Population Structure & Dynamics Heyer 1

Total Page:16

File Type:pdf, Size:1020Kb

Population Structure & Dynamics Heyer 1 Population Structure & Dynamics Population Ecology: POPULATION Interactions among members of the same species in a given habitat. DYNAMICS 1. Size (N): # of individuals • Species 2. Density: # of individuals per unit area – Interbreed 3. Distribution: dispersal within an area – Fertile offspring 4. Age structure: proportion in each age category • Population • Often gender-specific – Interacting group 5. Growth patterns: changes in population size – Share resources and/or density over time – Geographical range 6. Life history strategies: cost/benefit in stable vs. unstable environments Factors that Limit Population Size Factors that Limit Population Size • Abiotic (nonliving) Limiting Factors • Density Dependent Limiting Factors – Temperature – Limited resources – Water • Food – Soil type • Water • Safe refuge – Sunlight • Predation – Salinity • Competition – Wind stress • Living space – Altitude, depth – Disease, Pollution • Biotic (living) Limiting Factors • Density Independent Limiting Factors – Food source – Natural disasters – Competition • Hurricanes – Predators • Floods, landslides, volcanoes – Social factors, mates • Drought, frost – Pathogens, parasites – Environmental insult • Deforestation – Vegetation • Pesticide • Fire – Climatic change Density, Dispersal, & POPULATION AGE STRUCTURE Distribution (a) Clumped. For many animals, such as these wolves, living in groups • Demography & Life Tables increases the effectiveness of hunting, spreads the work of • Survivorship Curves protecting and caring for young, and helps exclude other individuals from their territory. (b) Uniform. Birds nesting on small islands, such as these king penguins on South Georgia Island in the South Atlantic Ocean, often exhibit uniform spacing, maintained by aggressive interactions between neighbors. (c) Random. Dandelions grow from windblown seeds that land at random and later germinate. Figure 53.4 Heyer 1 Population Structure & Dynamics POPULATION AGE STRUCTURE POPULATION AGE STRUCTURE Vital Statistics of Populations Vital Statistics of Populations • Age structure is • Average births per relative number of individual = fecundity. individuals of each age. • Population birth rate Sex ratio is % of = natality. females to males. • Population death rate • Study of human = mortality. populations = • Generation time = demography age at first reproduction. Life POPULATION AGE STRUCTURE Tables Cohort Survivorship Curve • Number of a cohort surviving to subsequent years • Created in one of two ways: 1 Follow a cohort or 2 Snapshot of a population at a specific time point • Type I: low juvenile mortality POPULATION AGE STRUCTURE Survivorship Curves • Type II: constant mortality Cohort Survivorship Curve • Type III: high juvenile mortality • Number of a cohort surviving to subsequent years • Constructed from Life History Tables Beldings Ground Squirrels Fig. 53.5 Fig. 53.6 Heyer 2 Population Structure & Dynamics Fecundity Influences Mortality Fecundity Influences Mortality EXPERIMENT Researchers in he Netherlands studied the effects of parental caregiving in European kestrels over 5 years. The researchers transferred chicks among nests to produce reduced • Survivorship curves • Survivorship curves broods (three or four chicks), normal broods (five or six), and enlarged broods (seven or eight). They then measured the percentage of male and female parent birds that survived the reflect life tables. reflect life tables. following winter. (Both males and females provide care for chicks.) • Tradeoffs exist • Tradeoffs exist 100 Male between survivorship between survivorship Female 80 & reproductive traits. & reproductive traits. 60 • There is a balancing • There is a balancing 40 allocation of resources. allocation of resources. 