting systems, so the stars should have evolved as if they were single. This sample more than doubles that of the earlier similar review by Andersen (1991), extends the mass range at both ends and, for the first time, includes an extragalactic binary. In every case, we have examined the original data and recomputed the stellar parameters with a consistent set of assumptions and physical constants. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. These accurate physical parameters reveal the effects of stellar evolution with un- precedented clarity, and we discuss the use of the data in observational tests of stellar evolution models in some detail. Earlier findings of significant structural differences between moderately fast-rotating, mildly active stars and single stars, ascribed to the presence of strong magnetic and spot activity, are confirmed beyond doubt. We also show how the best data can be used to test prescriptions for the subtle interplay be- tween convection, diffusion, and other non-classical effects in stellar models. -
Libra (Astrology) - Wikipedia, the Free Encyclopedia
מַ זַל מֹאזְ נַיִם http://www.morfix.co.il/en/Libra بُ ْر ُج ال ِميزان http://www.arabdict.com/en/english-arabic/Libra برج ِمي َزان https://translate.google.com/#en/fa/Libra Ζυγός Libra - Wiktionary http://en.wiktionary.org/wiki/Libra Libra Definition from Wiktionary, the free dictionary See also: libra Contents 1 English 1.1 Etymology 1.2 Pronunciation 1.3 Proper noun 1.3.1 Synonyms 1.3.2 Derived terms 1.3.3 Translations 1.3.4 See also 1.4 Noun 1.4.1 Antonyms 1.4.2 Translations 1.5 See also 1.6 Anagrams 2 Portuguese 2.1 Noun 3 Spanish 3.1 Proper noun English Signs of the Zodiac Virgo Scorpio English Wikipedia has an article about Libra. Etymology From Latin lībra (“scales, balance”). Pronunciation IPA (key): /ˈliːbrə/ Homophone: libre 1 of 3 6/9/2015 7:13 PM Libra - Wiktionary http://en.wiktionary.org/wiki/Libra Audio (US) 0:00 MENU Proper noun Libra 1. (astronomy ): A constellation of the zodiac, supposedly shaped like a set of scales. 2. (astrology ): The astrological sign for the scales, ruled by Venus and covering September 24 - October 23 (tropical astrology) or October 16 - November 16 (sidereal astrology). Synonyms ♎ Derived terms Libran Librae Translations constellation [show ▼] astrological sign [show ▼] See also Zubenelgenubi Zubeneschamali Noun Libra ( plural Libras ) 1. Someone with a Libra star sign Antonyms Aries Translations Someone with a Libra star sign [show ▼] See also 2 of 3 6/9/2015 7:13 PM Libra - Wiktionary http://en.wiktionary.org/wiki/Libra (Western astrology signs ) Western astrology sign ; Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra , Scorpio, Sagittarius, Capricorn, Aquarius, Pisces (Category: en:Astrology) Anagrams Arbil brail Portuguese Noun Libra f 1. -
Ancient Carved Ambers in the J. Paul Getty Museum
Ancient Carved Ambers in the J. Paul Getty Museum Ancient Carved Ambers in the J. Paul Getty Museum Faya Causey With technical analysis by Jeff Maish, Herant Khanjian, and Michael R. Schilling THE J. PAUL GETTY MUSEUM, LOS ANGELES This catalogue was first published in 2012 at http: Library of Congress Cataloging-in-Publication Data //museumcatalogues.getty.edu/amber. The present online version Names: Causey, Faya, author. | Maish, Jeffrey, contributor. | was migrated in 2019 to https://www.getty.edu/publications Khanjian, Herant, contributor. | Schilling, Michael (Michael Roy), /ambers; it features zoomable high-resolution photography; free contributor. | J. Paul Getty Museum, issuing body. PDF, EPUB, and MOBI downloads; and JPG downloads of the Title: Ancient carved ambers in the J. Paul Getty Museum / Faya catalogue images. Causey ; with technical analysis by Jeff Maish, Herant Khanjian, and Michael Schilling. © 2012, 2019 J. Paul Getty Trust Description: Los Angeles : The J. Paul Getty Museum, [2019] | Includes bibliographical references. | Summary: “This catalogue provides a general introduction to amber in the ancient world followed by detailed catalogue entries for fifty-six Etruscan, Except where otherwise noted, this work is licensed under a Greek, and Italic carved ambers from the J. Paul Getty Museum. Creative Commons Attribution 4.0 International License. To view a The volume concludes with technical notes about scientific copy of this license, visit http://creativecommons.org/licenses/by/4 investigations of these objects and Baltic amber”—Provided by .0/. Figures 3, 9–17, 22–24, 28, 32, 33, 36, 38, 40, 51, and 54 are publisher. reproduced with the permission of the rights holders Identifiers: LCCN 2019016671 (print) | LCCN 2019981057 (ebook) | acknowledged in captions and are expressly excluded from the CC ISBN 9781606066348 (paperback) | ISBN 9781606066355 (epub) BY license covering the rest of this publication. -
GEORGE HERBIG and Early Stellar Evolution
GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.