Detrital Food Chain As a Possible Mechanism to Support the Trophic Structure of the Planktonic Community in the Photic Zone of a Tropical Reservoir
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Altered Organic Matter Dynamics in Rivers and Streams: Ecological Consequences and Management Implications
Limnetica, 29 (2): x-xx (2011) Limnetica, 35 (2): 303-322 (2016). DOI: 10.23818/limn.35.25 c Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 Altered organic matter dynamics in rivers and streams: ecological consequences and management implications Arturo Elosegi and Jesús Pozo Faculty of Science and Technology, the University of the Basque Country UPV/EHU, PoBox 644, 48080 Bilbao, Spain. ∗ Corresponding author: [email protected] 2 Received: 15/02/2016 Accepted: 05/05/2016 ABSTRACT Altered organic matter dynamics in rivers and streams: ecological consequences and management implications Scientists have spent decades measuring inputs, storage and breakdown of organic matter in freshwaters and have documented the effects of soil uses, pollution, climate warming or flow regulation on these pivotal ecosystem functions. Large-scale collaborative experiments and meta-analyses have revealed some clear patterns as well as substantial variability in detritus dynamics, and a number of standardized methods have been designed for routine monitoring of organic matter inputs, retention and breakdown in different conditions. Despite the knowledge gathered, scientists have been relatively ineffective at convincing managers of the importance of organic matter dynamics in freshwaters. Here we review the existing information of the role of organic matter as a) an element structuring freshwater habitats, b) a source or sink of nutrients, c) a food resource for heterotrophs, d) a source of pollution, e) a modulator of the fate of pollutants, f) a source of greenhouse gases, g) a potential source of environmental problems, and h) a diagnostic tool for ecosystem functioning. Current knowledge in some of these points is enough to be transferred to management actions, although has seldom been so. -
7.014 Handout PRODUCTIVITY: the “METABOLISM” of ECOSYSTEMS
7.014 Handout PRODUCTIVITY: THE “METABOLISM” OF ECOSYSTEMS Ecologists use the term “productivity” to refer to the process through which an assemblage of organisms (e.g. a trophic level or ecosystem assimilates carbon. Primary producers (autotrophs) do this through photosynthesis; Secondary producers (heterotrophs) do it through the assimilation of the organic carbon in their food. Remember that all organic carbon in the food web is ultimately derived from primary production. DEFINITIONS Primary Productivity: Rate of conversion of CO2 to organic carbon (photosynthesis) per unit surface area of the earth, expressed either in terns of weight of carbon, or the equivalent calories e.g., g C m-2 year-1 Kcal m-2 year-1 Primary Production: Same as primary productivity, but usually expressed for a whole ecosystem e.g., tons year-1 for a lake, cornfield, forest, etc. NET vs. GROSS: For plants: Some of the organic carbon generated in plants through photosynthesis (using solar energy) is oxidized back to CO2 (releasing energy) through the respiration of the plants – RA. Gross Primary Production: (GPP) = Total amount of CO2 reduced to organic carbon by the plants per unit time Autotrophic Respiration: (RA) = Total amount of organic carbon that is respired (oxidized to CO2) by plants per unit time Net Primary Production (NPP) = GPP – RA The amount of organic carbon produced by plants that is not consumed by their own respiration. It is the increase in the plant biomass in the absence of herbivores. For an entire ecosystem: Some of the NPP of the plants is consumed (and respired) by herbivores and decomposers and oxidized back to CO2 (RH). -
Effects of Interactions Between the Green and Brown Food Webs on Ecosystem Functioning Kejun Zou
Effects of interactions between the green and brown food webs on ecosystem functioning Kejun Zou To cite this version: Kejun Zou. Effects of interactions between the green and brown food webs on ecosystem functioning. Ecosystems. Université Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066266. tel-01445570 HAL Id: tel-01445570 https://tel.archives-ouvertes.fr/tel-01445570 Submitted on 1 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie Ecole doctorale : 227 Science de la Nature et de l’Homme Laboratoire : Institut d’Ecologie et des Sciences de l’Environnement de Paris Effects of interactions between the green and brown food webs on ecosystem functioning Effets des interactions entre les réseaux vert et brun sur le fonctionnement des ecosystèmes Par Kejun ZOU Thèse de doctorat d’Ecologie Dirigée par Dr. Sébastien BAROT et Dr. Elisa THEBAULT Présentée et soutenue publiquement le 26 septembre 2016 Devant un jury composé de : M. Sebastian Diehl Rapporteur M. José Montoya Rapporteur Mme. Emmanuelle Porcher Examinatrice M. Eric Edeline Examinateur M. Simon Bousocq Examinateur M. Sébastien Barot Directeur de thèse Mme. Elisa Thébault Directrice de thèse 2 Acknowledgements At the end of my thesis I would like to thank all those people who made this thesis possible and an unforgettable experience for me. -