20 0 Reduced Normal Enlarged Parents surviving the following winter (%) brood size brood size brood size CONCLUSION The lower survival rates of kestrels w th larger broods indicate that caring for more offspring negatively affects Figure 52.7 survival of the parents. Births and immigration add individuals to a population. Population Growth Rate Population Births Immigration growth patterns: PopuIation changes over time size • N = # individuals • ∆N/∆t = change in population size over • Population size (N) depends on: Emigration time Deaths Deaths and ♦ b = birth rate – Natality = birth rate (b) emigration remove individuals from a ♦ d = death rate – Mortality = death rate (d) population. • ∆N/∆t = (N*b)–(N*d) – Immigration = migration into the population (i) • r = b–d – Emigration = migration out of the population (e) • ∆N/∆t = rN • In Sri Lanka, overpopulation continues to escalate – Growth rate (r) = (b-d) + (i-e) despite success in decreasing per capita birth rate • ↓↓d→↑r, despite ↓b ↑r →↑ ∆N/∆t Exponential Growth • r : population growth rate • rmax : biotic potential – potential growth rate under ideal conditions • K : carrying capacity – maximum population that the environment can sustain over long periods of time. – determined by biotic and abiotic • Population multiplies by a constant factor. • Growth rate not limited by resources. limiting factors. • “J”-shaped growth curve. Heyer 3 Population Structure & Dynamics Carrying Capacity determined by Density-Dependent Limiting Factors Exponential Growth Curves • Growth = ∆N/∆t = rN . {r=b-d} Competition for resources Disease Predation • Rate of population growth only limited by rmax. • “r-limited” Territoriality Intrinsic factors Toxic wastes 5 µm Figure 53.18 Logistic growth Laboratory populations with defined resources exhibit density dependence • Growth is limited by density-dependent resources or other factors • Decrease growth rate produces “S”-shaped (sigmoidal) curve • “K-limited” Fur seal population “K-limited” Growth Equations: Growth Equations: Exponential vs. Logistic Exponential vs. Logistic • Exponential 2,000 • Growth rate (G) = dN/dt = rN dN = 1.0N Exponential dt • This growth is always increasing. growth 1,500 ) K = 1,500 N • Logistic Logistic growth • Growth rate (G) = dN/dt = rN([K-N]/K) 1,000 dN 1,500 N = 1.0N dt 1,500 • Exponential When N <<< K (pop is v. low), [K-N] = K and Population size ( dN/dt = rN dN/dt = rN(K/K) = rN (growth is exponential). 500 • Logistic When N approaches K, [K-N] approaches zero dN/dt = rN([K-N]/K) 0 and dN/dt = rN(0/K) = 0 (growth stops). 0 5 10 15 Number of generations Figure 52.12 Heyer 4 Population Structure & Dynamics A population reaches carrying capacity when growth rate is zero Carrying Capacity • Population size that can be sustained by a habitat • Requires renewable resources • Carrying capacity (K) changes as resources flux with size of population • If a population does not limit its size to the carrying capacity, it will deplete its resources and suffer a sharp crash in numbers due to starvation • “r-limited”: J-type growth rate limited by r, and/or disease — “boom & bust” pattern. but cannot be sustained indefinitely beyond K. • “K-limited”: S-type growth rate limited by K Outcome of Exponential Growth “Boom and Bust” Population Cycles • Exceed carrying capacity (K) & crash. – cyclic exponential (“J-shaped) growth curves punctuated by crashes. – typical of species who make tons of tiny kids – “r -selected species” Fort Bragg, CA Bragg, Fort SCALE LOG K • “r-selected” • Population cycles between a rapid increase and then a sharp decline. “Boom and Bust” Population Cycles Trophic (food resources) limiting factors • Top-down regulation (populations regulated by higher levels of the food chain): increase in predator (lynx) population causes a decrease in the prey (hare) population. – Original hypothesis 160 Snowshoe hare 120 Lynx 9 80 6 (thousands) (thousands) (thousands) (thousands) 40 3 Lynx population size Lynx Hare population size Hare population size 0 0 1850 1875 1900 1925 Figure 52.21 Year • Bottom-up regulation (populations regulated by lower levels of the food chain): increase in hare population causes an over- consumption of the vegetation; decrease in vegetation causes a decrease in hare population; decrease in hare population causes a • “r-selected” decrease in predator (lynx) population • Population cycles between a rapid increase and then a sharp decline. – Revised hypothesis. Hare populations oscillate even in the absence of lynxes. Heyer 5 Populations & Life History Strategies Life History Traits Trade-offs, game theory and the allocation of resources Life History Diversity For species inhabiting unstable, unpredictable environments; or species with very high juvenile mortality: • The odds of suitable habitat for the next generation are low. • Therefore, natural selection favors the generalist populations that • A life history entails three main variables opportunistically harvest any available resource to grow as fast as possible when they can, and quickly produce many offspring distributed over a wide 1. The age at which reproduction begins area to increase chance of hitting someplace good. (“weeds”) • “r-selected” — select for high reproductive potential 2. How often the organism reproduces For species inhabiting stable environments: • Long-term strategy is most successful. 3. How many offspring are produced per • Natural selection favors the specialist populations that excel at harnessing the particular available resources to displace competitors. Spend resources reproductive episode on becoming dominant species and increasing the odds of a few offspring to succeed with you. • “K-selected” — select for intrinsic growth limitations for sustainable population over time. Type: r-selected K-selected
Recommended publications
  • Population, Consumption & the Environment
    12/11/2009 Population, Consumption & the Environment Alex de Sherbinin Center for International Earth Science Information Network (CIESIN), the Earth Institute at Columbia University Population-Environment Research Network 2 1 12/11/2009 Why is this important? • Global GDP is 20 times higher today than it was in 1900, having grown at a rate of 2.7% per annum (population grew at the rate of 13%1.3% p.a.) • CO2 emissions have grown at an annual rate of 3.5% since 1900, reaching 100 million metric tons of carbon in 2001 • The ecological footprint, a composite measure of consumption measured in hectares of biologically productive land, grew from 4.5 to 14.1 billion hectares between 1961 and 2003, and it is now 25% more than Earth’s “biocapacity ” • For CO2 emissions and footprints, the per capita impacts of high‐income countries are currently 6 to 10 times higher than those in low‐income countries 3 Outline 1. What kind of consumption is bad for the environment? 2. How are population dynamics and consumption linked? 3. Who is responsible for environmentally damaging consumption? 4. What contributions can demographers make to the understanding of consumption? 5. Conclusion: The challenge of “sustainable consumption” 4 2 12/11/2009 What kind of consumption is bad for the environment? SECTION 2 5 What kind of consumption is bad? “[Consumption is] human transformations of materials and energy. [It] is environmentally important to the extent that it makes materials or energy less available for future use, and … through its effects on biophysical systems, threatens hhlthlfththill”human health, welfare, or other things people value.” - Stern, 1997 • Early focus on “wasteful consumption”, conspicuous consumption, etc.
    [Show full text]
  • Effects of Interactions Between the Green and Brown Food Webs on Ecosystem Functioning Kejun Zou
    Effects of interactions between the green and brown food webs on ecosystem functioning Kejun Zou To cite this version: Kejun Zou. Effects of interactions between the green and brown food webs on ecosystem functioning. Ecosystems. Université Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066266. tel-01445570 HAL Id: tel-01445570 https://tel.archives-ouvertes.fr/tel-01445570 Submitted on 1 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie Ecole doctorale : 227 Science de la Nature et de l’Homme Laboratoire : Institut d’Ecologie et des Sciences de l’Environnement de Paris Effects of interactions between the green and brown food webs on ecosystem functioning Effets des interactions entre les réseaux vert et brun sur le fonctionnement des ecosystèmes Par Kejun ZOU Thèse de doctorat d’Ecologie Dirigée par Dr. Sébastien BAROT et Dr. Elisa THEBAULT Présentée et soutenue publiquement le 26 septembre 2016 Devant un jury composé de : M. Sebastian Diehl Rapporteur M. José Montoya Rapporteur Mme. Emmanuelle Porcher Examinatrice M. Eric Edeline Examinateur M. Simon Bousocq Examinateur M. Sébastien Barot Directeur de thèse Mme. Elisa Thébault Directrice de thèse 2 Acknowledgements At the end of my thesis I would like to thank all those people who made this thesis possible and an unforgettable experience for me.