Trophic Levels
Trophic Levels Douglas Wilkin, Ph.D. Jean Brainard, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) AUTHORS Douglas Wilkin, Ph.D. To access a customizable version of this book, as well as other Jean Brainard, Ph.D. interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook®, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform®. Copyright © 2015 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference. -
Food Chains in Woodland Habitats. All Animals Need to Eat Food to Survive
Science Lesson Living Things and their Habitats- Food chains in woodland habitats. Key Learning • A food chain shows the links between different living things and where they get their energy from. • Living things can be classified as producers or consumers according to their place in the food chain. • A predator is an animal that feeds on other animals (its prey). • Animals can be described as carnivores, herbivores or omnivores. All animals need to eat food to survive. • Talk about what you already know about the kind of food different animals eat. • What is the name of an animal that only eats plants? • What is the name of an animal that only eats other animals? • What is the name of an animal that eats both plants and other animals? Watch this clip about birds. What kind of food do they eat? https://www.bbc.co.uk/bitesize/clips/z9nhfg8 Animals can be described as herbivores, carnivores or omnivores. Birds like robins, blue tits and house sparrows have a very varied diet! worms spiders slugs flies mealworms berries Robins, blue tits and house sparrows are omnivores because they eat plants and other animals. Describing a food chain. Watch this clip describing a food chain. https://www.bbc.co.uk/bitesize/clips/zjshfg8 Caterpillar cat magpie Think about these questions as you watch • Where does a food chain start? • Which animals are herbivores? • Which animals are carnivores? A food chain starts with energy from the Sun because plants need the Sun’s light energy to make their own food in their leaves. Plants are eaten by animals. -
Ecology (Pyramids, Biomagnification, & Succession
ENERGY PYRAMIDS & Freshmen Biology FOOD CHAINS/FOOD WEBS May 4 – May 8 Lecture ENERGY FLOW •Energy → powers life’s processes •Energy = ATP! •Flow of energy determines the system’s ability to sustain life FEEDING RELATIONSHIPS • Energy flows through an ecosystem in one direction • Sun → autotrophs (producers) → heterotrophs (consumers) FOOD CHAIN VS. FOOD WEB FOOD CHAINS • Energy stored by producers → passed through an ecosystem by a food chain • Food chain = series of steps in which organisms transfer energy by eating and being eaten FOOD WEBS •Feeding relationships are more complex than can be shown in a food chain •Food Web = network of complex interactions •Food webs link all the food chains in an ecosystem together ECOLOGICAL PYRAMIDS • Used to show the relationships in Ecosystems • There are different types: • Energy Pyramid • Biomass Pyramid • Pyramid of numbers ENERGY PYRAMID • Only part of the energy that is stored in one trophic level can be passed on to the next level • Much of the energy that is consumed is used for the basic functions of life (breathing, moving, reproducing) • Only 10% is used to produce more biomass (10 % moves on) • This is what can be obtained from the next trophic level • All of the other energy is lost 10% RULE • Only 10% of energy (from organisms) at one trophic level → the next level • EX: only 10% of energy/calories from grasses is available to cows • WHY? • Energy used for bodily processes (growth/development and repair) • Energy given off as heat • Energy used for daily functioning/movement • Only 10% of energy you take in should be going to your actual biomass/weight which another organism could eat BIOMASS PYRAMID • Total amount of living tissue within a given trophic level = biomass • Represents the amount of potential food available for each trophic level in an ecosystem PYRAMID OF NUMBERS •Based on the number of individuals at each trophic level. -
Salt Marsh Food Web a Food Chain Shows How Each Living Thing Gets Its Food