    [Show full text]
  • Globalization and Infectious Diseases: a Review of the Linkages
    TDR/STR/SEB/ST/04.2 SPECIAL TOPICS NO.3 Globalization and infectious diseases: A review of the linkages Social, Economic and Behavioural (SEB) Research UNICEF/UNDP/World Bank/WHO Special Programme for Research & Training in Tropical Diseases (TDR) The "Special Topics in Social, Economic and Behavioural (SEB) Research" series are peer-reviewed publications commissioned by the TDR Steering Committee for Social, Economic and Behavioural Research. For further information please contact: Dr Johannes Sommerfeld Manager Steering Committee for Social, Economic and Behavioural Research (SEB) UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) World Health Organization 20, Avenue Appia CH-1211 Geneva 27 Switzerland E-mail: [email protected] TDR/STR/SEB/ST/04.2 Globalization and infectious diseases: A review of the linkages Lance Saker,1 MSc MRCP Kelley Lee,1 MPA, MA, D.Phil. Barbara Cannito,1 MSc Anna Gilmore,2 MBBS, DTM&H, MSc, MFPHM Diarmid Campbell-Lendrum,1 D.Phil. 1 Centre on Global Change and Health London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT, UK 2 European Centre on Health of Societies in Transition (ECOHOST) London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT, UK TDR/STR/SEB/ST/04.2 Copyright © World Health Organization on behalf of the Special Programme for Research and Training in Tropical Diseases 2004 All rights reserved. The use of content from this health information product for all non-commercial education, training and information purposes is encouraged, including translation, quotation and reproduction, in any medium, but the content must not be changed and full acknowledgement of the source must be clearly stated.
    [Show full text]
  • Litter Pollution in Densely Versus Sparsely Populated Areas: Dog River Watershed
    LITTER POLLUTION IN DENSELY VERSUS SPARSELY POPULATED AREAS: DOG RIVER WATERSHED Gabrielle M. Hudson, Department of Earth Sciences, University of South Alabama, Mobile, AL 36688. E-mail: [email protected]. It is commonly known that when humans populate an area that area is usually subject to some environmental degradation. One of the more common aspects of environmental degradation is litter. This type of degradation is no stranger to the Dog River watershed. For years residents have seen the rivers in this watershed covered in trash, specifically after rain events. The vast majority of the trash is a result of litter from roadsides being carried into the river via drainage pipes. This paper is a comparative study of litter in areas of varying population densities in the Dog River watershed. It seeks to distinguish between the amount of litter found in densely populated areas and sparsely populated areas, and to find out if there is a correlation between population density and litter. I utilize GIS to map population density of the Dog River watershed, and analyze and compare the amounts of litter in areas of sparse and dense populations. The results show that there is no correlation between population density and litter. It also shows that there is no difference in the amounts of litter found in densely and sparsely populated areas. Keyword: litter, population density, watershed Introduction Pollution has long been an issue in the Dog River watershed, in particular litter pollution. The extent of the pollution has not gone unnoticed. There are groups of people and organizations who have taken increased interest in the Dog River watershed with intentions of reducing pollution, including Dog River Clearwater Revival and its numerous volunteers.
    [Show full text]
  • Trophic Levels
    Trophic Levels Douglas Wilkin, Ph.D. Jean Brainard, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) AUTHORS Douglas Wilkin, Ph.D. To access a customizable version of this book, as well as other Jean Brainard, Ph.D. interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook®, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform®. Copyright © 2015 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]
  • Food Chains in Woodland Habitats. All Animals Need to Eat Food to Survive
    Science Lesson Living Things and their Habitats- Food chains in woodland habitats. Key Learning • A food chain shows the links between different living things and where they get their energy from. • Living things can be classified as producers or consumers according to their place in the food chain. • A predator is an animal that feeds on other animals (its prey). • Animals can be described as carnivores, herbivores or omnivores. All animals need to eat food to survive. • Talk about what you already know about the kind of food different animals eat. • What is the name of an animal that only eats plants? • What is the name of an animal that only eats other animals? • What is the name of an animal that eats both plants and other animals? Watch this clip about birds. What kind of food do they eat? https://www.bbc.co.uk/bitesize/clips/z9nhfg8 Animals can be described as herbivores, carnivores or omnivores. Birds like robins, blue tits and house sparrows have a very varied diet! worms spiders slugs flies mealworms berries Robins, blue tits and house sparrows are omnivores because they eat plants and other animals. Describing a food chain. Watch this clip describing a food chain. https://www.bbc.co.uk/bitesize/clips/zjshfg8 Caterpillar cat magpie Think about these questions as you watch • Where does a food chain start? • Which animals are herbivores? • Which animals are carnivores? A food chain starts with energy from the Sun because plants need the Sun’s light energy to make their own food in their leaves. Plants are eaten by animals.