North Carolina Aquariums Education Section Salt Marsh Food Web A food chain shows how each living thing gets its food. Some animals eat plants and some animals eat other animals. For example, a simple food chain links the plants, snails (that eats the plants), and the birds (that eat the snails). Each link in this chain is food for the next link. Food Webs are networks of several food chains. They show how plants and animals are connected in many ways to help them all survive. Below are some helpful terms associated with food chains and food webs. Helpful Terms Ecosystem- is a community of living and non-living things that work together. Producers- are plants that make their own food or energy. Consumers-are animals, since they are unable to produce their own food, they must consume (eat) plants or animals or both. There are three types of consumers: Herbivores-are animals that eat only plants. Carnivores- are animals that eat other animals. Omnivores- are animals that eat both plants and animals. Decomposers-are bacteria or fungi which feed on decaying matter. They are very important for any ecosystem. If they weren't in the ecosystem, the plants would not get essential nutrients, and dead matter and waste would pile up. Salt Marsh Food Web Activities The salt marsh houses many different plants and animals that eat each other, which is an intricately woven web of producers, consumers, and decomposers. Consumers usually eat more than one type of food, and they may be eaten by many other consumers. This means that several food chains become connected together to form a food web. -
Plants Are Producers! Draw the Different Producers Below
Name: ______________________________ The Unique Producer Every food chain begins with a producer. Plants are producers. They make their own food, which creates energy for them to grow, reproduce and survive. Being able to make their own food makes them unique; they are the only living things on Earth that can make their own source of food energy. Of course, they require sun, water and air to thrive. Given these three essential ingredients, you will have a healthy plant to begin the food chain. All plants are producers! Draw the different producers below. Apple Tree Rose Bushes Watermelon Grasses Plant Blueberry Flower Fern Daisy Bush List the three essential needs that every producer must have in order to live. © 2009 by Heather Motley Name: ______________________________ Producers can make their own food and energy, but consumers are different. Living things that have to hunt, gather and eat their food are called consumers. Consumers have to eat to gain energy or they will die. There are four types of consumers: omnivores, carnivores, herbivores and decomposers. Herbivores are living things that only eat plants to get the food and energy they need. Animals like whales, elephants, cows, pigs, rabbits, and horses are herbivores. Carnivores are living things that only eat meat. Animals like owls, tigers, sharks and cougars are carnivores. You would not catch a plant in these animals’ mouths. Then, we have the omnivores. Omnivores will eat both plants and animals to get energy. Whichever food source is abundant or available is what they will eat. Animals like the brown bear, dogs, turtles, raccoons and even some people are omnivores. -
Development Team Prof
Paper No: 01 Ecosystem Structures & Functions Module 5: Food chains and Food webs Development Team Prof. R.K. Kohli Principal Investigator & Prof. V.K. Garg & Prof. Ashok Dhawan Co- Principal Investigator Central University of Punjab, Bathinda Dr. Renuka Gupta, YMCA University of Science Paper Coordinator and Technology, Faridabad, Haryana Dr. Renuka Gupta, YMCA University of Science Content Writer and Technology, Faridabad, Haryana Content Reviewer Prof. V. K. Garg, Central University of Punjab, Bathinda 1 Anchor Institute Central University of Punjab Ecosystem Structures & Functions Environmental Module 5: Food Chains and Food Webs Sciences Description of Module Subject Name Environmental Sciences Paper Name Ecosystem Structure & Function Module 5. Food Chains and Food webs Name/Title Module Id EVS/ESF-I/5 Pre-requisites • To learn about food chains and food web in an ecosystem. • To understand about grazing and detritus food chains. Objectives • To learn about different types of food webs. • To understand special features and significance of food chains and food web Ecosystem, Food chain, Food web, Grazing food chain, Detritus food chain, Types Keywords of food web, Reward Feedback, Trophic Cascades, Keystone Predation, Bottom - up approach, Top - down approach, Bioaccumulation, Biomagnification. 2 Ecosystem Structures & Functions Environmental Module 5: Food Chains and Food Webs Sciences Module 5: Food Chains and Food Webs Contents 1. Introduction 2. Food Chains 3. Types of Food Chains 4. Food Webs 5. Types of Food webs 6. Characteristics of food webs 7. Significance of food chains and food webs 8. Biomagnification 5. 1 Introduction Every ecosystem works in a systematic manner under natural conditions. It receives energy from the sun and passes it to various biotic components. -
Nutrient Release Rates and Ratios by Two Stream Detritivores Fed Leaf Litter Grown Under Elevated Atmospheric CO2