    [Show full text]
  • Ecology (Pyramids, Biomagnification, & Succession
    ENERGY PYRAMIDS & Freshmen Biology FOOD CHAINS/FOOD WEBS May 4 – May 8 Lecture ENERGY FLOW •Energy → powers life’s processes •Energy = ATP! •Flow of energy determines the system’s ability to sustain life FEEDING RELATIONSHIPS • Energy flows through an ecosystem in one direction • Sun → autotrophs (producers) → heterotrophs (consumers) FOOD CHAIN VS. FOOD WEB FOOD CHAINS • Energy stored by producers → passed through an ecosystem by a food chain • Food chain = series of steps in which organisms transfer energy by eating and being eaten FOOD WEBS •Feeding relationships are more complex than can be shown in a food chain •Food Web = network of complex interactions •Food webs link all the food chains in an ecosystem together ECOLOGICAL PYRAMIDS • Used to show the relationships in Ecosystems • There are different types: • Energy Pyramid • Biomass Pyramid • Pyramid of numbers ENERGY PYRAMID • Only part of the energy that is stored in one trophic level can be passed on to the next level • Much of the energy that is consumed is used for the basic functions of life (breathing, moving, reproducing) • Only 10% is used to produce more biomass (10 % moves on) • This is what can be obtained from the next trophic level • All of the other energy is lost 10% RULE • Only 10% of energy (from organisms) at one trophic level → the next level • EX: only 10% of energy/calories from grasses is available to cows • WHY? • Energy used for bodily processes (growth/development and repair) • Energy given off as heat • Energy used for daily functioning/movement • Only 10% of energy you take in should be going to your actual biomass/weight which another organism could eat BIOMASS PYRAMID • Total amount of living tissue within a given trophic level = biomass • Represents the amount of potential food available for each trophic level in an ecosystem PYRAMID OF NUMBERS •Based on the number of individuals at each trophic level.
    [Show full text]
  • Chapter 15 Biogeography and Dispersal
    Chapter 15 Biogeography and dispersal Rob Hengeveld and Lia Hemerik Introduction This chapter evaluates the role of dispersal in biogeographical processes and their re- sulting patterns. We consider dispersal as a local process, which comprises the com- bined movements of individual organisms, but which can dominate processes even at the scale of continents. If this is correct, it is no longer possible to separate local ecological processes from those at broad, geographical scales. However, biogeo- graphical processes differ from those happening in one or a few localities; at the broader scales,there are additional processes occurring which are only evident when examined from this wider perspective. We integrate biogeography with ecology, explaining broad-scale effects, ranging from processes happening locally as the result of responses of individual organisms to perpetual changes in living conditions in heterogeneous space. The models to be used cannot be those traditional in population dynamics with a dispersal parameter plugged in, but must be spatially explicit. Only a broad-scale perspective of con- tinual redistribution of large groups of individuals or reproductive propagules can give dispersal its biological and biogeographical significance. Our general thesis in this chapter is that adaptation in non-uniform space enables individuals to cope effectively with environmental variation in time. In our analyses of spatially adaptive processes, we concentrate on principles rather than on details of specific phenomena, such as types of distance distribution. We therefore formulate these principles in terms of simple Poisson processes.In spe- cific cases, these distributions can be replaced by more complex ones which may fit better.
    [Show full text]
  • Plants Are Producers! Draw the Different Producers Below
    Name: ______________________________ The Unique Producer Every food chain begins with a producer. Plants are producers. They make their own food, which creates energy for them to grow, reproduce and survive. Being able to make their own food makes them unique; they are the only living things on Earth that can make their own source of food energy. Of course, they require sun, water and air to thrive. Given these three essential ingredients, you will have a healthy plant to begin the food chain. All plants are producers! Draw the different producers below. Apple Tree Rose Bushes Watermelon Grasses Plant Blueberry Flower Fern Daisy Bush List the three essential needs that every producer must have in order to live. © 2009 by Heather Motley Name: ______________________________ Producers can make their own food and energy, but consumers are different. Living things that have to hunt, gather and eat their food are called consumers. Consumers have to eat to gain energy or they will die. There are four types of consumers: omnivores, carnivores, herbivores and decomposers. Herbivores are living things that only eat plants to get the food and energy they need. Animals like whales, elephants, cows, pigs, rabbits, and horses are herbivores. Carnivores are living things that only eat meat. Animals like owls, tigers, sharks and cougars are carnivores. You would not catch a plant in these animals’ mouths. Then, we have the omnivores. Omnivores will eat both plants and animals to get energy. Whichever food source is abundant or available is what they will eat. Animals like the brown bear, dogs, turtles, raccoons and even some people are omnivores.
    [Show full text]
  • Can More K-Selected Species Be Better Invaders?
    Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France.
    [Show full text]
  • Detrital Food Chain As a Possible Mechanism to Support the Trophic Structure of the Planktonic Community in the Photic Zone of a Tropical Reservoir
    Limnetica, 39(1): 511-524 (2020). DOI: 10.23818/limn.39.33 © Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 Detrital food chain as a possible mechanism to support the trophic structure of the planktonic community in the photic zone of a tropical reservoir Edison Andrés Parra-García1,*, Nicole Rivera-Parra2, Antonio Picazo3 and Antonio Camacho3 1 Grupo de Investigación en Limnología Básica y Experimental y Biología y Taxonomía Marina, Instituto de Biología, Universidad de Antioquia. 050010 Medellín, Colombia. 2 Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Instituto de Física, Universidad de Antioquia. 050010 Medellín, Colombia. 3 Instituto Cavanilles de Biodiversidad y Biología Evolutiva. Universidad de Valencia. E–46980 Paterna, Valencia. España. * Corresponding author: [email protected] Received: 31/10/18 Accepted: 10/10/19 ABSTRACT Detrital food chain as a possible mechanism to support the trophic structure of the planktonic community in the photic zone of a tropical reservoir In the photic zone of aquatic ecosystems, where different communities coexist showing different strategies to access one or different resources, the biomass spectra can describe the food transfers and their efficiencies. The purpose of this work is to describe the biomass spectrum and the transfer efficiency, from the primary producers to the top predators of the trophic network, in the photic zone of the Riogrande II reservoir. Data used in the model of the biomass spectrum were taken from several studies carried out between 2010 and 2013 in the reservoir. The analysis of the slope of a biomass spectrum, of the transfer efficiencies, and the omnivory indexes, suggest that most primary production in the photic zone of the Riogrande II reservoir is not directly used by primary consumers, and it appears that detritic mass flows are an indirect way of channeling this production towards zooplankton.
    [Show full text]
  • The Basics of Population Dynamics Greg Yarrow, Professor of Wildlife Ecology, Extension Wildlife Specialist
    The Basics of Population Dynamics Greg Yarrow, Professor of Wildlife Ecology, Extension Wildlife Specialist Fact Sheet 29 Forestry and Natural Resources Revised May 2009 All forms of wildlife, regardless of the species, will respond to changes in density dependence. These concepts are important for landowners habitat, hunting or trapping, and weather conditions with fluctuations and natural resource managers to understand when making decisions in animal numbers. Most landowners have probably experienced affecting wildlife on private land. changes in wildlife abundance from year to year without really knowing why there are fewer individuals in some years than others. How Many Offspring Can Wildlife Have? In many cases, changes in abundance are normal and to be expected. Most people realize that some wildlife species can produce more The purpose of the information presented here is to help landowners offspring than others. Bobwhite quail are genetically programmed to lay understand why animal numbers may vary or change. While a number an average of 14 eggs per clutch. Each species has a maximum genetic of important concepts will be discussed, one underlying theme should reproductive potential or biotic potential. always be remembered. Regardless of whether property is managed or not in any given year, there is always some change in the habitat, Biotic potential describes a population’s ability to grow over time however small. Wildlife must adjust to this change and, therefore, no through reproduction. Most bat species are likely to produce one population is ever the same from one year to the next. offspring per year. In contrast, a female cottontail rabbit will have a litter size of approximately 5.
    [Show full text]