Arch. Hydrobiol. 163 4 463–477 Stuttgart, August 2005 Nutrient release rates and ratios by two stream detritivores fed leaf litter grown under elevated atmospheric CO2 Paul C. Frost1 * and Nancy C. Tuchman2 With 5 figures and 1 table Abstract: We examined how nutrient release by two common stream detritivores, Asellus and Gammarus, was affected by the consumption of aspen leaf litter from trees grown under elevated CO2. We measured excretory release of dissolved organic carbon (DOC), ammonia (NH4), and soluble reactive phosphorus (SRP) from consumers fed senesced leaves of Populus tremuloides (trembling aspen) trees grown under elevated (720 ppm) and ambient (360 ppm) CO2. Contrary to predictions based on ecological stoichiometry, elevated CO2 leaves caused greater NH4 and SRP release from both ani- mals but did not affect the release of DOC. Elevated CO2 leaves reduced DOC : NH4 and DOC : SRP ratios released from Asellus but did not affect these ratios from Gam- marus. Both animals showed lower NH4 : SRP release ratios after eating elevated CO2 leaves. A mass balance model of consumer N and P release demonstrated that in- creased excretion rates likely resulted from reduced absorption efficiencies (and un- changed or higher digestive efficiencies) in these aquatic detritivores. Our results indi- cate that changes in leaf biochemistry resulting from elevated atmospheric CO2 will strongly affect the ability of stream consumers to retain important biogenic elements. Increased release rates of NH4 and SRP are another indication, along with reduced growth and reproduction, that litter produced under elevated CO2 has strong effects on key physiological processes in detritivores with potentially strong consequences for nutrient cycling in streams of forested regions. -
Detritus Dynamics in the Seagrass Posidonia Oceanica: Elements for an Ecosystem Carbon and Nutrient Budget
MARINE ECOLOGY PROGRESS SERIES Vol. 151: 43-53, 1997 Published May 22 Mar Ecol Prog Ser Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget M. A. Mateo*, J. Romero Departament d'Ecologia, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain ABSTRACT. Leaf decay, leaf l~tterexport, burial in belowground sinks, and resp~ratoryconsumption of detritus were exam~nedat 2 different depths in a Posidonia oceanica (L ) Delile meadow off the Medes Islands, NW Mediterranean. At 5 m, the amount of exported leaf litter represented carbon, nitrogen and phosphorus losses of 7. 9 and 6%)of the plant primary productlon, respectively. About 26% of the carbon produced by the plant in 1 yr was immobilized by burial in the belowground compartment, i.e. as roots and rhizomes. Annual nitrogen and phosphorus burial in the sediment was 8 and 5",, of total N and P needs, respectively. Respiratory consumption (aerobic) of carbon leaf detritus represented 17"" of the annual production. An additional, but very substantial, loss of carbon as very fine particulate organic matter has been estimated at ca 48%. At 13 m the pattern of carbon losses was similar, but the lesser effect of wave action (reldtive to that at 5 m) reduced exportation, hence increasing the role of respiratory consumption. Data on carbon losses indicated that only a small part of the plant productlon was actually available to fuel the food web of this ecosystem. Total nutrient losses were in the range of 21 to 47 ",I of annual needs. From differences found in N and P concentrations between liv~ngand dead tissues, it is suggested that important nutrient recycling (50 to 70%)) may be due either to reclamation or to leaching immediately after plant death. -
And Detritus-Based Food Chain in the Micro-Food Web of an Arable Soil by Plant Removal
RESEARCH ARTICLE Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by plant removal Olena Glavatska1, Karolin MuÈ ller2, Olaf Butenschoen3, Andreas Schmalwasser4, Ellen Kandeler2, Stefan Scheu3,5, Kai Uwe Totsche4, Liliane Ruess1* 1 Institute of Biology, Ecology Group, Humboldt-UniversitaÈt zu Berlin, Berlin, Germany, 2 Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany, 3 J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University of GoÈttingen, GoÈttingen, a1111111111 Germany, 4 Institute of Geosciences, Hydrogeology Section, Friedrich Schiller University of JenaJena, a1111111111 Germany, 5 Centre of Biodiversity and Sustainable Land Use, University of GoÈttingen, GoÈttingen, Germany a1111111111 a1111111111 * [email protected] a1111111111 Abstract Soil food web structure and function is primarily determined by the major basal resources, OPEN ACCESS which are living plant tissue, root exudates and dead organic matter. A field experiment was Citation: Glavatska O, MuÈller K, Butenschoen O, performed to disentangle the interlinkage of the root-and detritus-based soil food chains. An Schmalwasser A, Kandeler E, Scheu S, et al. (2017) arable site was cropped either with maize, amended with maize shoot litter or remained Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by bare soil, representing food webs depending on roots, aboveground litter and soil organic plant removal. PLoS ONE 12(7): e0180264. https:// matter as predominant resource, respectively. The soil micro-food web, i.e. microorganisms doi.org/10.1371/journal.pone.0180264 and nematodes, was investigated in two successive years along a depth transect.